The Genomic and Phenotypic Characterization of the Sym2A Introgression Line A33.18 of Pea (Pisum sativum L.) with the Increased Specificity of Root Nodule Symbiosis
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characterization of A33.18 Introgression Line
2.2. Characterization of Genome Composition of A33.18 Introgression Line
2.3. Manifestation of Specificity Trait of A33.18 Line in Field Conditions
2.3.1. Development of Molecular Marker on Base of nodX Gene Sequence
2.3.2. Nodulation and Growth Parameters of A33.18 Line and cv. ‘Rondo’ in Field Experiment
3. Discussion
4. Materials and Methods
4.1. Plant Genotypes, Bacterial Strains, and Growth Conditions
4.2. Field Experiment
4.3. DNA Extraction from Nodules
4.4. PCR-Based Analysis of the Presence of the nodX Gene and Its Allelic State
4.5. Whole-Genome Sequencing and Reads Preprocessing
4.6. SNV Calling and Identification of Genomic Regions Inherited by A33.18 from Afghanistan
4.7. Functional Analysis of Genes from Genomic Regions Inherited by A33.18 from cv. ‘Afghanistan’
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, A.K.; Rubiales, D.; Wang, Y.; Fang, P.; Sun, T.; Liu, N.; Xu, P. Omics Resources and Omics-Enabled Approaches for Achieving High Productivity and Improved Quality in Pea (Pisum sativum L.). Theor. Appl. Genet. 2021, 134, 755–776. [Google Scholar] [CrossRef] [PubMed]
- Duc, G.; Agrama, H.; Bao, S.; Berger, J.; Bourion, V.; De Ron, A.M.; Gowda, C.L.L.; Mikic, A.; Millot, D.; Singh, K.B. Breeding Annual Grain Legumes for Sustainable Agriculture: New Methods to Approach Complex Traits and Target New Cultivar Ideotypes. CRC Crit. Rev. Plant Sci. 2015, 34, 381–411. [Google Scholar] [CrossRef]
- Mabrouk, Y.; Hemissi, I.; Salem, I.B.; Mejri, S.; Saidi, M.; Belhadj, O. Potential of Rhizobia in Improving Nitrogen Fixation and Yields of Legumes. In Symbiosis; Rigobelo, E.C., Ed.; IntechOpen: London, UK, 2018; Chapter 6. [Google Scholar]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Dénarié, J.; Debellé, F.; Promé, J.-C. Rhizobium Lipo-Chitooligosaccharide Nodulation Factors: Signaling Molecules Mediating Recognition and Morphogenesis. Annu. Rev. Biochem. 1996, 65, 503–535. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.; Lagunas, B.; Gifford, M.L. Determinants of Host Range Specificity in Legume-Rhizobia Symbiosis. Front. Microbiol. 2020, 11, 585749. [Google Scholar] [CrossRef] [PubMed]
- Boivin, S.; Ait Lahmidi, N.; Sherlock, D.; Bonhomme, M.; Dijon, D.; Heulin-Gotty, K.; Le-Queré, A.; Pervent, M.; Tauzin, M.; Carlsson, G.; et al. Host-Specific Competitiveness to Form Nodules in Rhizobium Leguminosarum Symbiovar Viciae. New Phytol. 2020, 226, 555–568. [Google Scholar] [CrossRef]
- Bourion, V.; Heulin-Gotty, K.; Aubert, V.; Tisseyre, P.; Chabert-Martinello, M.; Pervent, M.; Delaitre, C.; Vile, D.; Siol, M.; Duc, G.; et al. Co-Inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct Traits in the Interaction. Front. Plant Sci. 2018, 8, 2249. [Google Scholar] [CrossRef] [PubMed]
