Health Status and Disinfection Prior to Grafting Affect the Phenolic Profile of Grapevine Hetero-Grafts and Grafting Yield
Abstract
:1. Introduction
2. Results
2.1. Grafting Yield (%) and Grafts’ Growth Potential
2.2. Phenolic Composition of Vine Hetero-Grafts
2.2.1. Scions
2.2.2. Graft Callus
2.2.3. Rootstock Cane
2.2.4. Roots
2.3. Correlation Between Phenolics and Grafting Yield
3. Discussion
4. Material and Methodes
4.1. Chemicals and Reagents
4.2. Plant Material and Experimental Design
4.3. Grafting Yield and Graft Evaluation
4.4. Phenolic Compound Analysis
4.5. Statistic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kenfaoui, J.; Radouane, N.; Mennani, M.; Tahiri, A.; El Ghadraoui, L.; Belabess, Z.; Fontaine, F.; El Hamss, H.; Amiri, S.; Lahlali, R.; et al. A Panoramic View on Grapevine Trunk Diseases Threats: Case of Eutypa Dieback, Botryosphaeria Dieback, and Esca Disease. J. Fungi 2022, 8, 595. [Google Scholar] [CrossRef] [PubMed]
- Roblin, G.; Luini, E.; Fleurat-Lessard, P.; Larignon, P.; Berjeaud, J.-M. Towards a Preventive and/or Curative Treatment of Esca in Grapevine Trunk Disease: General Basis in the Elaboration of Treatments to Control Plant Pathogen Attacks. Crop Prot. 2019, 116, 156–169. [Google Scholar] [CrossRef]
- Surico, G. Towards a Redefinition of the Diseases within the Esca Complex of Grapevine. Phytopathol. Mediterr. 2009, 48, 5–10. [Google Scholar]
- Surico, G.; Mugnai, L.; Marchi, G. The Esca Disease Complex. In Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria; Springer: Berlin/Heidelberg, Germany, 2008; pp. 119–136. [Google Scholar]
- Bortolami, G.; Farolfi, E.; Badel, E.; Burlett, R.; Cochard, H.; Ferrer, N.; King, A.; Lamarque, L.J.; Lecomte, P.; Marchesseau-Marchal, M.; et al. Seasonal and Long-Term Consequences of Esca Grapevine Disease on Stem Xylem Integrity. J. Exp. Bot. 2021, 72, 3914–3928. [Google Scholar] [CrossRef]
- Trouvelot, S.; Lemaitre-Guillier, C.; Vallet, J.; Jacquens, L.; Douillet, A.; Harir, M.; Larignon, P.; Roullier-Gall, C.; Schmitt-Kopplin, P.; Adrian, M.; et al. Sodium Arsenite-Induced Changes in the Wood of Esca-Diseased Grapevine at Cytological and Metabolomic Levels. Front. Plant Sci. 2023, 14, 1141700. [Google Scholar] [CrossRef]
- OEPP/EPPO Certification Scheme. No. PM 4/8 (2): Pathogen-Tested Material of Grapevine Varieties and Rootstock. Bull. OEPP/EPPO 2008, 38, 422–429. [Google Scholar]
- Gramaje, D.; Di Marco, S. Identifying Practices Likely to Have Impacts on Grapevine Trunk Disease Infections: A European Nursery Survey. Phytopathol. Mediterr. 2015, 54, 313–324. [Google Scholar]
- Halleen, F.; Fourie, P.H. An Integrated Strategy for the Proactive Management of Grapevine Trunk Disease Pathogen Infections in Grapevine Nurseries. S. Afr. J. Enol. Vitic. 2016, 37, 104–114. [Google Scholar] [CrossRef]
- Mondello, V.; Songy, A.; Battiston, E.; Pinto, C.; Coppin, C.; Trotel-Aziz, P.; Clément, C.; Mugnai, L.; Fontaine, F. Grapevine Trunk Diseases: A Review of Fifteen Years of Trials for Their Control with Chemicals and Biocontrol Agents. Plant Dis. 2018, 102, 1189–1217. [Google Scholar] [CrossRef]
