Treasures Induced by Narrow-Spectrum: Volatile Phenylpropanoid and Terpene Compounds in Leaves of Lemon Basil (Ocimum × citriodorum Vis.), Sweet Basil (O. basilicum L.) and Bush Basil (O. minimum L.) Under Artificial Light City Farm Conditions
Abstract
:1. Introduction
2. Results
2.1. Development of Plans in a Field, Greenhouse and City Farm
2.2. Yield of Essential Oil
2.3. Component Compositions of EOs
2.4. Features of Glandular and Non-Glandular Trichomes on Leaf Surfaces of OcK, ObQS and OmV
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Essential Oil Isolation and Component Identification by GC
4.3. Determination of the Compositions of Volatile Compounds of Basil Samples
4.4. Scanning Electron Microscopy (SEM)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pichersky, E.; Raguso, R.A. Why Do Plants Produce So Many Terpenoid Compounds? New Phytol. 2018, 220, 692–702. [Google Scholar] [CrossRef]
- Napoli, E.; Di Vito, M. Toward a New Future for Essential Oils. Antibiotics 2021, 10, 207. [Google Scholar] [CrossRef]
- Aharoni, A.; Jongsma, M.A.; Kim, T.-Y.; Ri, M.-B.; Giri, A.P.; Verstappen, F.W.A.; Schwab, W.; Bouwmeester, H.J. Metabolic Engineering of Terpenoid Biosynthesis in Plants. Phytochem. Rev. 2006, 5, 49–58. [Google Scholar] [CrossRef]
- Chinedu, E.; Charles, C.O. Ocimum Species: Ethnomedicinal Uses, Phytochemistry and Pharmacological Importance. Int. J. Curr. Res. Physiol. Pharmacol. 2021, 5, 1–12. [Google Scholar] [CrossRef]
- Ngassoum, M.B.; Ousmaila, H.; Ngamo, L.S.; Maponmetsem, P.M.; Jirovetz, L.; Buchbauer, G. Aroma Compounds of Essential Oils of Two Varieties of the Spice Plant Ocimum canum Sims from Northern Cameroon. J. Food Compos. Anal. 2004, 17, 197–204. [Google Scholar] [CrossRef]
- Beltrán-Noboa, A.; Jordan-Álvarez, A.; Guevara-Terán, M.; Gallo, B.; Berrueta, L.A.; Giampieri, F.; Battino, M.; Álvarez-Suarez, J.M.; Tejera, E. Exploring the Chemistry of Ocimum Species under Specific Extractions and Chromatographic Methods: A Systematic Review. ACS Omega 2023, 8, 10747–10756. [Google Scholar] [CrossRef]
- Telci, I.; Elmastas, M.; Sahin, A. Chemical Composition and Antioxidant Activity of Ocimum minimum Essential Oils. Chem. Nat. Compd. 2009, 45, 568–571. [Google Scholar] [CrossRef]
- Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef]
- Kolega, S.; Miras-Moreno, B.; Buffagni, V.; Lucini, L.; Valentinuzzi, F.; Maver, M.; Mimmo, T.; Trevisan, M.; Pii, Y.; Cesco, S. Nutraceutical Profiles of Two Hydroponically Grown Sweet Basil Cultivars as Affected by the Composition of the Nutrient Solution and the Inoculation with Azospirillum brasilense. Front. Plant Sci. 2020, 11, 596000. [Google Scholar] [CrossRef]
- Padalia, R.C.; Verma, R.S. Comparative Volatile Oil Composition of Four Ocimum Species from Northern India. Nat. Prod. Res. 2011, 25, 569–575. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Naji-Tabasi, S. Chapter 15—Rheology and Texture of Basil Seed Gum: A New Hydrocolloid Source. In Advances in Food Rheology and Its Applications, 2nd ed.; Ahmed, J., Basu, S., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 413–458. ISBN 978-0-12-823983-4. [Google Scholar]
