Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen–Phosphorus Interactions
Abstract
:1. Introduction
2. Results
2.1. Yield, Spikelets per Panicle, and Grain Weight
2.2. Grain-Filling Characteristics of Superior Grains and Inferior Grains
2.3. Starch Content and Taste Value in Rice
2.4. Changes in the Enzyme Activities of ADPG, GBSS, SSS, and SBE in SGs and IGs
2.5. Grain Filling Characteristics, Starch Synthase Activity in Relation to Starch Content, Taste Value, and Grain Weight
3. Discussion
3.1. Effects of N and P on Both the Yield and Grain Weight and Their Relationship with Grain-Filling Characteristics
3.2. Effects of Nitrogen–Phosphorus Interactions on Rice Quality and the Relationship with Enzymes Related to Starch Synthesis
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Experimental Design and Rice Cultivation Management
4.3. Sampling and Measurements
4.3.1. Determination of Yield, Spikelets per Panicle, and Grain Weight
4.3.2. Sampling and Determination of Grain Filling
4.3.3. Measurement of Enzymatic Activities
4.3.4. Determination of Starch Content and Taste Value
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, H.; Zhu, Y.; Qiu, S.; Han, C.; Hu, L.; Xu, D.; Zhou, N.; Xing, Z.; Hu, Y.; Cui, P.; et al. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J. Integr. Agric. 2018, 17, 2405–2417. [Google Scholar] [CrossRef]
- Zhou, L.J.; Liang, S.; Ponce, K.; Marundon, S.; Ye, G.; Zhao, X. Factors affecting head rice yield and chalkiness in indica rice. Field Crops Res. 2015, 172, 1–10. [Google Scholar] [CrossRef]
- Kong, L.; Xie, Y.; Hu, L.; Si, J.; Wang, Z. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 2017, 7, 43363. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Huang, H.; Qian, Z.; Jiang, H.; Liu, G.; Xu, K.; Hu, Y.; Dai, Q.; Huo, Z. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice. J. Integr. Agric. 2021, 20, 1487–1502. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J. The global nitrogen-phosphorus imbalance. Science 2022, 375, 266–267. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.L.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chen, Y.; Zhang, H.; Li, Z.; Zhou, Q.; Yu, C.; Kong, X.; Liu, L.; Wang, Z.; Yang, J. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Res. 2017, 206, 74–85. [Google Scholar] [CrossRef]
- Penuelas, J.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Sardans, J. Anthropogenic global shifts in biospheric N and, P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Change Biol. 2020, 26, 1962–1985. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z. Effects of Free-Air During Grain Filling Stage on Grain Filling and Quality of Rice and Regulation Effect of Nitrogen Spikelet Fertilizer. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2017. (In Chinese). [Google Scholar]
- Tan, G.L.; Zhang, H.; Fu, J.; Wang, Z.Q.; Liu, L.J.; Yang, J.C. Variation of polyamine concentration in strong and weak grains of super rice after flowering and its relationship with grain filling. Acta Agron. Sin. 2009, 35, 2225–2233. (In Chinese) [Google Scholar]
- Zhang, D.; Wang, H.; Pan, J.; Luo, J.; Liu, J.; Gu, B.; Liu, S.; Zhai, L.; Lindsey, S.; Zhang, Y.; et al. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agric. Ecosyst. Environ. 2018, 265, 8–14. [Google Scholar] [CrossRef]
