Influence of Time of Weed Removal on Maize Yield and Yield Components Based on Different Planting Patterns, the Application of Pre-Emergence Herbicides and Weather Conditions
Abstract
:1. Introduction
2. Results
2.1. Temperature and Precipitation
2.2. Maize Yield
2.3. Yield Components
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Statistical Office of the Republic of Serbia. Crop Production in Serbia. 2024. Available online: https://www.stat.gov.rs/en-US (accessed on 25 October 2024).
- Silva, P.S.L.; Silva, P.I.B.; Silva, K.M.B.; Oliveira, V.R.; Pontes Filho, F.S.T. Corn growth and yield in competition with weeds. Planta Daninha 2011, 29, 793–802. [Google Scholar] [CrossRef]
- Soltani, N.; Dille, J.A.; Burke, I.C.; Everman, W.J.; VanGessel, M.J.; Davis, V.M.; Sikkema, P.H. Potential corn yield losses from weeds in North America. Weed Technol. 2016, 30, 979–984. [Google Scholar] [CrossRef]
- Zare, M.; Mosavat, M.; Bazrafshan, F. Response of Grain Yield and Yield Components of Various Maize Hybrids to Natural Weeds Population. Thai J. Agric. Sci. 2016, 49, 117–125. [Google Scholar]
- Oljača, S.; Vrbničanin, S.; Simić, M.; Stefanović, L.; Dolijanović, Ž. Jimsonweed (Datura stramonium L.) interference in maize. Maydica 2007, 52, 329–333. [Google Scholar]
- Teasdale, J.R.; Cavigelli, M.A. Subplots facilitate assessment of corn yield losses from weed competition in a long-term systems experiment. Agron. Sustain. Dev. 2010, 30, 445–453. [Google Scholar] [CrossRef]
- Vrbničanin, S.; Onc-Jovanović, E.; Božić, D.; Sarić-Krsmanović, M.; Vranješ, F. Effect of velvetleaf (Abutilon theophrasti Medic) density on corn. In Proceedings of the 7th International Weed Science Congress, Prague, Czech Republic, 19–25 June 2016; p. 115. [Google Scholar]
- weed control exacerbates maize yield loss to adverse weather. Glob. Chang. Biol. 2021, 27, 6156–6165. [CrossRef]
- Knezevic, Z.S.; Evans, S.P.; Blankenship, E.E.; van Acker, R.C.; Lindquist, J.L. Critical period for weed control: The concept and data analysis. Weed Sci. 2002, 50, 773–786. [Google Scholar] [CrossRef]
- Bruns, H.A.; Ebelhar, M.W.; Abbas, H.K. Comparing single-row and twin-row corn production in the Mid-South. Crop Manag. 2012, 1, 1–8. [Google Scholar] [CrossRef]
- Kratochvil, R.J.; Taylor, R.W. Twin-row corn production: An evaluation in the mid-Atlantic Delmarva region. Crop Manag. 2005, 4, 1–7. [Google Scholar] [CrossRef]
- Lambert, D.M.; Lowenberg-Deboer, J. Optimal Row Width for Corn-Soybean Production; Staff Pap. 01-10; Department of Agricultural Economics, Purdue University: Lafayette, IN, USA, 2001. [Google Scholar] [CrossRef]
- Nelson, K.A.; Smoot, R.L. Twin- and single-row corn production in northeast Missouri. Crop Manag. 2009, 8, 1–10. [Google Scholar] [CrossRef]
- Lessiter, F. New Incentive Helps Growers Give 20-Inch Twin Rows a Try. Posted in Seeding & Planting, Equipment. 2015. Available online: https://www.no-tillfarmer.com (accessed on 13 October 2024).
