Impact of Limited Irrigation on Fruit Quality and Ethylene Biosynthesis in Tomato: A Comprehensive Analysis of Physical, Biochemical, and Metabolomic Traits
Abstract
:1. Introduction
2. Results
2.1. Physical Attributes
2.2. Ethylene Synthesis and Metabolism
2.3. Fruit Respiration
2.4. Biochemical Attributes
2.5. Metabolomic Analysis
3. Discussion
3.1. Physical Attributes
3.2. Ethylene Biosynthesis and Metabolism
3.3. Biochemical Attributes
3.4. Metabolomic Analysis
Implications
4. Materials and Methods
4.1. Plant Materials and Treatments Application
4.2. Physical Attributes Measurement
4.3. Ethylene Measurement
4.4. Quantification of ACO
4.5. Quantification of ACC
4.6. CO2 Release Measurement
4.7. Quantification of Fruit Biochemical Attributes and Metabolomic Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Wan, W.; Zhu, X.; Zhao, Y.; Chai, Y.; Guan, S.; Diao, M. Effect of Regulated Deficit Irrigation on the Growth, Yield, and Irrigation Water Productivity of Processing Tomatoes under Drip Irrigation and Mulching. Agronomy 2023, 13, 2862. [Google Scholar] [CrossRef]
- Viera, W.; Samaniego, I.; Camacho, D.; Habibi, N.; Ron, L.; Sediqui, N.; Álvarez, J.; Viteri, P.; Sotomayor, A.; Merino, J.; et al. Phytochemical Characterization of a Tree Tomato (Solanum betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador. Plants 2022, 11, 268. [Google Scholar] [CrossRef]
- Amin, M.W.; Aryan, S.; Habibi, N.; Kakar, K.; Zahid, T. Elucidation of Photosynthesis and Yield Performance of Rice (Oryza sativa L.) under Drought Stress Conditions. Plant Physiol. Rep. 2022, 27, 143–151. [Google Scholar] [CrossRef]
- Deligios, P.A.; Chergia, A.P.; Sanna, G.; Solinas, S.; Todde, G.; Narvarte, L.; Ledda, L. Climate Change Adaptation and Water Saving by Innovative Irrigation Management Applied on Open Field Globe Artichoke. Sci. Total Environ. 2019, 649, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Schmidt, J.E.; LaHue, D.G.; Lazicki, P.; Kent, A.; Machmuller, M.B.; Scow, K.M.; Gaudin, A.C.M. Impact of Irrigation Strategies on Tomato Root Distribution and Rhizosphere Processes in an Organic System. Front. Plant Sci. 2020, 11, 360. [Google Scholar] [CrossRef]
- Saccon, P. Water for Agriculture, Irrigation Management. Appl. Soil. Ecol. 2018, 123, 793–796. [Google Scholar] [CrossRef]
- Bello, A.S.; Huda, A.K.S.; Alsafran, M.; Jayasena, V.; Jawaid, M.Z.; Chen, Z.H.; Ahmed, T. Tomato (Solanum lycopersicum) Yield Response to Drip Irrigation and Nitrogen Application Rates in Open-Field Cultivation in Arid Environments. Sci. Hortic. 2024, 334, 113298. [Google Scholar] [CrossRef]
- Shewangizaw, B.; Kassie, K.; Assefa, S.; Lemma, G.; Gete, Y.; Getu, D.; Getanh, L.; Shegaw, G.; Manaze, G. Tomato Yield, and Water Use Efficiency as Affected by Nitrogen Rate and Irrigation Regime in the Central Low Lands of Ethiopia. Sci. Rep. 2024, 14, 13307. [Google Scholar] [CrossRef] [PubMed]
- Harmanto; Salokhe, V.M.; Babel, M.S.; Tantau, H.J. Water Requirement of Drip Irrigated Tomatoes Grown in Greenhouse in Tropical Environment. Agric. Water Manag. 2005, 71, 225–242. [Google Scholar] [CrossRef]