- Kato, T.; Shinmura, D.; Taniguchi, A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types. Plant Prod. Sci. 2007, 10, 442–450. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, S.; Yang, S.; Zhou, J.; Jiang, Z.; Qi, S.; Xu, Y. Effects of irrigation and fertilization management on yield and quality of rice and the establishment of a quality evaluation system. Agronomy 2023, 13, 2034. [Google Scholar] [CrossRef]
- Wu, Z.; He, L.; Xiong, Y.; Chen, K.; Yang, Z.; Sun, Y.; Lv, X.; Ma, Y. Effect of nitrogen fertilizer topdressing for panicle differentiation on grain filling of hybrid indica rice and its relationship with the activities of key enzymes for starch synthesis. Chin. J. Rice Sci. 2024, 38, 48–56. (In Chinese) [Google Scholar]
- Chen, Y.; Liu, Y.; Dong, S.; Liu, J.; Wang, Y.; Hussain, S.; Wei, H.; Huo, Z.; Xu, K.; Dai, Q. Response of rice yield and grain quality to combined nitrogen application rate and planting density in saline area. Agriculture 2022, 12, 1788. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, H.; Gao, H.; Hu, Y.; Cui, P.; Huo, Z. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agric. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, Y.; Tian, X.; Wang, Q.; Xiong, R.; Xu, G.; Yan, C.; Ding, Y. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. Eur. J. Agron. 2016, 74, 185–192. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Song, N.; Chen, Q.; Sun, H.; Peng, T.; Huang, S.; Zhao, Q. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. J. Integr. Agric. 2021, 20, 1465–1473. [Google Scholar] [CrossRef]
- Yan, T.R.; Li, X.Y.; Li, N.; Jiang, J.M.; Yang, Z.Y.; He, Y.; Wang, H.Y.; Ma, Y. Effect of nitrogen management and cultivation method on grain-filling characteristics and grain yield of indica hybrid rice. Chin. J. Eco-Agric. 2017, 25, 1485–1494. (In Chinese) [Google Scholar]
- Zhao, C.; Liu, G.; Chen, Y.; Jiang, Y.; Shi, Y.; Zhao, L.; Liao, P.; Wang, W.; Xu, K.; Dai, Q.; et al. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture 2022, 12, 962. [Google Scholar] [CrossRef]
- Zhu, L.N.; Liu, H.Y.; Sun, L.L.; Sun, T.; Guo, X.D.; Zhu, F.X.; Zhang, Z.C.; Jin, Z.X. Analysis of expression characteristics of isoamylase and the correlation with starch content during grain filling in rice. Chin. J. Rice Sci. 2015, 29, 528–534. (In Chinese) [Google Scholar]
- Du, X.D.; Zhao, H.W.; Wang, J.G.; Liu, H.L.; Yang, L.; Xu, J.; Song, J.T. Changes in starch accumulation and activity of enzymes associated with starch synthesis under different nitrogen applications in japonica rice in cold region. Acta Agron. Sin. 2012, 38, 159–167. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, R.Q. Effects of Different Phosphorus Levels on Starch Biosynthesis and Starch Grain Structure Characteristics in Wheat. Master’s Thesis, Shihezi University, Shihezi, China, 2017. (In Chinese). [Google Scholar]
- Li, Y.Y.; Li, H.J.; Hao, W.M.; Zhao, X.H.; Cao, J.; Xu, G.W. Effects of phosphorus fertilizer application rate on grain quality and starch synthase activity of different low-phosphorus-tolerant varieties of rice. Chin. J. Eco-Agric. 2024, 32, 816–826. (In Chinese) [Google Scholar]
