Correlation Study Between Canopy Temperature (CT) and Wheat Yield and Quality Based on Infrared Imaging Camera
Abstract
:1. Introduction
2. Results
2.1. Measurements CT in 2022 and 2023
2.2. Relationship Between CT and Pn
2.3. Relationship Between CT and Filling Rate
2.4. The Relationship Between CT and Quality
3. Discussion
3.1. Relationship Between CT and Environment in Wheat
3.2. Relationship Between CT and Yield in Wheat
3.3. Relationship Between CT and Quality in Wheat
3.4. Infrared Camera Acquisition of CT in the Future
4. Materials and Methods
4.1. Test Ground and Experimental Materials
4.2. CT Measurement and Data Normalization
4.3. Filling Rate and the Accumulation of Material on the Ground Measurement
4.4. Photosynthetic Assay
4.5. Analysis on Agronomic Traits
4.6. Measurement of Wheat Quality
4.7. Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, K.; Shoemaker, S.P. A look at food security in China. NPJ Sci. Food 2018, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Cann, D.J.; Hunt, J.R.; Rattey, A.; Harris, F.A.J.; Porker, K.D. Indirect early generation selection for yield in winter wheat. Field Crops Research 2022, 282, 108505. [Google Scholar] [CrossRef]
- Jonah, P.M.; Bello, L.L.; Lucky, O.; Midau, A.; Moruppa, S.M. The importance of molecular markers in plant breeding programmes. Glob. J. Sci. Front. Res. 2011, 11, 5–12. [Google Scholar]
- Sohail, M.; Hussain, I.; Qamar, M.; Tanveer, S.K.; Abbas, S.H.; Ali, Z.; Imtiaz, M. Evaluation of spring wheat genotypes for climatic adaptability using canopy temperature as physiological indicator. Pak. J. Agric. Res. 2020, 33, 89–96. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, S.; Olbana, T. Evaluation of bread wheat (Triticum aestivum L.) genotypes for drought tolerance using canopy temperature and chlorophyll content. Adv. Appl. Sci. 2023, 18, e0283347. [Google Scholar]
- Feng, B.; Yu, H.; Hu, Y.; Gao, X.; Gao, J.; Gao, D.; Zhang, S. The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiol. Plant. 2009, 31, 1229–1235. [Google Scholar] [CrossRef]
- Mason, R.; Singh, R. Considerations when deploying canopy temperature to select high yielding wheat breeding lines under drought and heat stress. Agronomy 2014, 4, 191–201. [Google Scholar] [CrossRef]
- Zhang, S. A theoretical profile on cold-type wheat. China Sci. Found. 2022, 36, 468–476. [Google Scholar]
- Siegfried, J.; Rajan, N.; Adams, C.B.; Neely, H.; Hague, S.; Hardin, R.; Schnell, R.; Han, X.; Thomasson, A. High-accuracy infrared thermography of cotton canopy temperature by unmanned aerial systems (UAS): Evaluating in-season prediction of yield. Smart Agric. Technol. 2024, 7, 100393. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y.; Yan, X.; Zhu, R.; Xu, G.; Yan, J.; Shi, M. Shape and size design, preparation and test evaluation of color unit in visible light and infrared camouflage. Heliyon 2023, 9, e14459. [Google Scholar] [CrossRef]
- Yu, Y. Technology Development and Application of IR Camera: Current Status and Challenges. Infrared Millim. Wave 2023, 1, 1–7. [Google Scholar]
- Saint Pierre, C.; Crossa, J.; Manes, Y.; Reynolds, M.P. Gene action of canopy temperature in bread wheat under diverse environments. Theor. Appl. Genet. 2010, 120, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Biju, S.; Fuentes, S.; Gupta, D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Plant Physiol. Biochem. 2018, 127, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; James, R.A.; Condon, A.G.; Bovill, W.D.; Hutchinson, P.; Scarrow, J.; Davy, R.; Furbank, R.T. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front. Plant Sci. 2016, 7, 1808. [Google Scholar] [CrossRef]
- Kunz, K.; Hu, Y.; Schmidhalter, U. Carbon isotope discrimination as a key physiological trait to phenotype drought/heat resistance of future climate-resilient German winter wheat compared with relative leaf water content and canopy temperature. Front. Plant Sci. 2022, 13, 1043458. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Tian, W.; Tilley, M.; Wang, D.; Zhang, G.; Li, Y. Quantitative assessment of wheat quality using near-infrared spectroscopy: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2956–3009. [Google Scholar] [CrossRef] [PubMed]
