Using Klebsiella sp. and Pseudomonas sp. to Study the Mechanism of Improving Maize Seedling Growth Under Saline Stress
Abstract
:1. Introduction
2. Results
2.1. Identification of Microbial Characteristics
2.2. Growth Characteristics of Maize Seedlings
2.3. Soil Chemical Properties
2.4. Microbial Community Composition
2.5. Microbial Community Assembly Mechanism
2.6. Microbial Co-Occurrence Network
2.7. Determinants of Maize Seedling Growth Under Saline Stress
3. Discussion
3.1. PGPR Promoted Maize Seedling Growth Under Saline Stress
3.2. Assembly Mechanisms and Co-Occurrence Networks of Microbial Communities
3.3. Saline–Alkaline-Tolerant PGPR Promoted Maize Seedling Growth by Affecting the EC Content in Saline Soil
4. Materials and Methods
4.1. Soil and Plants
4.2. Source of Strain
4.3. Pot Experiment Design
4.4. Plant Growth Characteristics
4.5. Factor of Soil
4.6. Illumina MiSeq Sequencing Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Egamberdieva, D.; Wirth, S.; Bellingrath-Kimura, S.D.; Mishra, J.; Arora, N.K. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019, 10, 2791. [Google Scholar] [CrossRef]
- Li, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. Sci. Total Environ. 2024, 907, 167774. [Google Scholar] [CrossRef] [PubMed]
- Vurukonda, S.S.; Vardharajula, S.; Shrivastava, M.; Sk, Z.A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 2016, 184, 13–24. [Google Scholar] [CrossRef]
- Yasin, N.A.; Akram, W.; Khan, W.U.; Ahmad, S.R.; Ahmad, A.; Ali, A. Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ. Sci. Pollut. Res. Int. 2018, 25, 23236–23250. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ning, C.; Pan, T.; Cai, K. Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. Int. J. Mol. Sci. 2022, 23, 1947. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Hu, Q.; Li, R.; Pan, X.; Huang, B.; He, Q. Regional gap in maize production, climate and resource utilization in China. Field Crops Res. 2020, 254, 107830. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.; Cui, Y.; Liang, Y.; Wang, H. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Fu, J.; Xiao, Y.; Wang, Y.f.; Liu, Z.; Yang, K. Saline–alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment. Sci. Rep. 2021, 11, 11152. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, Y.; Yang, K. Klebsiella variicola improves the antioxidant ability of maize seedlings under saline-alkali stress. PeerJ 2021, 9, e11963. [Google Scholar] [CrossRef]
- Waheed, Z.; Iqbal, S.; Irfan, M.; Jabeen, K.; Ilyas, N.; Al-Qahtani, W.H. Isolation and characterization of PGPR obtained from different arsenic-contaminated soil samples and their effect on photosynthetic characters of maize grown under arsenic stress. Environ. Sci. Pollut. Res. Int. 2024, 31, 18656–18671. [Google Scholar] [CrossRef]
- Teo, H.M.; A., A.; A., W.A.; Bhubalan, K.; S., S.N.M.; C. I., M.S.; Ng, L.C. Setting a Plausible Route for Saline Soil-Based Crop Cultivations by Application of Beneficial Halophyte-Associated Bacteria: A Review. Microorganisms 2022, 10, 657. [Google Scholar] [CrossRef] [PubMed]
- García, J.E.; Maroniche, G.; Creus, C.; Suárez-Rodríguez, R.; Ramirez-Trujillo, J.A.; Groppa, M.D. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol. Res. 2017, 202, 21–29. [Google Scholar] [CrossRef]