- Yang, G.; Nabi, F.; Sajid, S.; Kaleri, A.R.; Jakhar, A.M.; Cheng, L.; Raspor, M.; Muhammad, N.; Ma, J.; Hu, Y. Response of root development and nutrient uptake of two chinese cultivars of hybrid rice to nitrogen and phosphorus fertilization in Sichuan Province, China. Mol. Biol. Rep. 2021, 48, 8009–8021. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Raja, R.; Panda, B.B.; Lal, B.; Gautam, P.; et al. Effects of 42-year long-term fertilizer management on soil phosphorus availability, fractionation, adsorption-desorption isotherm and plant uptake in flooded tropical rice. Crop J. 2015, 3, 387–395. [Google Scholar] [CrossRef]
- Zhang, H.C.; Wang, X.Q.; Dai, Q.G. Effects of n-application rate on yield quality and characters of nitrogen uptake of hybrid rice variety liangyoupeijiu. Sci. Agric. Sin. 2003, 36, 800–806. (In Chinese) [Google Scholar]
- Li, J.; Feng, Y.; Wang, X.; Peng, J.; Yang, D.; Xu, G.; Luo, Q.; Wang, L.; Ou, D.; Su, W. Stability and applicability of the leaf value model for variable nitrogen application based on SPAD value in rice. PLoS ONE 2020, 15, e0233735. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Zhong, X.; Lampayan, R.M.; Singleton, G.R.; Huang, N.; Liang, K.; Peng, B.; Tian, K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Zhang, J.; Tong, T.; Potcho, M.; Huang, S.; Ma, L.; Tang, X. Nitrogen Effects on Yield, Quality and Physiological Characteristics of Giant Rice. Agronomy 2020, 10, 1816. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, J.; Li, Y.; Chen, Y.; Yang, J. Effects of Phosphorus on Grain Quality of Upland and Paddy Rice under Different Cultivation. Rice Sci. 2012, 19, 135–142. [Google Scholar] [CrossRef]
- Gautam, P.; Lal, B.; Panda, B.B.; Bihari, P.; Chatterjee, D.; Singh, T.; Nayak, P.K.; Nayak, A.K. Alteration in agronomic practices to utilize rice fallows for higher system productivity and sustainability. Field Crops Res. 2021, 260, 108005. [Google Scholar] [CrossRef]
- Ali, I.; He, L.; Ullah, S.; Quan, Z.; Wei, S.; Iqbal, A.; Munsif, F.; Shah, T.; Xuan, Y.; Luo, Y.; et al. Biochar addition coupled with nitrogen fertilization impacts on soil quality, crop productivity, and nitrogen uptake under double-cropping system. Food Energy Secur. 2020, 9, e208. [Google Scholar] [CrossRef]
- Song, T.; Xu, F.; Yuan, W.; Chen, M.; Hu, Q.; Tian, Y.; Zhang, J.; Xu, W. Combining alternate wetting and drying irrigation with reduced phosphorus fertilizer application reduces water use and promotes phosphorus use efficiency without yield loss in rice plants. Agric. Water Manag. 2019, 223, 105686. [Google Scholar] [CrossRef]
- Lu, R.K. The phosphorus level of soil and environmental protection of water body. Phosphate Compd. Fertil. 2003, 18, 4–8. (In Chinese) [Google Scholar]
- Xu, X.P.; Wang, X.B.; Li, D.M.; Liu, K.L.; Yu, G.Q.; He, P.; Zhou, W. Optimum combination of phosphorus, potassium and density for double-rice systems. J. Plant Nutr. Fertil. 2016, 22, 598–608. (In Chinese) [Google Scholar]
- Zhou, S.; Liu, K.; Zhuo, X.; Wang, W.; Zhang, W.; Zhang, H.; Gu, J.; Yang, J.; Liu, L. Optimizing nitrogen regime improves dry matter and nitrogen accumulation during grain filling to increase rice yield. Agronomy 2023, 13, 1983. [Google Scholar] [CrossRef]
- Tian, W.H.; Ye, J.Y.; Cui, M.Q.; Chang, J.B.; Liu, Y.; Li, G.X.; Wu, Y.R.; Xu, J.M.; Harberd, N.P.; Mao, C.Z.; et al. A transcription factor STOP1-centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis. Mol. Plant 2021, 14, 1554–1568. [Google Scholar] [CrossRef]