- Kirda, C.; Cetin, M.; Dasgan, Y.; Topcu, S.; Kaman, H.; Ekici, B.; Derici, M.R.; Ozguven, A.I. Yield Response of Greenhouse Grown Tomato to Partial Root Drying and Conventional Deficit Irrigation. Agric. Water Manag. 2004, 69, 191–201. [Google Scholar] [CrossRef]
- Ebstu, E.T.; Muluneh, M. Evaluate the Integrative Effects of Irrigation Water Level, Furrow Irrigation Methods, and Nitrogen Fertilizer Rate on Tomato Yield in Semi-Arid Southern Ethiopia. Heliyon 2025, 11, e41551. [Google Scholar] [CrossRef] [PubMed]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Model-Based Smart Irrigation Control Strategy and Its Effect on Water Use Efficiency in Tomato Production. Cogent Eng. 2023, 10, 2259217. [Google Scholar] [CrossRef]
- Klee, H.J.; Tieman, D.M. Genetic Challenges of Flavor Improvement in Tomato. Trends Genet. 2013, 29, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, L.; Gao, S.; Wang, S.; Li, X.; Xiong, X. Postharvest Storage Properties and Quality Kinetic Models of Cherry Tomatoes Treated by High-Voltage Electrostatic Fields. LWT 2023, 176, 114497. [Google Scholar] [CrossRef]
- Ali, A.; Cavallaro, V.; Santoro, P.; Mori, J.; Ferrante, A.; Cocetta, G. Quality and Physiological Evaluation of Tomato Subjected to Different Supplemental Lighting Systems. Sci. Hortic. 2024, 323, 112469. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Y.; Yuan, F.; Song, C.; Xu, M.; Wang, Q.; Hao, G.; Bao, T.; Zuo, Y.; Liu, J.; et al. Warming-Induced Vapor Pressure Deficit Suppression of Vegetation Growth Diminished in Northern Peatlands. Nat. Commun. 2023, 14, 7885. [Google Scholar] [CrossRef]
- Bai, C.; Wu, C.; Ma, L.; Fu, A.; Zheng, Y.; Han, J.; Li, C.; Yuan, S.; Zheng, S.; Gao, L.; et al. Transcriptomics and Metabolomics Analyses Provide Insights into Postharvest Ripening and Senescence of Tomato Fruit under Low Temperature. Hortic. Plant J. 2023, 9, 109–121. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.; Cui, J.; Wang, X.; Keabetswe, L. Yield, Fruit Quality and Water Use Efficiency of Tomato for Processing under Regulated Deficit Irrigation: A Meta-Analysis. Agric. Water Manag. 2019, 222, 301–312. [Google Scholar] [CrossRef]
- Hao, S.; Cao, H.; Wang, H.; Pan, X. The Physiological Responses of Tomato to Water Stress and Re-Water in Different Growth Periods. Sci. Hortic. 2019, 249, 143–154. [Google Scholar] [CrossRef]
- Ors, S.; Ekinci, M.; Yildirim, E.; Sahin, U.; Turan, M.; Dursun, A. Interactive Effects of Salinity and Drought Stress on Photosynthetic Characteristics and Physiology of Tomato (Lycopersicon esculentum L.) Seedlings. S. Afr. J. Bot. 2021, 137, 335–339. [Google Scholar] [CrossRef]
- Mubarok, S.; Qonit, M.A.H.; Rahmat, B.P.N.; Budiarto, R.; Suminar, E.; Nuraini, A. An Overview of Ethylene Insensitive Tomato Mutants: Advantages and Disadvantages for Postharvest Fruit Shelf-Life and Future Perspective. Front. Plant Sci. 2023, 14, 1079052. [Google Scholar] [CrossRef]
- Zhao, T.; Nakano, A.; Iwasaki, Y. Differences between Ethylene Emission Characteristics of Tomato Cultivars in Tomato Production at Plant Factory. J. Agric. Food Res. 2021, 5, 100181. [Google Scholar] [CrossRef]