- Meade, J.; Higgins, P.; O’Gara, F. Studies on the Inoculation and Competitiveness of a Rhizobium Leguminosarum Strain in Soils Containing Indigenous Rhizobia. Appl. Environ. Microbiol. 1985, 49, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Suárez, M.; Andersen, S.U.; Poole, P.S.; Sánchez-Cañizares, C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. Front. Plant Sci. 2021, 12, 690567. [Google Scholar] [CrossRef] [PubMed]
- Tsyganov, V.E.; Tsyganova, A.V. Symbiotic Regulatory Genes Controlling Nodule Development in Pisum sativum L. Plants 2020, 9, 1741. [Google Scholar] [CrossRef]
- Lie, T.A. Host Genes in Pisum sativum L. Conferring Resistance to European Rhizobium Leguminosarum Strains. Plant Soil 1984, 82, 415–425. [Google Scholar] [CrossRef]
- Lie, T.A. Symbiotic Specialisation in Pea Plants: The Requirement of Specific Rhizobium Strains for Peas from Afghanistan. Ann. Appl. Biol. 1978, 88, 462–465. [Google Scholar] [CrossRef]
- Lie, T.A. Symbiotic Nitrogen Fixation under Stress Conditions. Plant Soil 1971, 35, 117–127. [Google Scholar] [CrossRef]
- Young, J.P.W.; Matthews, P. A Distinct Class of Peas (Pisum sativum L.) from Afghanistan That Show Strain Specificity for Symbiotic Rhizobium. Heredity 1982, 48, 203–210. [Google Scholar] [CrossRef]
- Davis, E.O.; Evans, I.J.; Johnston, A.W.B. Identification of NodX, a Gene That Allows Rhizobium Leguminosarum Biovar Viciae Strain TOM to Nodulate Afghanistan Peas. Mol. Gen. Genet. MGG 1988, 212, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Firmin, J.L.; Wilson, K.E.; Carlson, R.W.; Davies, A.E.; Downie, J.A. Resistance to Nodulation of Cv. Afghanistan Peas Is Overcome by NodX, Which Mediates an O-acetylation of the Rhizobium Leguminosarum Lipo-oligosaccharide Nodulation Factor. Mol. Microbiol. 1993, 10, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Sulima, A.S.; Zhukov, V.A.; Afonin, A.A.; Zhernakov, A.I.; Tikhonovich, I.A.; Lutova, L.A. Selection Signatures in the First Exon of Paralogous Receptor Kinase Genes from the Sym2 Region of the Pisum sativum L. Genome. Front. Plant Sci. 2017, 8, 1957. [Google Scholar] [CrossRef] [PubMed]
- Kozik, A.; Matvienko, M.; Scheres, B.; Paruvangada, V.G.; Bisseling, T.; van Kammen, A.; Ellis, T.H.N.; LaRue, T.; Weeden, N. The Pea Early Nodulin Gene PsENOD7 Maps in the Region of Linkage Group I Containing Sym2 and Leghaemoglobin. Plant Mol. Biol. 1996, 31, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kozik, A. Fine Mapping of the Sym2 Locus of Pea Linkage Group 1. Ph. D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1996. [Google Scholar]
- Zorin, E.A.; Sulima, A.S.; Zhernakov, A.I.; Kuzmina, D.O.; Rakova, V.A.; Kliukova, M.S.; Romanyuk, D.A.; Kulaeva, O.A.; Akhtemova, G.A.; Shtark, O.Y.; et al. Genomic and Transcriptomic Analysis of Pea (Pisum sativum L.) Breeding Line ‘Triumph’ with High Symbiotic Responsivity. Plants 2024, 13, 78. [Google Scholar] [CrossRef]
- Bono, J.; Fliegmann, J.; Gough, C.; Cullimore, J. Expression and Function of the Medicago Truncatula Lysin Motif Receptor-like Kinase (LysM-RLK) Gene Family in the Legume–Rhizobia Symbiosis. In The Model Legume Medicago truncatula; de Bruijn, F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; Chapter 6.2.2; pp. 439–447. [Google Scholar]