- Azizah, N.S.; Irawan, B.; Kusmoro, J.; Safriansyah, W.; Farabi, K.; Oktavia, D.; Doni, F.; Miranti, M. Sweet Basil (Ocimum basilicum L.)—A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. Plants 2023, 12, 4148. [Google Scholar] [CrossRef] [PubMed]
- Gebrehiwot, H.; Bachetti, R.K.; Dekebo, A. Chemical Composition and Antimicrobial Activities of Leaves of Sweet Basil (Ocimum basilicum L.) Herb. Int. J. Basic Clin. Pharmacol. 2015, 4, 869–875. [Google Scholar] [CrossRef]
- Romano, R.; De Luca, L.; Aiello, A.; Pagano, R.; Di Pierro, P.; Pizzolongo, F.; Masi, P. Basil (Ocimum basilicum L.) Leaves as a Source of Bioactive Compounds. Foods 2022, 11, 3212. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; McGaw, L.J.; Kuete, V.; Bakowsky, U. Chapter 9—Anti-inflammatory and Anti-nociceptive Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 239–270. ISBN 978-0-12-809286-6. [Google Scholar]
- Vieira, R.F.; Simon, J.E. Chemical Characterization of Basil (Ocimum spp.) Found in the Markets and Used in Traditional Medicine in Brazil. Econ. Bot. 2000, 54, 207–216. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Essential Oils of Ocimum basilicum L. and Ocimum americanum L. from Djibouti: Chemical Composition, Antimicrobial and Cytotoxicity Evaluations. Processes 2022, 10, 1785. [Google Scholar] [CrossRef]
- Agarwal, C.; Sharma, N.L.; Gaurav, S.S. Anti Epileptic Activity of Ocimum Species: A Brief Review. Int. J. Appl. Sci. Biotechnol. 2013, 1, 180–183. [Google Scholar] [CrossRef]
- Naji-Tabasi, S.; Razavi, S.M.A. Functional Properties and Applications of Basil Seed Gum: An Overview. Food Hydrocol. 2017, 73, 313–325. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Jindamol, H.; Thongtip, A.; Korinsak, S.; Romyanon, K.; Toojinda, T.; Darwell, C.T.; Wanichananan, P.; Panya, A.; Kaewsri, W.; et al. Physiological Responses and Variation in Secondary Metabolite Content among Thai Holy Basil Cultivars (Ocimum tenuiflorum L.) Grown under Controlled Environmental Conditions in a Plant Factory. Front. Plant Sci. 2022, 13, 1008917. [Google Scholar] [CrossRef]
- Reddy, V.A.; Li, C.; Nadimuthu, K.; Tjhang, J.G.; Jang, I.C.; Rajani, S. Sweet Basil Has Distinct Synthases for Eugenol Biosynthesis in Glandular Trichomes and Roots with Different Regulatory Mechanisms. Int. J. Mol. Sci. 2021, 22, 681. [Google Scholar] [CrossRef]
- Maurya, S.; Chandra, M.; Yadav, R.K.; Narnoliya, L.K.; Sangwan, R.S.; Bansal, S.; Sandhu, P.; Singh, U.; Kumar, D.; Sangwan, N.S. Interspecies Comparative Features of Trichomes in Ocimum Reveal Insights for Biosynthesis of Specialized Essential Oil Metabolites. Protoplasma 2019, 256, 893–907. [Google Scholar] [CrossRef]
- Paula, J.P.; Farago, P.V.; Ribas, J.L.C.; Spinardi, G.M.S.; Döll, P.M.; Artoni, R.F.; Zawadski, S.F. In Vivo Evaluation of the Mutagenic Potential of Estragole and Eugenol Chemotypes of Ocimum selloi Benth. Lat. Am. J. Pharm. 2007, 26, 846–851. [Google Scholar]
- Krüger, H.; Wetzel, S.; Zeiger, B. The Chemical Variability of Ocimum Species. J. Herbs Spices Med. Plants 2002, 9, 335–344. [Google Scholar] [CrossRef]