- Sharma, S.; Kulkarni, J.; Jha, B. Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut. Front. Microbiol. 2016, 7, 1600. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pei, J.; Li, H.; Zhu, X.; Zhang, Y.; Wang, Y.; Li, W.; Wang, Z.; Liu, K.; Du, B.; et al. Mechanisms on salt tolerant of Paenibacillus polymyxa SC2 and its growth-promoting effects on maize seedlings under saline conditions. Microbiol. Res. 2024, 282, 127639. [Google Scholar] [CrossRef]
- Alexander, A.; Singh, V.K.; Mishra, A. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Front. Microbiol. 2020, 11, 568289. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Yu, X.; Yang, S.; Li, Q.; Zhang, H.; Rajasekar, A.; Shen, W.; Senoo, K. Mitigation of N2O emission from granular organic fertilizer with alkali- and salt-resistant plant growth-promoting rhizobacteria. J. Appl. Microbiol. 2023, 134, lxad225. [Google Scholar] [CrossRef]
- Saeed, M.; Ilyas, N.; Jayachandran, K.; Shabir, S.; Akhtar, N.; Shahzad, A.; Sayyed, R.Z.; Bano, A. Advances in Biochar and PGPR engineering system for hydrocarbon degradation: A promising strategy for environmental remediation. Environ. Pollut. 2022, 305, 119282. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, J.; Wang, Y.; He, X.; Tan, H.; Yu, Y.; Chen, Y.; Peng, W. Large-scale commercial cultivation of morels: Current state and perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 4401–4412. [Google Scholar] [CrossRef] [PubMed]
- Benucci, G.M.N.; Longley, R.; Zhang, P.; Zhao, Q.; Bonito, G.; Yu, F. Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses. PeerJ 2019, 7, e7744. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Liu, T.; Yu, Y.; Tang, J.; Jiang, L.; Martin, F.M.; Peng, W. Morel Production Related to Soil Microbial Diversity and Evenness. Microbiol. Spectr. 2021, 9, e0022921. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, J.; Preston, G.M. Growing edible mushrooms: A conversation between bacteria and fungi. Environ. Microbiol. 2020, 22, 858–872. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Hou, M.; Qiu, Y.; Zhang, T.; Yuan, Y. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma 2020, 357, 113961. [Google Scholar] [CrossRef]
- Bharti, N.; Pandey, S.S.; Barnawal, D.; Patel, V.K.; Kalra, A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016, 6, 34768. [Google Scholar] [CrossRef]
- Gao, Y.; Zou, H.; Wang, B.; Yuan, F. Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops. Int. J. Mol. Sci. 2022, 23, 7036. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Druzhinina, I.S.; Pan, X.; Yuan, Z. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnol. Adv. 2016, 34, 1245–1259. [Google Scholar] [CrossRef]
- Gontia, I.; Sapre, S.; Kachare, S.; Tiwari, S. Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 2017, 414, 213–227. [Google Scholar] [CrossRef]
- Andrés-Barrao, C.; Alzubaidy, H.; Jalal, R.; Mariappan, K.G.; de Zélicourt, A.; Bokhari, A.; Artyukh, O.; Alwutayd, K.; Rawat, A.; Shekhawat, K.; et al. Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187–induced plant salt stress tolerance. Proc. Natl. Acad. Sci. USA 2021, 118, e2107417118. [Google Scholar] [CrossRef]