- Sulima, A.S.; Zhukov, V.A.; Kulaeva, O.A.; Vasileva, E.N.; Borisov, A.Y.; Tikhonovich, I.A. New Sources of Sym2A Allele in the Pea (Pisum sativum L.) Carry the Unique Variant of Candidate LysM-RLK Gene LykX. PeerJ 2019, 2019, e8070. [Google Scholar] [CrossRef]
- Ovtsyna, A.O.; Geurts, R.; Bisseling, T.; Lugtenberg, B.J.J.; Tikhonovich, I.A.; Spaink, H.P. Restriction of Host Range by the Sym2 Allele of Afghan Pea Is Nonspecific for the Type of Modification at the Reducing Terminus of Nodulation Signals. Mol. Plant-Microbe Interact. 1998, 11, 418–422. [Google Scholar] [CrossRef]
- Irisarri, P.; Cardozo, G.; Tartaglia, C.; Reyno, R.; Gutiérrez, P.; Lattanzi, F.A.; Rebuffo, M.; Monza, J. Selection of Competitive and Efficient Rhizobia Strains for White Clover. Front. Microbiol. 2019, 10, 768. [Google Scholar] [CrossRef] [PubMed]
- Hogg, B.; Davies, A.E.; Wilson, K.E.; Bisseling, T.; Downie, J.A. Competitive Nodulation Blocking of Cv. Afghanistan Pea Is Related to High Levels of Nodulation Factors Made by Some Strains of Rhizobium leguminosarum bv. viciae. Mol. Plant-Microbe Interact. 2002, 15, 60–68. [Google Scholar] [CrossRef]
- Provorov, N.A.; Andronov, E.E.; Kimeklis, A.K.; Onishchuk, O.P.; Igolkina, A.A.; Karasev, E.S. Microevolution, Speciation and Macroevolution in Rhizobia: Genomic Mechanisms and Selective Patterns. Front. Plant Sci. 2022, 13, 1026943. [Google Scholar] [CrossRef] [PubMed]
- Ovtsyna, A.O.; Rademaker, G.-J.; Esser, E.; Weinman, J.; Rolfe, B.G.; Tikhonovich, I.A.; Lugtenberg, B.J.J.; Thomas-Oates, J.E.; Spaink, H.P. Comparison of Characteristics of the NodX Genes from Various Rhizobium leguminosarum Strains. Mol. Plant-Microbe Interact. 1999, 12, 252–258. [Google Scholar] [CrossRef]
- Kulaeva, O.A.; Zorin, E.A.; Sulima, A.S.; Akhtemova, G.A.; Zhukov, V.A. Draft Genome Sequence of the Commercial Strain Rhizobium ruizarguesonis bv. viciae RCAM1022. Data 2024, 9, 19. [Google Scholar] [CrossRef]
- Afonin, A.; Sulima, A.; Zhernakov, A.; Zhukov, V. Draft Genome of the Strain RCAM1026 Rhizobium leguminosarum bv. viciae. Genom. Data 2017, 11, 85–86. [Google Scholar] [CrossRef] [PubMed]
- Chetkova, S.A.; Tikhonovich, I.A. Isolation and Study of Rhizobium Leguminosarum Strains Effective on Peas from Afghanistan. Mikrobiologiya 1986, 55, 143–147. [Google Scholar]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain W1118; Iso-2; Iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Liu, R.; Luo, Y.; Hu, S.; Wang, D.; Wang, C.; Pandey, M.K.; Ge, S.; Xu, Q.; Li, N.; et al. Improved Pea Reference Genome and Pan-Genome Highlight Genomic Features and Evolutionary Characteristics. Nat. Genet. 2022, 54, 1553–1563. [Google Scholar] [CrossRef]
- Bolger, M.; Schwacke, R.; Usadel, B. MapMan Visualization of RNA-Seq Data Using Mercator4 Functional Annotations. In Solanum Tuberosum: Methods and Protocols; Dobnik, D., Gruden, K., Ramšak, Ž., Coll, A., Eds.; Humana: New York, NY, USA, 2021; pp. 195–212. [Google Scholar]