- Carovic-Stanko, K.; Orlic, S.; Politeo, O.; Strikic, F.; Kolak, I.; Milos, M.; Satovic, Z. Composition and Antibacterial Activities of Essential Oils of Seven Ocimum Taxa. Food Chem. 2010, 119, 196–201. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Padilla-González, G.F.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants 2022, 11, 789. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and Biological Functions of Terpenoids in Plants. In Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology; Schrader, J., Bohlmann, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 148, pp. 63–106. ISBN 978-3-319-20107-8. [Google Scholar]
- Simpson, M.G. Chapter 9—Plant Morphology. In Plant Systematics, 2nd ed.; Simpson, M.G., Ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 451–513. ISBN 9780080922089. [Google Scholar]
- Gostin, I.N.; Blidar, C.F. Glandular Trichomes and Essential Oils Variability in Species of the Genus phlomis L.: A Review. Plants 2024, 13, 1338. [Google Scholar] [CrossRef]
- Mathew, L.; Shah, G.L. Structure, Development, Organographic Distribution and Taxonomic Significance of Trichomes in Nine Species of Verbena. Feddes Repert. 1983, 94, 323–333. [Google Scholar] [CrossRef]
- Rastogi, S.; Shah, S.; Kumar, R.; Kumar, A.; Shasany, A.K. Comparative Temporal Metabolomics Studies to Investigate Interspecies Variation in Three Ocimum Species. Sci. Rep. 2020, 10, 5234. [Google Scholar] [CrossRef]
- Muráriková, A.; Ťažký, A.; Neugebauerová, J.; Planková, A.; Jampílek, J.; Mučaji, P.; Mikuš, P. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method. Molecules 2017, 22, 1221. [Google Scholar] [CrossRef]
- Sena, S.; Kumari, S.; Kumar, V.; Husen, A. Light Emitting Diode (LED) Lights for the Improvement of Plant Performance and Production: A Comprehensive Review. Curr. Res. Biotechnol. 2024, 7, 100184. [Google Scholar] [CrossRef]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current Status and Recent Achievements in the Field of Horticulture with the Use of Light-Emitting Diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- May, A.; Bovi, O.A.; Maia, N.B.; Barata, L.E.S.; Souza, R.D.C.Z.D.; Souza, E.M.R.D.; Moraes, A.R.A.D.; Pinheiro, M.Q. Basil Plants Growth and Essential Oil Yield in a Production System with Successive Cuts. Bragantia 2008, 67, 385–389. [Google Scholar] [CrossRef]
- Sipos, L.; Balazs, L.; Székely, G.; Jung, A.; Sárosi, S.; Radacsi, P.; Csambalik, L. Optimization of Basil (Ocimum basilicum L.) Production in LED Light Environments—A Review. Sci. Hortic. 2021, 289, 110486. [Google Scholar] [CrossRef]
- Carvalho, S.; Schwieterman, M.; Abrahan, C.; Colquhoun, T.; Folta, K. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum). Front. Plant Sci. 2016, 7, 1328. [Google Scholar] [CrossRef] [PubMed]
- Bottiglione, B.; Villani, A.; Mastropasqua, L.; De Leonardis, S.; Paciolla, C. Blue and Red LED Lights Differently Affect Growth Responses and Biochemical Parameters in Lentil (Lens culinaris). Biology 2023, 13, 12. [Google Scholar] [CrossRef]
- Rahman, M.; Field, D.; Ahmed, S.; Hasan, M.T.; Basher, M.; Alameh, K. LED Illumination for High-Quality High-Yield Crop Growth in Protected Cropping Environments. Plants 2021, 10, 2470. [Google Scholar] [CrossRef]
- Loi, M.; Villani, A.; Paciolla, F.; Mule, G.; Paciolla, C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants 2020, 10, 42. [Google Scholar] [CrossRef]
- Schuurink, R.; Tissier, A. Glandular Trichomes: Micro-Organs with Model Status? New Phytol. 2020, 225, 2251–2266. [Google Scholar] [CrossRef]