- Deery, D.M.; Rebetzke, G.J.; Jimenez-Berni, J.A.; Bovill, W.D.; James, R.A.; Condon, A.G.; Furbank, R.T.; Chapman, S.C.; Fischer, R.A. Evaluation of the phenotypic repeatability of canopy temperature in wheat using continuous-terrestrial and airborne measurements. Front. Plant Sci. 2019, 10, 875. [Google Scholar] [CrossRef] [PubMed]
- Parihar, G.; Saha, S.; Giri, L.I. Application of infrared thermography for irrigation scheduling of horticulture plants. Smart Agric. Technol. 2021, 1, 100021. [Google Scholar] [CrossRef]
- Elsayed, S.; Rischbeck, P.; Schmidhalter, U. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars. Field Crops Res. 2015, 177, 148–160. [Google Scholar] [CrossRef]
- Parveen, S.; Rudra, S.G.; Singh, B.; Anand, A. Impact of High night temperature on yield and pasting properties of flour in early and late-maturing wheat genotypes. Plants 2022, 11, 3096. [Google Scholar] [CrossRef] [PubMed]
- Djanaguiraman, M.; Boyle, D.L.; Welti, R.; Jagadish, S.V.K.; Prasad, P.V.V. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biol. 2018, 18, 55. [Google Scholar] [CrossRef]
- Posch, B.C.; Kariyawasam, B.C.; Bramley, H.; Coast, O.; Richards, R.A.; Reynolds, M.P.; Trethowan, R.; Atkin, O.K.; Raines, C. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J. Exp. Bot. 2019, 70, 5051–5069. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.Q.; Dong, W.H.; Luo, Y.L.; Song, W.T.; Cai, T.; Li, Y.; Yin, Y.P.; Wang, Z.L. Effects of nitrogen application and supplemental irrigation on canopy temperature and photosynthetic characteristics in winter wheat. J. Agric. Sci. 2018, 156, 13–23. [Google Scholar] [CrossRef]
- Leinonen, I.; Jones, H.G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 2004, 55, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. B-Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, V.; Bhargava, S.; Streb, P.; Feierabend, J. Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor Moench. J. Exp. Bot. 1998, 49, 1715–1721. [Google Scholar]
- Maheswari, M.; Joshi, D.K.; Saha, R.; Nagarajan, S.; Gambhir, P.N. Transverse relaxation time of leaf water protons and membrane injury in wheat (Triticum aestivum L.) in response to high temperature. Ann. Bot. 1999, 84, 741–745. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Bai, Q. Analysis of high wheat yields in northwest China. Agric. Syst. 1997, 53, 373–385. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; Rattey, A.R.; Farquhar, G.D.; Richards, R.A.; Condon, A.T.G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct. Plant Biol. 2012, 40, 14–33. [Google Scholar] [CrossRef]
- Zhao, H.; Dai, T.; Jiang, D.; Cao, W. Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. J. Agron. Crop Sci. 2008, 194, 47–54. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, D.; Li, X.; Guo, T.; Wang, C. Accumulation dynamics of protein and starch components in grain of two winter wheat cultivars with different canopy temperature characteristics during the filling stage. Chin. J. Plant Ecol. 2006, 30, 352. [Google Scholar]
- Paulsen, M.R.; Singh, M. Calibration of a near-infrared transmission grain analyser for extractable starch in maize. Biosyst. Eng. 2004, 89, 79–83. [Google Scholar] [CrossRef]
- Lee, K.; Lee, W.H. Temperature accuracy analysis by land cover according to the angle of the thermal infrared imaging camera for unmanned aerial vehicles. ISPRS Int. J. Geo-Inf. 2022, 11, 204. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Sun, H.; An, L.; Zhao, A.; Liu, M.; Tang, W.; Li, M.; Yan, X.; Ma, Y.; et al. Exploring multi-features in UAV based optical and thermal infrared images to estimate disease severity of wheat powdery mildew. Comput. Electron. Agric. 2024, 225, 109285. [Google Scholar] [CrossRef]