- Mansourbahmani, S.; Ghareyazie, B.; Zarinnia, V.; Kalatejari, S.; Mohammadi, R.S. Study on the Efficiency of Ethylene Scavengers on the Maintenance of Postharvest Quality of Tomato Fruit. J. Food Meas. Charact. 2018, 12, 691–701. [Google Scholar] [CrossRef]
- Martínez-Romero, D.; Guillén, F.; Castillo, S.; Zapata, P.J.; Valero, D.; Serrano, M. Effect of Ethylene Concentration on Quality Parameters of Fresh Tomatoes Stored Using a Carbon-Heat Hybrid Ethylene Scrubber. Postharvest Biol. Technol. 2009, 51, 206–211. [Google Scholar] [CrossRef]
- Carrari, F.; Fernie, A.R. Metabolic Regulation Underlying Tomato Fruit Development. J. Exp. Bot. 2006, 57, 1883–1897. [Google Scholar] [CrossRef]
- Ali, Q.; Kurubas, M.S.; Erkan, M. Biochemical Composition and Antioxidant Activity of Different Types of Tomatoes Affected by Ethylene Treatment. Tarim. Bilim. Derg. 2022, 28, 8–15. [Google Scholar] [CrossRef]
- Alexander, L.; Grierson, D. Ethylene Biosynthesis and Action in Tomato: A Model for Climacteric Fruit Ripening. J. Exp. Bot. 2002, 53, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Payasi, A.; Sanwal, G.G. Ripening of Climacteric Fruits and Their Control. J. Food Biochem. 2010, 34, 679–710. [Google Scholar] [CrossRef]
- Wu, X.; Yu, M.; Huan, C.; Ma, R.; Yu, Z. Regulation of the Protein and Gene Expressions of Ethylene Biosynthesis Enzymes under Different Temperature during Peach Fruit Ripening. Acta Physiol. Plant 2018, 40, 52. [Google Scholar] [CrossRef]
- Shu, P.; Li, Y.; Xiang, L.; Sheng, J.; Shen, L. Ethylene Enhances Tolerance to Chilling Stress in Tomato Fruit Partially through the Synergistic Regulation between Antioxidant Enzymes and ATP Synthases. Postharvest Biol. Technol. 2022, 193, 112065. [Google Scholar] [CrossRef]
- Cocetta, G.; Natalini, A. Ethylene: Management and Breeding for Postharvest Quality in Vegetable Crops. A Review. Front. Plant Sci. 2022, 13, 968315. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salinas, R.; López-Miranda, S.; Pérez-López, A.J.; Acosta-Motos, J.R. Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality. Horticulturae 2024, 10, 840. [Google Scholar] [CrossRef]
- Wills, R.B.H.; Warton, M.A.; Ku, V.V.V. Ethylene Levels Associated with Fruit and Vegetables during Marketing. Aust. J. Exp. Agric. 2000, 40, 465–470. [Google Scholar] [CrossRef]
- Aprianti, S.; Bintoro, N. The Effect of Concentrations and Exposure Durations of Ethylene Gas on the Respiration Rate of Tomato Fruit (Solanum lycopersicum). IOP Conf. Ser. Earth Environ. Sci. 2021, 653, 012021. [Google Scholar] [CrossRef]
- Constán-Aguilar, C.; Leyva, R.; Blasco, B.; Sánchez-Rodríguez, E.; Soriano, T.; Ruiz, J.M. Biofortification with Potassium: Antioxidant Responses during Postharvest of Cherry Tomato Fruits in Cold Storage. Acta Physiol. Plant 2014, 36, 283–293. [Google Scholar] [CrossRef]
- Lin, Z.; Zhong, S.; Grierson, D. Recent Advances in Ethylene Research. J. Exp. Bot. 2009, 60, 3311–3336. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Osman, S.; Etman, A.; El-Semellawy, E.S.; Solberg, S.; El-Ramady, H. Regulating Enzymatic Antioxidants, Biochemical and Physiological Properties of Tomato under Cold Stress: A Crucial Role of Ethylene. Agriculture 2023, 13, 266. [Google Scholar] [CrossRef]