- Page, E.R.; Cerrudo, D.; Westra, P.; Loux, M.; Smith, K.; Foresman, C.; Wright, H.; Swanton, C.J. Why early season weed control is important in maize. Weed Sci. 2012, 60, 423–430. [Google Scholar] [CrossRef]
- Pavlović, P.; Osipitan, A.; Knežević, S.Z. Uticaj vremena uklanjanja korova i pre-em primene herbicida na rast useva soje. Acta Herbol. 2018, 27, 35–44. (In Serbian) [Google Scholar] [CrossRef]
- Jovanović, D.; Cuvaca, I.; Scott, J.; Knežević, S. Uticaj pre-em primene herbicida na kritično vreme suzbijanja korova u soji tolerantnoj na dikambu. Acta Herbol. 2020, 29, 55–62. (In Serbian) [Google Scholar] [CrossRef]
- Nedeljković, D.; Knežević, S.; Božić, D.; Vrbničanin, S. Critical Time for Weed Removal in corn as influenced by planting pattern and PRE herbicides. Agriculture 2021, 11, 587. [Google Scholar] [CrossRef]
- Ulusoy, N.A.; Osipitan, O.A.; Scott, J.; Jhala, J.A.; Lawrence, C.N.; Knezevic, Z.S. PRE herbicides influence critical time of weed removal in glyphosate-resistant corn. Weed Technol. 2021, 35, 271–278. [Google Scholar] [CrossRef]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Landau, C.A.; Hager, A.G.; Tranel, P.J.; Davis, A.S.; Martin, N.F.; Williams, M.M. Future efficacy of pre-emergence herbicides in corn (Zea mays) is threatened by more variable weather. Pest Manag. Sci. 2021, 77, 2683–2689. [Google Scholar] [CrossRef]
- Barnes, E.R.; Knezevic, S.Z.; Lawrence, N.C.; Irmak, S.; Rodriguez, O.; Jhala, A.J. Preemergence herbicide delays the critical time of weed removal in popcorn. Weed Technol. 2019, 33, 785–793. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Wright-Morton, L.; Hall, B. Vulnerability of grain crops and croplands in the Midwest to climatic variability and adaptation strategies. Clim. Change 2018, 146, 263–275. [Google Scholar] [CrossRef]
- dos Santos, C.A.C.; Neale, C.M.U.; Mekonnen, M.M.; Gonçalves, I.Z.; de Oliveira, G.; Ruiz-Alvarez, O.; Safa, B.; Rowe, C.M. Trends of extreme air temperature and precipitation and their impact on corn and soybean yields in Nebraska, USA. Theor. Appl. Climatol. 2022, 147, 1379–1399. [Google Scholar] [CrossRef]
- Dragičević, V.; Simić, M.; Jovanović-Radovanov, K.; Brankov, M.; Srdić, J. Reaction of susceptible maize inbred lines to herbicides. Genetika 2017, 49, 765–774. [Google Scholar] [CrossRef]
- Tursun, N.; Datta, A.; Sakinmaz, M.S.; Kantarci, Z.; Knezevic, S.Z.; Chauhan, B.S. The critical period of weed control in three corn (Zea mays L.) types. Crop Prot. 2016, 90, 59–65. [Google Scholar] [CrossRef]
- Adamič Zamljen, S.; Leskovšek, R. Critical Period of Weed Control in Maize as Influenced by Soil Tillage Practices and Glyphosate Application. Agronomy 2024, 14, 93. [Google Scholar] [CrossRef]
- Alimuddin, S.; Musa, Y.; Azrai, M.; Asrul, L. Effect of double rows plant system on plant growth, yield components and grain yield in prolific and non-prolific hybrid maize. IOP Conf. Ser. Earth Environ. Sci. 2020, 473, 012013. [Google Scholar] [CrossRef]