- Giannelli, G.; Potestio, S.; Visioli, G. The Contribution of PGPR in Salt Stress Tolerance in Crops: Unravelling the Molecular Mechanisms of Cross-Talk between Plant and Bacteria. Plants 2023, 12, 2197. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Huang, Z.; Zhong, Z.; Bian, F.; Zhang, X. Integrated Genomics and Transcriptomics Provide Insights into Salt Stress Response in Bacillus subtilis ACP81 from Moso Bamboo Shoot (Phyllostachys praecox) Processing Waste. Microorganisms 2024, 12, 285. [Google Scholar] [CrossRef]
- Xiong, Y.W.; Li, X.W.; Wang, T.T.; Gong, Y.; Zhang, C.M.; Xing, K.; Qin, S. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol. Environ. Saf. 2020, 194, 110374. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Yu, Z.; Shen, G.; Cheng, H.; Tao, S. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau. Sci. Total Environ. 2020, 747, 141358. [Google Scholar] [CrossRef]
- Wang, S.; Sun, L.; Ling, N.; Zhu, C.; Chi, F.; Li, W.; Hao, X.; Zhang, W.; Bian, J.; Chen, L.; et al. Exploring Soil Factors Determining Composition and Structure of the Bacterial Communities in Saline-Alkali Soils of Songnen Plain. Front. Microbiol. 2019, 10, 2902. [Google Scholar] [CrossRef]
- Zeng, Q.; An, S.; Liu, Y. Soil bacterial community response to vegetation succession after fencing in the grassland of China. Sci. Total Environ. 2017, 609, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Liu, B.; Dai, Y.; Cheng, X.; He, X.; Bei, Q.; Wang, Y.; Zhou, Y.; Zhu, B.; Zhang, K.; Tian, X.; et al. Straw mulch improves soil carbon and nitrogen cycle by mediating microbial community structure and function in the maize field. Front. Microbiol. 2023, 14, 1217966. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Sun, Y.; Chen, Y.; Yu, H.; Mo, Q. First Report of Lecanicillium aphanocladii causing rot of Morchella sextelata in China. Plant Dis. 2022, 25, 3202. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, C.; Zhang, D.; Zhao, X.; Dai, Y.; Cai, X.; Zhang, G. The catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation in oil-contaminated soil. Environ. Microbiol. 2021, 23, 7042–7055. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jia, Y.; Li, J.; Wang, Y.; Niu, H.; Qiu, H.; Li, X.; Fang, W.; Qiu, Z. Effect of bioaugmentation on tetracyclines influenced chicken manure composting and antibiotics resistance. Sci. Total Environ. 2023, 867, 161457. [Google Scholar] [CrossRef] [PubMed]
- Afridi, M.S.; Amna; Sumaira; Mahmood, T.; Salam, A.; Mukhtar, T.; Mehmood, S.; Ali, J.; Khatoon, Z.; Bibi, M.; et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol. Biochem. 2019, 139, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gan, Y.; Xu, B. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biol. 2019, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Hmaeid, N.; Wali, M.; Metoui-Ben Mahmoud, O.; Pueyo, J.J.; Ghnaya, T.; Abdelly, C. Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Appl. Soil Ecol. 2019, 133, 104–113. [Google Scholar] [CrossRef]
- Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Zhang, S.; Han, S.; Gao, J.; Yu, X.; Hu, S. Low-temperature corn straw-degrading bacterial agent and moisture effects on indigenous microbes. Appl. Microbiol. Biotechnol. 2023, 107, 5241–5255. [Google Scholar] [CrossRef]