- Anas; Wiguna, G.; Damayanti, F.; Mubarok, S.; Setyorini, D.; Ezura, H. Effect of Ethylene Sletr1-2 Receptor Allele on Flowering, Fruit Phenotype, Yield, and Shelf-Life of Four F1 Generations of Tropical Tomatoes (Solanum lycopersicum L.). Horticulturae 2022, 8, 1098. [Google Scholar] [CrossRef]
- Cui, J.; Yang, M.; Son, D.; Park, S.; Cho, S.I. Estimation of Tomato Bruising by Mechanical Impact Force Using Multivariate Analysis. HortScience 2018, 53, 1352–1359. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Review Article Plant Drought Stress: Effects, Mechanisms and Management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under Drought and Salt Stress: Regulation Mechanisms from Whole Plant to Cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Saure, M.C. Calcium Translocation to Fleshy Fruit: Its Mechanism and Endogenous Control. Sci. Hortic. 2005, 105, 65–89. [Google Scholar] [CrossRef]
- Houben, M.; Van de Poel, B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. Front. Plant Sci. 2019, 10, 695. [Google Scholar] [CrossRef]
- Khan, S.; Alvi, A.F.; Saify, S.; Iqbal, N.; Khan, N.A. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024, 14, 90. [Google Scholar] [CrossRef]
- Fatma, M.; Asgher, M.; Iqbal, N.; Rasheed, F.; Sehar, Z.; Sofo, A.; Khan, N.A. Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. Plants 2022, 11, 2211. [Google Scholar] [CrossRef] [PubMed]
- Husain, T.; Fatima, A.; Suhel, M.; Singh, S.; Sharma, A.; Prasad, S.M.; Singh, V.P. A Brief Appraisal of Ethylene Signaling under Abiotic Stress in Plants. Plant Signal Behav. 2020, 15, 1782051. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated Deficit Irrigation for Crop Production under Drought Stress. A Review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Hassan, I.F.; Gaballah, M.S.; El-Hoseiny, H.M.; El-Sharnouby, M.E.; Alam-Eldein, S.M. Deficit Irrigation to Enhance Fruit Quality of the ‘African Rose’ Plum under the Egyptian Semi-Arid Conditions. Agronomy 2021, 11, 1405. [Google Scholar] [CrossRef]
- Favati, F.; Lovelli, S.; Galgano, F.; Miccolis, V.; Di Tommaso, T.; Candido, V. Processing Tomato Quality as Affected by Irrigation Scheduling. Sci. Hortic. 2009, 122, 562–571. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.; Gao, Y.; Zhang, K.; Wei, Q.; Cheng, J. Effects of Water Deficit Combined with Soil Texture, Soil Bulk Density and Tomato Variety on Tomato Fruit Quality: A Meta-Analysis. Agric. Water Manag. 2021, 243, 106427. [Google Scholar] [CrossRef]
- ME, R.; Arafa, Y.; Sawan, O.M.; Fawzy, Z.; El-Sawy, S. Effect of Irrigation Systems on Vegetative Growth, Fruit Yield, Quality and Irrigation Water Use Efficiency of Tomato Plants (Solanum lycopersicum L.) Grown under Water Stress Conditions. Acta Sci. Agric. 2019, 3, 172–183. [Google Scholar]
- Medyouni, I.; Zouaoui, R.; Rubio, E.; Serino, S.; Ahmed, H.B.; Bertin, N. Effects of Water Deficit on Leaves and Fruit Quality during the Development Period in Tomato Plant. Food Sci. Nutr. 2021, 9, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Sun, H.; Wang, Y.; Wang, X.; Guo, Y. Effects of Water Stress on Quality and Sugar Metabolism in ‘Gala’ Apple Fruit. Hortic. Plant J. 2023, 9, 60–72. [Google Scholar] [CrossRef]