- Simpson, M.G. Chapter 9—Plant Morphology. In Plant Systematics, 3rd ed.; Simpson, M.G., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 469–535. ISBN 9780128126288. [Google Scholar]
- Ayran, İ.; Çelik, S.A.; Özcan, M.M.; Kırlı, A.; Dede, Ö.; Çiçek, C.; Kan, Y. The Essential Oil Yield and Compositions of Lemon Verbena (Lippia citriodora Kunth.) Cultivated in Ordu Ecological Conditions. Akad. Ziraat Derg. 2021, 10, 365–370. [Google Scholar] [CrossRef]
- Abdellatif, F.; Boudjella, H.; Zitouni, A.; Hassani, A. Chemical Composition and Antimicrobial Activity of the Essential Oil from Leaves of Algerian Melissa officinalis L. EXCLI J. 2014, 13, 772–781. [Google Scholar]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.; Sabra, A.S.; El Gendy, A.N.G.; Aziz, E.E.; Tkachenko, K.G. Changes in Content and Chemical Composition of Dracocephalum moldavica L. Essential Oil at Different Harvest Dates. J. Med. Plants Stud. 2015, 3, 61–64. [Google Scholar]
- Shuge, T.; Xiaoying, Z.; Fan, Z.; Dongqing, A.; Tao, Y.; Tao, Y. Essential Oil Composition of the Dracocephalum moldavica L. from Xinjiang in China. Pharmacogn. Res. 2009, 1, 172–174. [Google Scholar]
- Acimovic, M.G.; Stanković, J.; Cvetković, M.; Todosijević, M.; Rat, M. Essential Oil Analysis of Dracocephalum moldavica L. from Serbia. Biol. Nyssana 2019, 10, 23–28. [Google Scholar] [CrossRef]
- Gershenzon, J. Metabolic Costs of Terpenoid Accumulation in Higher Plants. J. Chem. Ecol. 1994, 20, 1281–1328. [Google Scholar] [CrossRef]
- Werker, E.; Putievsky, E.; Ravid, U.; Dudai, N.; Katzir, I. Glandular Hairs and Essential Oil in Developing Leaves of Ocimum basilicum L. (Lamiaceae). Ann. Bot. 1993, 71, 43–50. [Google Scholar] [CrossRef]
- Argyropoulou, C.; Akoumianaki-Ioannidou, A.; Christodoulakis, N.; Fasseas, C. Leaf Anatomy and Histochemistry of Lippia citriodora (Verbenaceae). Aust. J. Bot. 2010, 58, 398–409. [Google Scholar] [CrossRef]
- Chwil, M.; Nurzyńska-Wierdak, R.; Chwil, S.; Matraszek, R.; Neugebauerová, J. Histochemistry and Micromorphological Diversity of Glandular Trichomes in Melissa officinalis L. Leaf Epidermis. Acta Sci. Pol. Hortorum Cultus 2016, 15, 153–172. [Google Scholar]
- Deschamps, C.; Simon, J.E. Phenylpropanoid Biosynthesis in Leaves and Glandular Trichomes of Basil (Ocimum basilicum L.). Methods Mol. Biol. 2010, 643, 263–273. [Google Scholar] [CrossRef]
- Abdollahi Mandoulakani, B.; Eyvazpour, E.; Ghadimzadeh, M. The Effect of Drought Stress on the Expression of Key Genes Involved in the Biosynthesis of Phenylpropanoids and Essential Oil Components in Basil (Ocimum basilicum L.). Phytochem. 2017, 139, 1–7. [Google Scholar] [CrossRef]
- Khakdan, F.; Nasiri, J.; Ranjbar, M.; Alizadeh, H. Water Deficit Stress Fluctuates Expression Profiles of 4Cl, C3H, COMT, CVOMT and EOMT Genes Involved in the Biosynthetic Pathway of Volatile Phenylpropanoids alongside Accumulation of Methylchavicol and Methyleugenol in Different Iranian Cultivars of Basil. J. Plant Physiol. 2017, 218, 74–83. [Google Scholar] [CrossRef]