- Gantoli, G.; Ayala, V.; Gerhards, R. Determination of the Critical Period for Weed Control in Corn. Weed Technol. 2013, 27, 63–71. [Google Scholar] [CrossRef]
- Anapalli, S.S.; Pinnamaneni, S.R.; Chastain, D.R.; Reddy, K.N.; Simmons, C.D. Eddy covariance quantification of carbon and water dynamics in twin-row vs. single-row planted corn. Agric. Water Manag. 2023, 281, 108235. [Google Scholar] [CrossRef]
- Gözübenli, H. Influence of planting patterns and plant density on the performance of maize hybrids in the eastern Mediterranean conditions. Int. J. Agric. Biol. 2012, 12, 556–560. [Google Scholar]
- Satterwhite, L.J.; Balkcom, K.S.; Price, A.J.; Arriaga, F.J.; van Santen, E. Hybrid, row pattern, and plant population comparisons for conservation tillage corn production. In Proceedings of the Southern Conservation Systems Conference, Amarillo, TX, USA, 26–28 June 2006. [Google Scholar]
- Khalili, M.; Naghavi, M.R.; Aboughadareh, A.P.; Rad, H.N. Effects of drought stress on yield and yield components in maize cultivars (Zea mays L.). Intl. J. Agron. Plant Prod. 2013, 4, 809–812. [Google Scholar]
- Rou Koay, S.E.; Zamir, N.A.; Lum, S.M. Effects of Drought Stress on the Growth, Yield and Physiological Traits of Thai Super Sweet Corn. J. Trop. Plant Physiol. 2020, 12, 27–37. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Pavlovic, P.; Osipitan, O.A.; Barnes, E.R.; Beiermann, C.; Oliveira, M.C.; Lawrence, N.; Scott, J.E.; Jhala, A. Critical time for weed removal in glyphosate-resistant soybean as influenced by preemergence herbicides. Weed Technol. 2019, 33, 393–399. [Google Scholar] [CrossRef]
- Jursik, M.; Kocarek, M.; Kolarova, M.; Tichy, L. Effect of different soil and weather conditions on efficacy, selectivity and dissipation of herbicides in sunflower. Plant Soil Environ. 2020, 66, 468–476. [Google Scholar] [CrossRef]
- Parven, A.; Meftaul, I.M.; Venkateswarlu, K.; Megharaj, M. Herbicides in modern sustainable agriculture: Environmental fate, ecological implications, and human health concerns. Int. J. Environ. Sci. Technol. 2025, 22, 1181–1202. [Google Scholar] [CrossRef]
- Nedeljković, D.; Knežević, S.; Vrbničanin, S. Uticaj meteoroloških prilika na kritičan period suzbijanja korova i prinos kukuruza u Srbiji. Acta Herbol. 2019, 28, 17–29. (In Serbian) [Google Scholar] [CrossRef]
- Jones, B. Effects of Twin-Row Spacing on Corn Silage Growth Development and Yield in the Shenandoah Valley; Virginia Cooperative Extension, Virginia State University: Petersburg, VA, USA, 2018; pp. 1–9. [Google Scholar]
- Gilmore, E.C.; Rogers, R.S. Heat units as a method of measuring maturity in corn. Agron. J. 1958, 50, 611–615. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2022; Available online: http://www.rstudio.com (accessed on 5 March 2024).
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef]