- Sophea, C.; Habibi, N.; Terada, N.; Sanada, A.; Koshio, K. Impact of Dropping on Postharvest Physiology of Tomato Fruits Harvested at Green and Red Ripeness Stages. Biomolecules 2024, 14, 1012. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Sediqui, N.; Terada, N.; Sanada, A.; Koshio, K. Effects of Salinity on Growth, Physiological and Biochemical Responses of Tomato. J. ISSAAS 2021, 27, 14–28. [Google Scholar]
- Habibi, N.; Aryan, S.; Amin, M.W.; Sanada, A.; Terada, N.; Koshio, K. Potential Benefits of Seed Priming under Salt Stress Conditions on Physiological, and Biochemical Attributes of Micro-Tom Tomato Plants. Plants 2023, 12, 2187. [Google Scholar] [CrossRef] [PubMed]
- Oho, K.; Habibi, N.; Marie, T.; Silva, B.; Terada, N.; Sanada, A.; Shinohara, T.; Gemma, H.; Koshio, K. Elucidation of Physicochemical Changes in Fruit Development of “Sabara” Jaboticaba (Plinia cauliflora (Mart.) Kausel). J. ISSAAS 2022, 28, 34–50. [Google Scholar]
- Shinozaki, Y.; Hao, S.; Kojima, M.; Sakakibara, H.; Ozeki-Iida, Y.; Zheng, Y.; Fei, Z.; Zhong, S.; Giovannoni, J.J.; Rose, J.K.C.; et al. Ethylene Suppresses Tomato (Solanum lycopersicum) Fruit Set through Modification of Gibberellin Metabolism. Plant J. 2015, 83, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Tayobong, R.R.P.; Naoki, P.; Atsushi, T.; Kaihei, S. Novel Insights into Seed Priming for Tomato Plants: Restoring Root Vitality in the Face of Salt Stress. Hortic. Environ. Biotechnol. 2024, 66, 1–22. [Google Scholar] [CrossRef]
- Habibi, N.; Terada, N.; Sanada, A.; Koshio, K. Alleviating Salt Stress in Tomatoes through Seed Priming with Polyethylene Glycol and Sodium Chloride Combination. Stresses 2024, 4, 210–224. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: The Combination of Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibi, N.; Terada, N.; Sanada, A.; Kamata, A.; Koshio, K. Impact of Limited Irrigation on Fruit Quality and Ethylene Biosynthesis in Tomato: A Comprehensive Analysis of Physical, Biochemical, and Metabolomic Traits. Plants 2025, 14, 406. https://doi.org/10.3390/plants14030406
Habibi N, Terada N, Sanada A, Kamata A, Koshio K. Impact of Limited Irrigation on Fruit Quality and Ethylene Biosynthesis in Tomato: A Comprehensive Analysis of Physical, Biochemical, and Metabolomic Traits. Plants. 2025; 14(3):406. https://doi.org/10.3390/plants14030406
Chicago/Turabian StyleHabibi, Nasratullah, Naoki Terada, Atsushi Sanada, Atsushi Kamata, and Kaihei Koshio. 2025. "Impact of Limited Irrigation on Fruit Quality and Ethylene Biosynthesis in Tomato: A Comprehensive Analysis of Physical, Biochemical, and Metabolomic Traits" Plants 14, no. 3: 406. https://doi.org/10.3390/plants14030406
APA StyleHabibi, N., Terada, N., Sanada, A., Kamata, A., & Koshio, K. (2025). Impact of Limited Irrigation on Fruit Quality and Ethylene Biosynthesis in Tomato: A Comprehensive Analysis of Physical, Biochemical, and Metabolomic Traits. Plants, 14(3), 406. https://doi.org/10.3390/plants14030406