- Lewinsohn, E.; Ziv-Raz, I.; Dudai, N.; Tadmor, Y.; Lastochkin, E.; Larkov, O.; Chaimovitsh, D.; Ravid, U.; Putievsky, E.; Pichersky, E.; et al. Biosynthesis of Estragole and Methyl-Eugenol in Sweet Basil (Ocimum basilicum L.). Developmental and Chemotypic Association of Allylphenol O-Methyltransferase Activities. Plant Sci. Int. J. Exp. Plant Biol. 2000, 160, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Gurav, T.P.; Dholakia, B.B.; Giri, A.P. A Glance at the Chemodiversity of Ocimum Species: Trends, Implications, and Strategies for the Quality and Yield Improvement of Essential Oil. Phytochem. Rev. Proc. Phytochem. Soc. Eur. 2022, 21, 879–913. [Google Scholar] [CrossRef] [PubMed]
- Pyne, R.M.; Honig, J.A.; Vaiciunas, J.; Wyenandt, C.A.; Simon, J.E. Population Structure, Genetic Diversity and Downy Mildew Resistance among Ocimum Species Germplasm. BMC Plant Biol. 2018, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Demurtas, O.C.; Nicolia, A.; Diretto, G. Terpenoid Transport in Plants: How Far from the Final Picture? Plants Basel Switz. 2023, 12, 634. [Google Scholar] [CrossRef]
- Kivimäenpä, M.; Mofikoya, A.; Abd El-Raheem, A.M.; Riikonen, J.; Julkunen-Tiitto, R.; Holopainen, J.K. Alteration in Light Spectra Causes Opposite Responses in Volatile Phenylpropanoids and Terpenoids Compared with Phenolic Acids in Sweet Basil (Ocimum basilicum) Leaves. J. Agric. Food Chem. 2022, 70, 12287–12296. [Google Scholar] [CrossRef]
- Song, T.-E.; Moon, J.-K.; Lee, C.H. Polyphenol Content and Essential Oil Composition of Sweet Basil Cultured in a Plant Factory with Light-Emitting Diodes. Korean J. Hortic. Sci. Technol. 2020, 38, 620–630. [Google Scholar] [CrossRef]
- Sale, A.I.; Uthairatanakij, A.; Laohakunjit, N.; Jitareerat, P.; Kaisangsri, N. Pre-Harvest Supplemental LED Treatments Led to Improved Postharvest Quality of Sweet Basil Leaves. J. Photochem. Photobiol. B Biol. 2023, 248, 112788. [Google Scholar] [CrossRef]
- Ahmadi, T.; Shabani, L.; Sabzalian, M.R. LED Light Sources Improved the Essential Oil Components and Antioxidant Activity of Two Genotypes of Lemon Balm (Melissa officinalis L.). Bot. Stud. 2021, 62, 9. [Google Scholar] [CrossRef]
Compound | O. × c. “Kapriz” | O.b. “Queen Sheba” | O.m. “Vasilisk” | ||||||
---|---|---|---|---|---|---|---|---|---|
F | GH | CF | F | GH | CF | F | GH | CF | |
Area, % | |||||||||
β-Myrcene | 0.0 | 0.0 | 0.0 | 2.1 | 1.7 | 0.9 | 0.3 | 0.5 | 0.2 |
1,8-Cineole | 0.0 | 0.0 | 0.0 | 11.6 | 11.9 | 12.0 | 7.3 | 8.1 | 5.4 |
β-Ocimene | 0.0 | 0.0 | 0.0 | 1.3 | 1.9 | 1.0 | 3.7 | 4.5 | 2.4 |
Linalool | 0.3 | 0.0 | 0.7 | 28.9 | 26.2 | 27.8 | 18.2 | 12.5 | 7.2 |
Terpinene-4-ol | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.3 | 0.9 |
Estragole | 0.0 | 2.8 | 10.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
cis-Citral (Geranial) | 25.7 | 25.7 | 23.0 | 0.2 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Geraniol | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Linalyl acetate | 0.0 | 0.4 | 0.9 | 3.9 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 |
trans-Citral (Neral) | 32.2 | 38.7 | 36.8 | 0.3 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Eugenol | 0.7 | 0.7 | 0.7 | 17.9 | 24.8 | 31.8 | 27.7 | 30.4 | 57.4 |
β-Elemene | 0.8 | 0.0 | 0.6 | 0.3 | 0.4 | 0.4 | 1.9 | 1.1 | 0.8 |
Methyleugenol | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 2.9 | 0.0 | 0.2 | 0.4 |
β--Caryophyllen | 6.0 | 3.6 | 3.2 | 0.5 | 0.6 | 0.4 | 0.2 | 0.3 | 0.0 |
α-Bergamotene | 1.4 | 1.1 | 0.7 | 3.3 | 3.8 | 3.8 | 5.0 | 4.4 | 4.0 |