Average Air Temperature | Total Precipitation | |||||||
---|---|---|---|---|---|---|---|---|
Month | 2015 | 2016 | 2017 | 30-yr Average | 2015 | 2016 | 2017 | 30-yr Average |
°C | mm | |||||||
April | 13.5 | 15.5 | 12.7 | 13.6 | 5.1 | 76.1 | 3.0 | 51.5 |
May | 19.1 | 17.5 | 18.4 | 18.2 | 63.9 | 88.7 | 125.9 | 72.3 |
June | 21.9 | 22.5 | 24.3 | 21.9 | 43.5 | 117.3 | 94.1 | 95.6 |
July | 26.8 | 24.4 | 25.9 | 23.8 | 7.0 | 123.5 | 43.0 | 66.5 |
August | 26.0 | 22.3 | 26.1 | 23.8 | 82.5 | 87.6 | 32.1 | 55.1 |
September | 20.0 | 19.7 | 18.4 | 18.5 | 79.1 | 33.2 | 37.9 | 58.6 |
Season | 21.2 | 20.3 | 21.0 | 20.0 | 281.1 | 526.4 | 336.0 | 399.6 |
Season | Application of Herbicides | Planting Pattern | Regression Parameters (SE) | Parameters of CPWR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GDD | DAE | Growth Stage | ||||||||
B | C | D | I50 | |||||||
1st | With PRE | SS | 3.9 (0.2) | 629.4 (105.5) | 9048.9 (70.3) | 728.7 (10.1) | 342.5 (4.8) | 26 | BBCH 14 | V4 |
Without PRE | SS | 3.5 (0.2) | 279.4 (126.6) | 8822.2 (97.9) | 647.4 (12.4) | 279.1 (5.4) | 21 | BBCH 12 | V2 | |
2nd | With PRE | SS | 6.3 (1.6) | 7384.7 (261.8) | 12,759.6 (130.4) | 957.3 (27.9) | 599.9 (17.5) | 58 | BBCH 20 | V10 |
Without PRE | SS | 2.0 (0.1) | 5060.9 (214.8) | 11,479.2 (123.0) | 702.1 (40.3) | 161.1 (9.3) | 16 | BBCH 11 | V1 | |
3rd | With PRE | SS | 2.8 (9.8) | 3033.5 (120.9) | 10,603.1 (73.7) | 713.3 (12.7) | 321.8 (5.7) | 36 | BBCH 15 | V5 |
Without PRE | SS | 2.1 (0.2) | 1422.6 (85.0) | 9496.4 (518.9) | 518.9 (10.3) | 127.7 (2.5) | 16 | BBCH 11 | V1 | |
1st | With PRE | TW | −3.6 (0.1) | 0.6 (0.7) | 95.3 (0.9) | 688.6 (6.8) | 306.1 (8.1) | 22 | BBCH 13 | V3 |
Without PRE | TW | −3.4 (0.1) | 0.4 (0.7) | 96.4 (0.9) | 606.1 (6.5) | 255.8 (7.1) | 18 | BBCH 12 | V2 | |
2nd | With PRE | TW | −7.1 (0.6) | 0.2 (0.8) | 38.0 (1.5) | 949.5 (20.4) | 627.1 (13.8) | 61 | BBCH 21 | V11 |
Without PRE | TW | −2.7 (0.1) | −0.04 (0.7) | 49.4 (1.0) | 592.9 (13.9) | 202.6 (11.2) | 20 | BBCH 12 | V2 | |
3rd | With PRE | TW | −5.0 (0.7) | −0.1 (1.4) | 61.8 (2.4) | 703.8 (22.2) | 392.8 (30.1) | 41 | BBCH 16 | V6 |
Without PRE | TW | 2.5 (0.1) | 0.7 (1.0) | 74.2 (1.4) | 473.9 (11.9) | 147.6 (9.8) | 19 | BBCH 12 | V2 |
Season | Application of Herbicides | Planting Pattern | Yield Components | Regression Parameters (SE) | |||
---|---|---|---|---|---|---|---|
B | C | D | I50 | ||||
1st | With PRE | SS | 1000 seed weight | 2.5 (0.4) | 187.9 (8.5) | 283.1 (5.0) | 786.8 (94.2) |
Seeds per cob | 3.9 (0.4) | 23.1 (14.3) | 433.0 (9.4) | 697.1 (23.7) | |||
Without PRE | SS | 1000 seed weight | 3.0 (0.5) | 186.0 (4.8) | 271.8 (3.1) | 689.2 (42.3) | |
Seeds per cob | 3.0 (0.2) | 4.6 (8.9) | 424.3 (7.9) | 490.2 (13.9) | |||
2nd | With PRE | SS | 1000 seed weight | 23.7 (2.7) | 342.9 (3.3) | 378.8 (1.7) | 859.9 (22.9) |
Seeds per cob | 23.3 (1.3) | 348.1 (5.9) | 766.5 (2.9) | 857.6 (3.5) | |||