- Songy, A.; Vallet, J.; Gantet, M.; Boos, A.; Ronot, P.; Tarnus, C.; Clément, C.; Larignon, P.; Goddard, M.-L.; Fontaine, F. Sodium Arsenite Effect on Vitis vinifera L. Physiology. J. Plant Physiol. 2019, 238, 72–79. [Google Scholar] [CrossRef]
- Reis, P.; Pierron, R.; Larignon, P.; Lecomte, P.; Abou-Mansour, E.; Farine, S.; Bertsch, C.; Jacques, A.; Trotel-Aziz, P.; Rego, C.; et al. Vitis Methods to Understand and Develop Strategies for Diagnosis and Sustainable Control of Grapevine Trunk Diseases. Phytopathology® 2019, 109, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Saha, J.C.; Dikshit, A.K.; Bandyopadhyay, M.; Saha, K.C. A Review of Arsenic Poisoning and Its Effects on Human Health. Crit. Rev. Environ. Sci. Technol. 1999, 29, 281–313. [Google Scholar] [CrossRef]
- Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Beris, E.; Selim, M.; Kechagia, D.; Evangelou, A.; Beris, E.; Selim, M.; Kechagia, D.; Evangelou, A. Overview of the Esca Complex as an Increasing Threat in Vineyards Worldwide: Climate Change, Control Approaches and Impact on Grape and Wine Quality. In Recent Advances in Grapes and Wine Production-New Perspectives for Quality Improvement; IntechOpen: Rijeka, Croatia, 2022; ISBN 978-1-80356-324-4. [Google Scholar]
- Battiston, E.; Compant, S.; Antonielli, L.; Mondello, V.; Clément, C.; Simoni, A.; Di Marco, S.; Mugnai, L.; Fontaine, F. In Planta Activity of Novel Copper(II)-Based Formulations to Inhibit the Esca-Associated Fungus Phaeoacremonium Minimum in Grapevine Propagation Material. Front. Plant Sci. 2021, 12, 649694. [Google Scholar] [CrossRef]
- Fourie, P.H.; Halleen, F. Chemical and Biological Protection of Grapevine Propagation Material from Trunk Disease Pathogens. Eur. J. Plant Pathol. 2006, 116, 255–265. [Google Scholar] [CrossRef]
- Gramaje, D.; Aroca, Á.; Raposo, R.; García-Jiménez, J.; Armengol, J. Evaluation of Fungicides to Control Petri Disease Pathogens in the Grapevine Propagation Process. Crop Prot. 2009, 28, 1091–1097. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Singapore, 2020; pp. 517–532. ISBN 9789811548895. [Google Scholar]
- Rusjan, D.; Persic, M.; Likar, M.; Biniari, K.; Mikulic-Petkovsek, M. Phenolic Responses to Esca-Associated Fungi in Differently Decayed Grapevine Woods from Different Trunk Parts of ‘Cabernet Sauvignon’. J. Agric. Food Chem. 2017, 65, 6615–6624. [Google Scholar] [CrossRef]
- Schultz, T.P.; Harms, W.B.; Fisher, T.H.; McMurtrey, K.D.; Minn, J.; Nicholas, D.D. Durability of Angiosperm Heartwood: The Importance of Extractives. Holzforschung 1995, 49, 29–34. [Google Scholar] [CrossRef]
- Amalfitano, C.; Agrelli, D.; Arrigo, A.; Mugnai, L.; Surico, G.; Evidente, A. Stilbene Polyphenols in the Brown Red Wood of Vitis Vinifera Cv. Sangiovese Affected by “Esca Proper”. Phytopathol. Mediterr. 2011, 50, S224–S235. [Google Scholar]