α-Caryophyllene | 1.8 | 1.3 | 1.3 | 0.0 | 0.3 | 0.2 | 0.9 | 0.8 | 0.5 |
Germacrene D | 5.8 | 0.0 | 4.3 | 0.0 | 0.8 | 2.0 | 6.8 | 0.7 | 2.7 |
Bicyclogermacrene | 0.0 | 4.1 | 0.0 | 1.8 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Germacrene B | 2.1 | 1.7 | 1.4 | 1.2 | 1.0 | 0.8 | 2.7 | 2.5 | 1.4 |
α-Bulnesene | 0.0 | 0.5 | 0.0 | 0.4 | 0.7 | 0.3 | 2.8 | 1.9 | 0.9 |
γ-Cadinene | 0.0 | 0.0 | 0.0 | 2.5 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |
α-Bisabolene | 4.8 | 3.5 | 2.4 | 0.3 | 0.3 | 1.2 | 0.0 | 0.0 | 0.0 |
Muurolol | 0.0 | 0.0 | 0.0 | 0.0 | 3.6 | 2.4 | 3.0 | 0.5 | 1.6 |
γ-Muurolene | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 | 0.0 | 3.2 | 0.0 |
Minor components | 7.8 | 9.7 | 6.3 | 14.4 | 13.4 | 8.9 | 13.6 | 21.5 | 8.5 |
Condition | Glandular Trichome Diameter, μm | |||||
---|---|---|---|---|---|---|
O. × citriodorum cv.”Kapriz” | O. basilicum cv. “Queen Sheba” | O. minimum cv. “Vasilisk” | ||||
Sessile | Subsessile | Sessile | Subsessile | Sessile | Subsessile | |
F | 88.1 a ± 6.9 | 31.4 b ± 4.8 | 73.4 b ± 6.4 | 30.5 a ± 3.6 | 62.2 c ± 5.9 | 22.9 b ± 1.6 |
GH | 76.5 b ± 9.0 | 30.7 a ± 3.8 | 70.4 b ± 6.7 | 29.7 b ± 3.9 | 65.7 b ± 7.5 | 26.8 a ± 2.1 |
CF | 73.3 b ± 6.4 | 29.5 a ± 3.9 | 62.7 c ± 4.9 | 28.0 b ± 1.7 | 62.0 c ± 4.5 | 28.7 b ± 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirokova, A.V.; Dzhatdoeva, S.A.; Ruzhitskiy, A.O.; Belopukhov, S.L.; Dmitrieva, V.L.; Luneva, V.E.; Dmitriev, L.B.; Kharchenko, V.A.; Kochkarov, A.A.; Sadykhov, E.G. Treasures Induced by Narrow-Spectrum: Volatile Phenylpropanoid and Terpene Compounds in Leaves of Lemon Basil (Ocimum × citriodorum Vis.), Sweet Basil (O. basilicum L.) and Bush Basil (O. minimum L.) Under Artificial Light City Farm Conditions. Plants 2025, 14, 403. https://doi.org/10.3390/plants14030403
Shirokova AV, Dzhatdoeva SA, Ruzhitskiy AO, Belopukhov SL, Dmitrieva VL, Luneva VE, Dmitriev LB, Kharchenko VA, Kochkarov AA, Sadykhov EG. Treasures Induced by Narrow-Spectrum: Volatile Phenylpropanoid and Terpene Compounds in Leaves of Lemon Basil (Ocimum × citriodorum Vis.), Sweet Basil (O. basilicum L.) and Bush Basil (O. minimum L.) Under Artificial Light City Farm Conditions. Plants. 2025; 14(3):403. https://doi.org/10.3390/plants14030403
Chicago/Turabian StyleShirokova, Anna V., Sofya A. Dzhatdoeva, Alexander O. Ruzhitskiy, Sergey L. Belopukhov, Valeria L. Dmitrieva, Victoria E. Luneva, Lev B. Dmitriev, Victor A. Kharchenko, Azret A. Kochkarov, and Elchin G. Sadykhov. 2025. "Treasures Induced by Narrow-Spectrum: Volatile Phenylpropanoid and Terpene Compounds in Leaves of Lemon Basil (Ocimum × citriodorum Vis.), Sweet Basil (O. basilicum L.) and Bush Basil (O. minimum L.) Under Artificial Light City Farm Conditions" Plants 14, no. 3: 403. https://doi.org/10.3390/plants14030403
APA StyleShirokova, A. V., Dzhatdoeva, S. A., Ruzhitskiy, A. O., Belopukhov, S. L., Dmitrieva, V. L., Luneva, V. E., Dmitriev, L. B., Kharchenko, V. A., Kochkarov, A. A., & Sadykhov, E. G. (2025). Treasures Induced by Narrow-Spectrum: Volatile Phenylpropanoid and Terpene Compounds in Leaves of Lemon Basil (Ocimum × citriodorum Vis.), Sweet Basil (O. basilicum L.) and Bush Basil (O. minimum L.) Under Artificial Light City Farm Conditions. Plants, 14(3), 403. https://doi.org/10.3390/plants14030403