- Hernández-Plaza, A.; Szklarczyk, D.; Botas, J.; Cantalapiedra, C.P.; Giner-Lamia, J.; Mende, D.R.; Kirsch, R.; Rattei, T.; Letunic, I.; Jensen, L.J. EggNOG 6.0: Enabling Comparative Genomics across 12 535 Organisms. Nucleic Acids Res. 2023, 51, D389–D394. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Getting Started with Ggplot2. In ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 11–31. [Google Scholar]
Region | Number of SNVs | Number of Indels |
---|---|---|
5′ UTR | 164 | 23 |
Exon | 4219 | 49 |
3′ UTR | 504 | 42 |
Line | Origin | Interaction with the nodX− Strains | Interaction with the nodX+ Strains | References |
---|---|---|---|---|
A33.18 | The Netherlands | −/+ | + | [20] |
cv. ‘Rondo’ | The Netherlands | + | + | [13] |
cv. ‘Afghanistan’ (=NGB2150, JI1357) | Afghanistan | − | + | [14,15] |
cv. ‘Triumph’ | Russia | + | + | [21] |
Strain | Species | Origin | Features | Genomic Sequence (NCBI Bioproject) | References |
---|---|---|---|---|---|
TOM | Rhizobium leguminosarum bv. viciae | Turkey | nodX+ | PRJNA80887 | [13,16,17] |
A1 | Rhizobium leguminosarum bv. viciae | Russia | nodX+ | PRJNA609819 | [28] |
RCAM1022 | Rhizobium ruizarguesonis (formerly Rhizobium leguminosarum bv. viciae) | Russia | nodX− | PRJNA1038702 | [29] |
RCAM1026 | Rhizobium ruizarguesonis (formerly Rhizobium leguminosarum bv. viciae) | Kazakhstan | nodX− | PRJNA354725 | [30] |
Gene | Sequence, 5′–3′ |
---|---|
nodE | CAC CGA TGC TTC CTC TAT CTG GAC |
AAC GCA AGG ACA GCA TTC AT | |
nodX | GAT GAA TGC CAC TTT CAC AGT AAG |
CAG ATA CTG CAA GAT GCC GGT A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulima, A.S.; Zhuravlev, I.Y.; Alexeeva, E.A.; Kliukova, M.S.; Zorin, E.A.; Rakova, V.A.; Gordon, M.L.; Kulaeva, O.A.; Romanyuk, D.A.; Akhtemova, G.A.; et al. The Genomic and Phenotypic Characterization of the Sym2A Introgression Line A33.18 of Pea (Pisum sativum L.) with the Increased Specificity of Root Nodule Symbiosis. Plants 2025, 14, 427. https://doi.org/10.3390/plants14030427
Sulima AS, Zhuravlev IY, Alexeeva EA, Kliukova MS, Zorin EA, Rakova VA, Gordon ML, Kulaeva OA, Romanyuk DA, Akhtemova GA, et al. The Genomic and Phenotypic Characterization of the Sym2A Introgression Line A33.18 of Pea (Pisum sativum L.) with the Increased Specificity of Root Nodule Symbiosis. Plants. 2025; 14(3):427. https://doi.org/10.3390/plants14030427
Chicago/Turabian StyleSulima, Anton S., Igor Yu. Zhuravlev, Elizaveta A. Alexeeva, Marina S. Kliukova, Evgeny A. Zorin, Valeria A. Rakova, Michail L. Gordon, Olga A. Kulaeva, Daria A. Romanyuk, Gulnar A. Akhtemova, and et al. 2025. "The Genomic and Phenotypic Characterization of the Sym2A Introgression Line A33.18 of Pea (Pisum sativum L.) with the Increased Specificity of Root Nodule Symbiosis" Plants 14, no. 3: 427. https://doi.org/10.3390/plants14030427
APA StyleSulima, A. S., Zhuravlev, I. Y., Alexeeva, E. A., Kliukova, M. S., Zorin, E. A., Rakova, V. A., Gordon, M. L., Kulaeva, O. A., Romanyuk, D. A., Akhtemova, G. A., Zhernakov, A. I., Semenova, E. V., Vishnyakova, M. A., Tikhonovich, I. A., & Zhukov, V. A. (2025). The Genomic and Phenotypic Characterization of the Sym2A Introgression Line A33.18 of Pea (Pisum sativum L.) with the Increased Specificity of Root Nodule Symbiosis. Plants, 14(3), 427. https://doi.org/10.3390/plants14030427