- Martin, N.; Vesentini, D.; Rego, C.; Monteiro, S.; Oliveira, H.; Ferreira, R.B. Phaeomoniella Chlamydospora Infection Induces Changes in Phenolic Compounds Content in Vitis Vinifera. Phytopathol. Mediterr. 2009, 48, 101–116. [Google Scholar]
- Reiss, A.; Jørgensen, L.N. Biological Control of Yellow Rust of Wheat (Puccinia Striiformis) with Serenade®ASO (Bacillus Subtilis Strain QST713). Crop Prot. 2017, 93, 1–8. [Google Scholar] [CrossRef]
- BioAction ES. Instructions for Use of the Preparation; Izimed: Dobrovo, Slovenia, 2018; p. 2. [Google Scholar]
- Tawfik, A.; Koriem, A.; Younis, S.; Elian, M. Effect of Some Salts on the Mycelial Growth and Spore Germination of Fungi Caused Fruit Rot of Sweet Pepper Post-Harvest Diseases Pathogens. J. Product. Dev. 2021, 26, 433–446. [Google Scholar] [CrossRef]
- Loupit, G.; Cookson, S.J. Identifying Molecular Markers of Successful Graft Union Formation and Compatibility. Front. Plant Sci. 2020, 11, 610352. [Google Scholar] [CrossRef]
- Loupit, G.; Valls Fonayet, J.; Prigent, S.; Prodhomme, D.; Spilmont, A.-S.; Hilbert, G.; Franc, C.; De Revel, G.; Richard, T.; Ollat, N.; et al. Identifying Early Metabolite Markers of Successful Graft Union Formation in Grapevine. Hortic. Res. 2022, 9, uhab070. [Google Scholar] [CrossRef]
- Pina, A.; Cookson, S.J.; Calatayud, A.; Trinchera, A.; Errea, P. Physiological and Molecular Mechanisms Underlying Graft Compatibility. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CABI: Wallingford, UK, 2017; pp. 132–154. ISBN 978-1-78064-897-2. [Google Scholar]
- Rasool, A.; Mansoor, S.; Bhat, K.M.; Hassan, G.I.; Baba, T.R.; Alyemeni, M.N.; Alsahli, A.A.; El-Serehy, H.A.; Paray, B.A.; Ahmad, P. Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Front. Plant Sci. 2020, 11, 590847. [Google Scholar] [CrossRef]
- Vance, C.P.; Kirk, T.K.; Sherwood, R.T. Lignification as a Mechanism of Disease Resistance. Annu. Rev. Phytopathol. 1980, 18, 259–288. [Google Scholar] [CrossRef]
- Bordenave, N.; Hamaker, B.R.; Ferruzzi, M.G. Nature and Consequences of Non-Covalent Interactions between Flavonoids and Macronutrients in Foods. Food Funct. 2014, 5, 18–34. [Google Scholar] [CrossRef]
- Varveri, M.; Papageorgiou, A.G.; Tsitsigiannis, D.I. Evaluation of Biological Plant Protection Products for Their Ability to Induce Olive Innate Immune Mechanisms and Control Colletotrichum Acutatum, the Causal Agent of Olive Anthracnose. Plants 2024, 13, 878. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Feng, X.; Peng, F.; Mazoor, M.A.; Zhang, Y.; Zhao, Y.; Han, W.; Lu, J.; Cao, Y.; et al. Analysis of the β-Glucosidase Family Reveals Genes Involved in the Lignification of Stone Cells in Chinese White Pear (Pyrus bretschneideri Rehd.). Front. Plant Sci. 2022, 13, 852001. [Google Scholar] [CrossRef]
- Di Marco, S.; Metruccio, E.G.; Moretti, S.; Nocentini, M.; Carella, G.; Pacetti, A.; Battiston, E.; Osti, F.; Mugnai, L. Activity of Trichoderma Asperellum Strain ICC 012 and Trichoderma Gamsii Strain ICC 080 Toward Diseases of Esca Complex and Associated Pathogens. Front. Microbiol. 2022, 12, 813410. [Google Scholar] [CrossRef]