- Shen, Y.; Mercatoris, B.; Cao, Z.; Kwan, P.; Guo, L.; Yao, H.; Cheng, Q. Improving wheat yield prediction accuracy using LSTM-RF framework based on UAV thermal infrared and multispectral imagery. Agriculture 2022, 12, 892. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, C.; Zhao, J. Improvement of Wheat Growth Information by Fusing UAV Visible and Thermal Infrared Images. Agronomy 2022, 12, 2087. [Google Scholar] [CrossRef]
- Li, S.P.; Zeng, L.S.; Su, Z.L. Wheat growth, photosynthesis and physiological characteristics under different soil Zn levels. J. Integr. Agric. 2022, 21, 1927–1940. [Google Scholar] [CrossRef]
- Ohnishi, S.; Kasuya, M.; Sonoda, T.; Jinno, H. Normalization method for canopy temperature as an indirect indicator of yield potential in wheat breeding programs. Breed. Sci. 2021, 71, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Perich, G.; Hund, A.; Anderegg, J.; Roth, L.; Boer, M.P.; Walter, A.; Liebisch, F.; Aasen, H. Assessment of multi-image unmanned aerial vehicle based high-throughput field phenotyping of canopy temperature. Front. Plant Sci. 2020, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Licker, R.; Kucharik, C.J.; Doré, T.; Lindeman, M.J.; Makowski, D. Climatic impacts on winter wheat yields in Picardy, France and Rostov, Russia: 1973–2010. Agric. For. Meteorol. 2013, 176, 25–37. [Google Scholar] [CrossRef]
- Niedz, R.P.; Prashar, A.; Yildiz, J.; McNicol, J.W.; Bryan, G.J.; Jones, H.G. Infra-red thermography for high throughput field phenotyping in solanum tuberosum. Public Libr. Sci. ONE 2013, 8, e65816. [Google Scholar]
- Li, C.; Fu, K.; Guo, W.; Zhang, X.; Li, C.; Li, C. Starch and sugar metabolism response to post-anthesis drought stress during critical periods of elite wheat (Triticum aestivum L.) endosperm development. J. Plant Growth Regul. 2023, 42, 5476–5494. [Google Scholar] [CrossRef]
- Li, R.; Wang, D.; Zhu, B.; Liu, T.; Sun, C.; Zhang, Z. Estimation of grain yield in wheat using source–sink datasets derived from RGB and thermal infrared imaging. Food Energy Secur. 2022, 12, e434. [Google Scholar] [CrossRef]
- Mu, Q.; Dong, M.; Xu, J.; Cao, Y.; Ding, Y.; Sun, S.; Cai, H. Photosynthesis of winter wheat effectively reflected multiple physiological responses under short-term drought–rewatering conditions. J. Sci. Food Agric. 2022, 102, 2472–2483. [Google Scholar] [CrossRef] [PubMed]
- Pojić, M.M.; Mastilović, J.S. Near infrared spectroscopy—Advanced analytical tool in wheat breeding, trade, and processing. Food Bioprocess Technol. 2013, 6, 330–352. [Google Scholar] [CrossRef]
- Jiang, C.; Jiang, W.; Liu, M.; Wang, H.; Yang, E.; Yang, Z.; Li, G. Characterization of a wheat-Dasypyrum breviaristatum chromosome addition and its derived progenies carrying novel dasypyrum-specific gliadin genes. Agronomy 2022, 12, 1673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, C.; Shen, W.; Yan, L.; Zheng, X.; Yao, Z.; Cui, S.; Cui, C.; Hu, Y.; Yang, M. Correlation Study Between Canopy Temperature (CT) and Wheat Yield and Quality Based on Infrared Imaging Camera. Plants 2025, 14, 411. https://doi.org/10.3390/plants14030411
Yu Y, Li C, Shen W, Yan L, Zheng X, Yao Z, Cui S, Cui C, Hu Y, Yang M. Correlation Study Between Canopy Temperature (CT) and Wheat Yield and Quality Based on Infrared Imaging Camera. Plants. 2025; 14(3):411. https://doi.org/10.3390/plants14030411
Chicago/Turabian StyleYu, Yan, Chenyang Li, Wei Shen, Li Yan, Xin Zheng, Zhixiang Yao, Shuaikang Cui, Chao Cui, Yingang Hu, and Mingming Yang. 2025. "Correlation Study Between Canopy Temperature (CT) and Wheat Yield and Quality Based on Infrared Imaging Camera" Plants 14, no. 3: 411. https://doi.org/10.3390/plants14030411
APA StyleYu, Y., Li, C., Shen, W., Yan, L., Zheng, X., Yao, Z., Cui, S., Cui, C., Hu, Y., & Yang, M. (2025). Correlation Study Between Canopy Temperature (CT) and Wheat Yield and Quality Based on Infrared Imaging Camera. Plants, 14(3), 411. https://doi.org/10.3390/plants14030411