- Hu, B.; Jiang, Z.; Wang, W.; Qiu, Y.; Zhang, Z.; Liu, Y.; Li, A.; Gao, X.; Liu, L.; Qian, Y.; et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 2019, 5, 401–413. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Li, G.; Hu, Q.; Shi, Y.; Cui, K.; Nie, L.; Huang, J.; Peng, S. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Front. Plant Sci. 2018, 9, 1128. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liao, Y.; Liu, W. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J. 2020, 9, 412–426. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, Y.; Yang, J.; Yuan, L.; Wang, X.; Zhu, Q. Changes and regulations of sucrose synthase activity in rice grains during grain filling. Acta Agron. Sin. 2004, 30, 634–643. (In Chinese) [Google Scholar]
- Li, X.; Cheng, H.; Wang, N.; Yu, C.; Qu, L.; Cao, P.; Hu, N.; Liu, T.; Lyu, W. Critical factors for grain filling of erect panicle type japonica rice cultivars. Agron. J. 2013, 105, 1404–1410. [Google Scholar] [CrossRef]
- Preiss, J. Biosynthesis of starch and its regulation. In The Biochemistry of Plants; Preiss, J., Ed.; Academic Press: New York, NY, USA, 1988; pp. 181–254. [Google Scholar]
- Fu, J.; Xu, Y.; Chen, L.; Yuan, L.; Wang, Z.; Yang, J. Changes in enzyme activities involved in starch synthesis and hormone concentrations in superior and inferior spikelets and their association with grain filling of super rice. Rice Sci. 2013, 20, 120–128. [Google Scholar] [CrossRef]
- Ovando-Martínez, M.; Osorio-Díaz, P.; Whitney, K.; Bello-Pérez, L.A.; Simsek, S. Effect of the cooking on physicochemical and starch digestibility properties of two varieties of common bean (Phaseolus vulgaris L.) grown under different water regimes. Food Chem. 2011, 129, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Syahariza, Z.A.; Sar, S.; Hasjim, J.; Tizzotti, M.J.; Gilbert, R.G. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chem. 2013, 136, 742–749. [Google Scholar] [CrossRef]
- Zhou, L.J.; Sheng, W.; Wu, J.; Zhang, C.; Liu, Q.; Deng, Q. Differential expressions among five Waxy alleles and their effects on the eating and cooking qualities in specialty rice cultivars. J. Integr. Agric. 2015, 14, 1153–1162. [Google Scholar] [CrossRef]
- Fan, X.; Li, Y.; Lu, Y.; Zhang, C.; Li, E.; Li, Q.; Tao, K.; Yu, W.; Wang, J.; Chen, Z.; et al. The interaction between amylose and amylopectin synthesis in rice endosperm grown at high temperature. Food Chem. 2019, 301, 125258. [Google Scholar] [CrossRef]
- Zhu, D.; Fang, C.; Qian, Z.; Guo, B.; Huo, Z. Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents. Food Hydrocoll. 2020, 110, 106170. [Google Scholar] [CrossRef]
- Peng, Y.; Mao, B.; Zhang, C.; Shao, Y.; Wu, T.; Hu, L.; Hu, Y.; Tang, L.; Li, Y.; Tang, W.; et al. Influence of physicochemical properties and starch fine structure on the eating quality of hybrid rice with similar apparent amylose content. Food Chem. 2021, 353, 129461. [Google Scholar] [CrossRef]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydr. Polym. 2016, 146, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gu, Y.; Chen, G.; Xiong, F.; Li, Y. Rice quality and its affecting factor. Mol. Plant Breed. 2003, 1, 231–241. (In Chinese) [Google Scholar]