Without PRE | SS | 1000 seed weight | 7.1 (1.7) | 329.9 (1.4) | 379.2 (2.3) | 385.4 (13.9) | |
Seeds per cob | 3.5 (0.7) | 250.3 (25.4) | 745.2 (27.9) | 425.2 (30.4) | |||
3rd | With PRE | SS | 1000 seed weight | 3.6 (0.8) | 284.1 (1.9) | 311.8 (1.1) | 710.4 (46.0) |
Seeds per cob | 9.8 (3.9) | 271.6 (17.5) | 576.4 (19.8) | 458.1 (23.2) | |||
Without PRE | SS | 1000 seed weight | 1.8 (0.3) | 269.2 (3.9) | 309.9 (1.4) | 625.2 (84.7) | |
Seeds per cob | 2.9 (0.1) | 112.4 (2.5) | 508.8 (2.5) | 377.5 (3.7) | |||
1st | With PRE | TW | 1000 seed weight | 3.7 (0.4) | 187.7 (3.0) | 269.6 (1.9) | 798.3 (27.1) |
Seeds per cob | 3.4 (0.3) | 8.9 (10.6) | 415.6 (6.9) | 736.2 (19.2) | |||
Without PRE | TW | 1000 seed weight | 2.7 (0.5) | 179.4 (7.5) | 271.2 (4.3) | 693.0 (65.7) | |
Seeds per cob | 3.6 (0.6) | 17.4 (19.2) | 400.9 (16.2) | 524.0 (30.5) | |||
2nd | With PRE | TW | 1000 seed weight | 7.2 (12.5) | 360.1 (2.9) | 391.7 (4.6) | 780.0 (158.6) |
Seeds per cob | 8.8 (0.8) | 300.2 (6.4) | 697.1 (3.3) | 903.9 (6.6) | |||
Without PRE | TW | 1000 seed weight | 2.8 (0.5) | 335.9 (3.8) | 391.4 (2.3) | 679.0 (51.1) | |
Seeds per cob | 3.4 (1.1) | 243.5 (43.5) | 681.2 (33.1) | 667.5 (70.8) | |||
3rd | With PRE | TW | 1000 seed weight | 3.2 (0.3) | 275.1 (0.9) | 300.9 (0.5) | 658.2 (22.8) |
Seeds per cob | 6.8 (0.3) | 231.3 (2.9) | 543.6 (2.2) | 601.6 (4.6) | |||
Without PRE | TW | 1000 seed weight | 1.5 (0.2) | 250.6 (4.8) | 297.9 (0.7) | 982.7 (146.4) | |
Seeds per cob | 2.9 (0.3) | 112.9 (11.5) | 517.9 (8.9) | 483.6 (17.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedeljković, D.; Božić, D.; Malidža, G.; Rajković, M.; Knežević, S.Z.; Vrbničanin, S. Influence of Time of Weed Removal on Maize Yield and Yield Components Based on Different Planting Patterns, the Application of Pre-Emergence Herbicides and Weather Conditions. Plants 2025, 14, 419. https://doi.org/10.3390/plants14030419
Nedeljković D, Božić D, Malidža G, Rajković M, Knežević SZ, Vrbničanin S. Influence of Time of Weed Removal on Maize Yield and Yield Components Based on Different Planting Patterns, the Application of Pre-Emergence Herbicides and Weather Conditions. Plants. 2025; 14(3):419. https://doi.org/10.3390/plants14030419
Chicago/Turabian StyleNedeljković, Dejan, Dragana Božić, Goran Malidža, Miloš Rajković, Stevan Z. Knežević, and Sava Vrbničanin. 2025. "Influence of Time of Weed Removal on Maize Yield and Yield Components Based on Different Planting Patterns, the Application of Pre-Emergence Herbicides and Weather Conditions" Plants 14, no. 3: 419. https://doi.org/10.3390/plants14030419
APA StyleNedeljković, D., Božić, D., Malidža, G., Rajković, M., Knežević, S. Z., & Vrbničanin, S. (2025). Influence of Time of Weed Removal on Maize Yield and Yield Components Based on Different Planting Patterns, the Application of Pre-Emergence Herbicides and Weather Conditions. Plants, 14(3), 419. https://doi.org/10.3390/plants14030419