- Venema, J.H.; Giuffrida, F.; Paponov, I.; Albacete, A.; Pérez-Alfocea, F.; Dodd, I.C. Rootstock-Scion Signalling: Key Factors Mediating Scion Performance. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CABI: Wallingford, UK, 2017; pp. 94–131. ISBN 978-1-78064-897-2. [Google Scholar]
- Rai, K.K.; Pandey, N.; Rai, S.P. Salicylic Acid and Nitric Oxide Signaling in Plant Heat Stress. Physiol. Plant. 2020, 168, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Delaney, T.P. Salicylic Acid. In Plant Hormones; Davies, P.J., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 681–699. ISBN 978-1-4020-2684-3. [Google Scholar]
- Gacnik, S.; Veberič, R.; Hudina, M.; Marinovic, S.; Halbwirth, H.; Mikulič-Petkovšek, M. Salicylic and Methyl Salicylic Acid Affect Quality and Phenolic Profile of Apple Fruits Three Weeks before the Harvest. Plants 2021, 10, 1807. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Feng, Y.-Q.; Zhang, X.-W.; Zhang, Y.-Y.; Bi, H.-G.; Ai, X.-Z. Salicylic Acid Is Involved in Rootstock–Scion Communication in Improving the Chilling Tolerance of Grafted Cucumber. Front. Plant Sci. 2021, 12, 693344. [Google Scholar] [CrossRef]
- Gabaston, J.; Cantos-Villar, E.; Biais, B.; Waffo-Teguo, P.; Renouf, E.; Corio-Costet, M.-F.; Richard, T.; Mérillon, J.-M. Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara Viticola. J. Agric. Food Chem. 2017, 65, 2711–2718. [Google Scholar] [CrossRef]
- Wei, Y.-J.; Zhao, S.-R.; Li, J.-M.; Xue, B. Stilbene Profiles in Different Tissues of Vitis vinifera L. Cv. Cabernet Sauvignon and a Comparison of Their Antioxidant Activity. Aust. J. Grape Wine Res. 2016, 22, 226–231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krošelj, S.; Mikulic-Petkovsek, M.; Kjuder, D.; Pavlin, A.; Likar, M.; Škvarč, A.; Biniari, K.; Rusjan, D. Health Status and Disinfection Prior to Grafting Affect the Phenolic Profile of Grapevine Hetero-Grafts and Grafting Yield. Plants 2025, 14, 444. https://doi.org/10.3390/plants14030444
Krošelj S, Mikulic-Petkovsek M, Kjuder D, Pavlin A, Likar M, Škvarč A, Biniari K, Rusjan D. Health Status and Disinfection Prior to Grafting Affect the Phenolic Profile of Grapevine Hetero-Grafts and Grafting Yield. Plants. 2025; 14(3):444. https://doi.org/10.3390/plants14030444
Chicago/Turabian StyleKrošelj, Saša, Maja Mikulic-Petkovsek, Domen Kjuder, Anja Pavlin, Matevž Likar, Andreja Škvarč, Katerina Biniari, and Denis Rusjan. 2025. "Health Status and Disinfection Prior to Grafting Affect the Phenolic Profile of Grapevine Hetero-Grafts and Grafting Yield" Plants 14, no. 3: 444. https://doi.org/10.3390/plants14030444
APA StyleKrošelj, S., Mikulic-Petkovsek, M., Kjuder, D., Pavlin, A., Likar, M., Škvarč, A., Biniari, K., & Rusjan, D. (2025). Health Status and Disinfection Prior to Grafting Affect the Phenolic Profile of Grapevine Hetero-Grafts and Grafting Yield. Plants, 14(3), 444. https://doi.org/10.3390/plants14030444