- Chen, H.; Yang, G.T.; Xiao, Y.; Zhang, G.; Yang, G.X.; Wang, X.; Hu, Y. Effects of nitrogen and phosphorus fertilizer on the eating quality of indica rice with different amylose content. J. Food Compos. Anal. 2023, 118, 105167. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; Gao, Q.; Wang, J.; Li, X.; Wang, H.; Liu, Y.; Lin, H.; Liu, J.; Wang, X.; et al. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat. Genet. 2021, 53, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhou, Q.; Li, E.; Yuan, L.; Wang, W.; Zhang, H.; Liu, L.; Wang, Z.; Yang, J.; Gu, J. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohydr. Polym. 2020, 239, 116237. [Google Scholar] [CrossRef]
- Witt, T.; Doutch, J.; Gilbert, E.P.; Gilbert, R.G. Relations between molecular, crystalline, and lamellar structures of amylopectin. Biomacromolecules 2012, 13, 4273–4282. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Zhao, S.; Jiao, G.; Duan, Y.; Ma, L.; Dong, N.; Lu, F.; Zhu, M.; Shao, G.; Hu, S.; et al. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. Plant Commun. 2022, 3, 100463. [Google Scholar] [CrossRef]
- Smidansky, E.D.; Meyer, F.D.; Blakeslee, B.; Weglarz, T.E.; Greene, T.W.; Giroux, M.J. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 2007, 225, 965–976. [Google Scholar] [CrossRef]
- Liu, X.Y.; Li, J.; Liu, X.J.; Zhang, C.Q.; Gu, M.H.; Liu, Q.Q. Progress in the relationship between soluble starch synthases and starch fine structure in rice. Plant Physiol. J. 2014, 50, 1453–1458. (In Chinese) [Google Scholar]
- Mizuno, K.; Kimura, K.; Arai, Y.; Kawasaki, T.; Shimada, H.; Baba, T. Starch branching enzymes from immature rice seeds. J. Biochem. 1992, 112, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, Y.; Li, X.; Yan, Z.; Xie, Y.; Xiong, H.; Zhao, L.; Gu, J.; Zhao, S.; Liu, L. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genom. 2017, 18, 358. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.S.; Cao, X.Z.; Luo, Y.Q. Gromth analysis on the process of grain filling in rice. Acta Agron. Sin. 1988, 3, 182–193. (In Chinese) [Google Scholar]
- Liu, D.R.; Huang, W.X.; Cai, X.L. Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation. Plant Sci. 2013, 210, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Deng, F.; Zeng, Y.; Li, B.; He, C.; Zhu, Y.; Zhou, X.; Zhang, Z.; Wang, L.; Tao, Y. Low light stress increases chalkiness by disturbing starch synthesis and grain filling of rice. Int. J. Mol. Sci. 2022, 23, 9153. [Google Scholar] [CrossRef]
Year | Treatment (N and P) | R0 | Gmax (mg grain−1 d−1) | Wmax (mg grain−1) | Tmax.G (d) | Gmean (mg grain−1 d−1) | D (d) | R2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SG | IG | SG | IG | SG | IG | SG | IG | SG | IG | SG | IG | SG | IG | |||
2021 | N3 | P2 | 0.816 | 0.143 | 1.316 | 0.959 | 10.38 | 10.93 | 9.66 | 24.52 | 0.893 | 0.630 | 29.11 | 31.66 | 0.994 | 0.991 |
P1 | 0.400 | 0.140 | 1.145 | 0.899 | 10.09 | 10.56 | 11.49 | 25.27 | 0.775 | 0.591 | 30.24 | 32.68 | 0.997 | 0.982 | ||
N2 | P2 | 0.609 | 0.136 | 1.228 | 0.763 | 9.96 | 9.75 | 10.36 | 26.77 | 0.833 | 0.501 | 29.15 | 35.62 | 0.996 | 0.987 | |
P1 | 0.815 | 0.139 | 1.183 | 0.834 | 9.94 | 10.23 | 9.85 | 26.31 | 0.803 | 0.548 | 31.16 | 34.03 | 0.997 | 0.988 | ||
N1 | P2 | 0.579 | 0.129 | 1.075 | 0.635 | 9.31 | 8.17 | 11.90 | 28.76 | 0.729 | 0.420 | 31.18 | 36.79 | 0.955 | 0.991 | |
P1 | 0.653 | 0.133 | 1.083 | 0.665 | 9.40 | 8.35 | 11.33 | 27.06 | 0.735 | 0.442 | 31.64 | 36.75 | 0.993 | 0.993 | ||