- Patten, C.L.; Glick, B.R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 2002, 68, 3795–3801. [Google Scholar] [CrossRef]
- Jońca, J.; León Fernández, V.; Thouron, D.; Paulmier, A.; Graco, M.; Garçon, V. Phosphate determination in seawater: Toward an autonomous electrochemical method. Talanta 2011, 87, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Bal, H.B.; Nayak, L.; Das, S.; Adhya, T.K. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 2013, 366, 93–105. [Google Scholar] [CrossRef]
- Sharma, B.; Shukla, P.A. Comparative Analysis of Heavy Metal Bioaccumulation and Functional Gene Annotation Towards Multiple Metal Resistant Potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26. Bioresour. Technol. 2020, 320, 124330. [Google Scholar] [CrossRef]
- Chang, Q.; Diao, F.W.; Wang, Q.F.; Pan, L.; Dang, Z.H.; Guo, W. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ. Pollut. 2018, 241, 607–615. [Google Scholar] [CrossRef]
- Rogers, C.A.; Chen, J.M.; Croft, H.; Gonsamo, A.; Luo, X.; Bartlett, P.; Staebler, R.M. Daily leaf area index from photosynthetically active radiation for long term records of canopy structure and leaf phenology. Agric. For. Meteorol. 2021, 15, 108407. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2020; pp. 26–189. [Google Scholar]
- Hollister, E.B.; Schadt, C.W.; Palumbo, A.V.; James Ansley, R.; Boutton, T.W. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains. Soil Biol. Biochem. 2010, 42, 1816–1824. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Xun, W.; Liu, Y.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.; Zhang, N.; Miao, Y.; Shen, Q.; Zhang, R. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Cheng, X.; Hui, D.; Zhang, Q.; Li, M.; Zhang, Q. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Sci. Total Environ. 2016, 541, 230–237. [Google Scholar] [CrossRef]
- Sloan, W.T.; Lunn, M.; Woodcock, S.; Head, I.M.; Nee, S.; Curtis, T.P. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 2006, 8, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.R.; Stephens, W.Z.; Stagaman, K.; Wong, S.; Rawls, J.F.; Guillemin, K.; Bohannan, B.J. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016, 10, 655–664. [Google Scholar] [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef] [PubMed]
Soil Factor | GF2 | GF7 | GF2 + GF7 | CK | F-Value |
---|---|---|---|---|---|
pH | 6.88 ± 0.09a | 6.70 ± 0.34a | 6.91 ± 0.03a | 6.66 ± 0.28a | 0.911 |
TN (g/kg) | 1.11 ± 0.05a | 1.17 ± 0.15a | 1.19 ± 0.04a | 0.52 ± 0.03b | 44.175 *** |
AN(mg/kg) | 19.61 ± 3.50b | 19.99 ± 6.42b | 28.93 ± 5.35a | 13.32 ± 4.62c | 4.784 * |
TP(g/kg) | 0.81 ± 0.03a | 0.81 ± 0.01a | 0.83 ± 0.01a | 0.81 ± 0.02a | 0.811 |
AP(mg/kg) | 10.81 ± 0.32b | 10.97 ± 0.75b | 12.95 ± 0.67a | 9.82 ± 0.59c | 14.112 ** |
TK(g/kg) | 24.19 ± 0.88a | 24.89 ± 1.85a | 24.04 ± 0.94a | 24.94 ± 0.89a | 0.449 |
AK(mg/kg) | 118.22 ± 2.90a | 119.07 ± 3.28a | 119.98 ± 3.12a | 118.22 ± 1.95a | 0.259 |
SOC(g/kg) | 7.75 ± 0.76a | 7.36 ± 0.21a | 7.88 ± 0.19a | 2.22 ± 0.38b | 111.991 *** |
MBC(mg/kg) | 138.49 ± 17.34b | 140.01 ± 10.91b | 166.22 ± 3.39a | 92.93 ± 4.36c | 24.704 *** |
MBN(mg/kg) | 28.44 ± 1.13b | 28.90 ± 2.25b | 35.33 ± 0.16a | 18.41 ± 1.27c | 73.377 *** |
EC(ms/cm) | 5.85 ± 0.01b | 5.95 ± 0.06b | 5.66 ± 0.07b | 6.57 ± 0.03a | 94.275 *** |
Cl− (g/kg) | 0.44 ± 0.06b | 0.46 ± 0.09b | 0.42 ± 0.02b | 0.52 ± 0.03a | 0.719 |
SO42− (g/kg) | 0.11 ± 0.04b | 0.10 ± 0.05b | 0.09 ± 0.02b | 0.18 ± 0.03a | 4.283 * |
CO32− (g/kg) | 0.14 ± 0.01a | 0.14 ± 0.01a | 0.14 ± 0.03a | 0.13 ± 0.03a | 0.232 |
Ca2+− (g/kg) | 33.74 ± 4.35a | 33.46 ± 2.95a | 32.38 ± 2.44a | 35.99 ± 2.41a | 0.866 |
Mg2+− (g/kg) | 6.32 ± 0.27b | 6.34 ± 0.72b | 6.52 ± 0.36b | 7.45 ± 0.22a | 4.495 * |
Na+− (g/kg) | 11.25 ± 0.34b | 11.23 ± 0.25b | 11.25 ± 0.14b | 12.24 ± 0.03a | 8.254 ** |
K+− (g/kg) | 23.12 ± 0.43b | 23.13 ± 0.21b | 23.66 ± 0.72b | 24.94 ± 0.03a | 4.728 * |
Exchangeable Na+ (cmol/kg) | 3.69 ± 0.08b | 3.59 ± 0.05b | 2.62 ± 0.09c | 4.14 ± 0.03a | 29.867 *** |
SAR | 0.28 ± 0.03a | 0.29 ± 0.02a | 0.29 ± 0.02a | 0.28 ± 0.03a | 0.209 |
Alpha Diversity | Kingdoms | GF2 | GF7 | GF2 + GF7 | CK | F |
---|---|---|---|---|---|---|
Observed ASVs | Bacteria | 1771.14 ± 43.97b | 1795.04 ± 12.09b | 2199.40 ± 59.49a | 1152.07 ± 49.92c | 276.31 *** |
Fungi | 463.24 ± 7.19b | 473.91 ± 13.02b | 530.96 ± 16.6a | 245.6 ± 28.96c | 141.44 *** | |
Shannon index | Bacteria | 5.85 ± 0.09b | 5.76 ± 0.26b | 6.40 ± 0.32a | 4.20 ± 0.05c | 58.87 *** |
Fungi | 3.24 ± 0.58b | 3.34 ± 0.93b | 4.05 ± 0.20a | 1.85 ± 0.86c | 26.45 *** | |
Simpson index | Bacteria | 0.64 ± 0.06b | 0.69 ± 0.11b | 0.55 ± 0.12c | 0.74 ± 0.06a | 5.76 * |
Fungi | 0.26 ± 0.02b | 0.25 ± 0.01b | 0.13 ± 0.05c | 0.42 ± 0.01a | 5.13 * | |
Chao1 estimator | Bacteria | 1922.29 ± 65.28b | 2008.51 ± 36.54b | 2403.42 ± 64.18a | 1739.2 ± 78.82c | 59.15 *** |
Fungi | 452.1 ± 28.41b | 460.03 ± 35.08b | 494.72 ± 59.46a | 143.19 ± 19.64c | 54.12 *** |
Topological Features | GF2 | GF7 | GF2 + GF7 | CK |
---|---|---|---|---|
Nodes | 98 | 100 | 100 | 100 |
Edges | 1508 | 1396 | 1543 | 1382 |
Modularity | 0.594 | 0.623 | 0.645 | 0.454 |
Average degree | 30.776 | 27.920 | 30.860 | 27.640 |
Graph density | 0.317 | 0.282 | 0.332 | 0.279 |
Interactions | ||||
Bacterial–fungal interactions | 772 | 671 | 787 | 654 |
Bacterial within–community interactions | 412 | 422 | 430 | 341 |
Fungal within–community interactions | 324 | 403 | 366 | 287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Yu, X.; Gao, J.; Qu, J.; Borjigin, Q.; Meng, T.; Li, D. Using Klebsiella sp. and Pseudomonas sp. to Study the Mechanism of Improving Maize Seedling Growth Under Saline Stress. Plants 2025, 14, 436. https://doi.org/10.3390/plants14030436
Zhao X, Yu X, Gao J, Qu J, Borjigin Q, Meng T, Li D. Using Klebsiella sp. and Pseudomonas sp. to Study the Mechanism of Improving Maize Seedling Growth Under Saline Stress. Plants. 2025; 14(3):436. https://doi.org/10.3390/plants14030436
Chicago/Turabian StyleZhao, Xiaoyu, Xiaofang Yu, Julin Gao, Jiawei Qu, Qinggeer Borjigin, Tiantian Meng, and Dongbo Li. 2025. "Using Klebsiella sp. and Pseudomonas sp. to Study the Mechanism of Improving Maize Seedling Growth Under Saline Stress" Plants 14, no. 3: 436. https://doi.org/10.3390/plants14030436
APA StyleZhao, X., Yu, X., Gao, J., Qu, J., Borjigin, Q., Meng, T., & Li, D. (2025). Using Klebsiella sp. and Pseudomonas sp. to Study the Mechanism of Improving Maize Seedling Growth Under Saline Stress. Plants, 14(3), 436. https://doi.org/10.3390/plants14030436