2022 | N3 | P2 | 0.723 | 0.158 | 1.353 | 0.863 | 10.39 | 10.36 | 9.35 | 23.88 | 0.918 | 0.573 | 27.97 | 35.31 | 0.996 | 0.985 |
P1 | 0.492 | 0.150 | 1.187 | 0.797 | 10.35 | 10.08 | 10.82 | 24.97 | 0.804 | 0.530 | 30.80 | 37.29 | 0.996 | 0.976 | ||
N2 | P2 | 0.512 | 0.145 | 1.336 | 0.661 | 10.35 | 8.93 | 10.41 | 25.48 | 0.904 | 0.441 | 27.09 | 40.43 | 0.999 | 0.992 | |
P1 | 0.703 | 0.147 | 1.338 | 0.714 | 10.24 | 9.45 | 9.63 | 25.50 | 0.908 | 0.475 | 27.76 | 39.15 | 0.999 | 0.989 | ||
N1 | P2 | 0.434 | 0.133 | 1.148 | 0.608 | 9.82 | 8.08 | 11.72 | 26.58 | 0.777 | 0.402 | 29.61 | 38.09 | 0.998 | 0.988 | |
P1 | 0.622 | 0.142 | 1.186 | 0.672 | 9.69 | 8.48 | 10.92 | 25.81 | 0.804 | 0.445 | 29.46 | 36.32 | 0.999 | 0.984 |
Year | Treatment (N and P) | Amylose Content (%) | Amylopectin Content (%) | Starch Content (%) | Taste Value | Amylopectin/Amylose | |
---|---|---|---|---|---|---|---|
2021 | N3 | P2 | 20.38 a | 54.69 a | 75.06 a | 60.50 c | 2.69 ab |
P1 | 19.80 ab | 51.26 bc | 71.06 c | 58.00 d | 2.59 bc | ||
N2 | P2 | 20.13 a | 52.20 b | 72.32b c | 62.50 b | 2.60 bc | |
P1 | 19.43 b | 53.84 a | 73.26 b | 65.40 a | 2.77 a | ||
N1 | P2 | 19.33 b | 48.97 c | 68.30 d | 56.88 d | 2.54 c | |
P1 | 19.15 b | 50.62 c | 69.77 cd | 58.50 d | 2.64 bc | ||
2022 | N3 | P2 | 19.85 a | 56.47 a | 76.32 a | 58.63 c | 2.85 a |
P1 | 19.48 ab | 51.10 b | 70.58 bc | 57.25 cd | 2.62 b | ||
N2 | P2 | 19.60 ab | 52.03 b | 71.63 bc | 60.25 b | 2.66 b | |
P1 | 19.09 b | 54.30 ab | 73.39 b | 62.13 a | 2.85 a | ||
N1 | P2 | 18.75 b | 46.85 c | 65.60 d | 56.50 d | 2.50 c | |
P1 | 18.59 b | 49.07 b | 67.66 c | 58.13 c | 2.64 b | ||
Variance analysis | |||||||
Nitrogen (N) | 30.07 ** | 52.23 ** | 75.00 ** | 67.35 ** | 9.70 ** | ||
Phosphorus (P) | 17.79 ** | 0.18 ns | 2.19 ns | 3.40 ns | 3.30 ns | ||
N × P | 1.73 ns | 27.49 ** | 29.28 ** | 12.61 ** | 15.37 ** |
Treatment | Total Amount of Fertilizer | Base Fertilizer | Tillering Fertilizer | Panicle Fertilizer | |||
---|---|---|---|---|---|---|---|
N | P | N | P | N | N | ||
N3 | P2 | 210.0 | 105.0 | 75.60 | 105.0 | 50.40 | 84.0 |
P1 | 210.0 | 73.5 | 75.60 | 73.5 | 50.40 | 84.0 | |
N2 | P2 | 178.5 | 105 | 64.26 | 105.0 | 42.84 | 71.4 |
P1 | 178.5 | 73.5 | 64.26 | 73.5 | 42.84 | 71.4 | |
N1 | P2 | 147.0 | 105.0 | 52.92 | 105.0 | 35.28 | 58.8 |
P1 | 147.0 | 73.5 | 52.92 | 73.5 | 35.28 | 58.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhao, Y.; Chen, L.; Wan, X.; Yan, B.; Liu, Y.; Liu, Y.; Zhang, W.; Gao, J. Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen–Phosphorus Interactions. Plants 2025, 14, 432. https://doi.org/10.3390/plants14030432
Jiang H, Zhao Y, Chen L, Wan X, Yan B, Liu Y, Liu Y, Zhang W, Gao J. Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen–Phosphorus Interactions. Plants. 2025; 14(3):432. https://doi.org/10.3390/plants14030432
Chicago/Turabian StyleJiang, Hongfang, Yanze Zhao, Liqiang Chen, Xue Wan, Bingchun Yan, Yuzhuo Liu, Yuqi Liu, Wenzhong Zhang, and Jiping Gao. 2025. "Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen–Phosphorus Interactions" Plants 14, no. 3: 432. https://doi.org/10.3390/plants14030432
APA StyleJiang, H., Zhao, Y., Chen, L., Wan, X., Yan, B., Liu, Y., Liu, Y., Zhang, W., & Gao, J. (2025). Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen–Phosphorus Interactions. Plants, 14(3), 432. https://doi.org/10.3390/plants14030432