Potential of Silicon Amendment for Improved Wheat Production
Abstract
:1. Introduction
2. Results
2.1. Plant Height
2.2. Content of Si and Other Nutrients in Biomass
2.3. Grain Yield and Grain Protein Content
3. Discussion
3.1. Plant Height
3.2. Content of Si and Other Nutrients in Biomass
3.3. Grain Yield and Grain Protein Content
4. Materials and Methods
4.1. Experimental Location
4.2. Field Data Collection
4.3. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. 2012. Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed on 27 March 2018).
- Chaves, M.S.; Martinelli, J.A.; Wesp-Guterres, C.; Graichen, F.A.S.; Brammer, S.P.; Scagliusi, S.M.; Consoli, L. The importance for food security of maintaining rust resistance in wheat. Food Secur. 2013, 5, 157–176. [Google Scholar] [CrossRef]
- Scott, A. Global Food Security: Could Wheat Feed the World? Available online: https://www.theguardian.com/global-development-professionals-network/2014/apr/01/international-wheat-yield-partnership-food-security (accessed on 27 March 2018).
- Taulemesse, F.; Le Gouis, J.; Gouache, D.; Gibon, Y.; Allard, V. Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2. 1. PLoS ONE 2015, 10, e0120291. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; El-Saeid, M.H.; Akram, M.A.; Ahmad, H.R.; Haroon, H.; Hussain, A. Silicon fertilization—A tool to boost up drought tolerance in wheat (Triticum aestivum L.) crop for better yield. J. Plant Nutr. 2016, 39, 1283–1291. [Google Scholar] [CrossRef]
- Halligan, J.E. Soil Fertility and Fertilizers; The Chemical Publishing Co.: Palm Springs, CA, USA, 1912. [Google Scholar]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Richmond, K.E.; Sussman, M. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol. 2003, 6, 268–272. [Google Scholar] [CrossRef]
- IPNI. NutriFacts: Silicon. Available online: http://www.ipni.net/publication/nutrifacts-na.nsf/0/A7B4AB4D35C153BF85257ECE006E0E34/$FILE/NutriFacts-NA-14.pdf (accessed on 27 March 2018).
- Pati, S.; Pal, B.; Badole, S.; Hazra, G.C.; Mandal, B. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Commun. Soil Sci. Plant Anal. 2016, 47, 284–290. [Google Scholar] [CrossRef]
- Tubana, B.S.; Babu, T.; Datnoff, L.E. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci. 2016, 181, 393–411. [Google Scholar] [CrossRef]
- Agostinho, F.B.; Tubana, B.S.; Martins, M.S.; Datnoff, L.E. Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plants 2017, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Rafi, M.M.; Epstein, E.; Falk, R.H. Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L). J. Plant Physiol. 1997, 151, 497–501. [Google Scholar] [CrossRef]
- Ma, J.; Nishimura, K.; Takahashi, E. Effect of silicon on the growth of rice plant at different growth stages. Soil Sci. Plant Nutr. 1989, 35, 347–356. [Google Scholar] [CrossRef]
- Meena, V.D.; Dotaniya, M.L.; Coumar, V.; Rajendiran, S.; Kundu, S.; Rao, A.S. A case for silicon fertilization to improve crop yields in tropical soils. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 505–518. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, W.; Zhu, Y.G.; Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heckman, J. Silicon: A beneficial substance. Better Crops 2013, 97, 14–16. [Google Scholar]
- Raven, J.A. The transport and function of silicon in plants. Biol. Rev. 1983, 58, 179–207. [Google Scholar] [CrossRef]
- Soratto, R.P.; Crusciol, C.A.C.; Castro, G.S.A.; Costa, C.H.M.D.; Ferrari Neto, J. Leaf application of silicic acid to white oat and wheat. Rev. Bras. Ciênc. Solo 2012, 36, 1538–1544. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Emam, Y.; Ashraf, M. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk. J. Bot. 2015, 39, 625–634. [Google Scholar] [CrossRef]
- Amin, M.; Ahmad, R.; Ali, A.; Hussain, I.; Mahmood, R.; Aslam, M.; Lee, D.J. Influence of silicon fertilization on maize performance under limited water supply. Silicon 2016, 10, 177–183. [Google Scholar] [CrossRef]
- Janislampi, K.W. Effect of Silicon on Plant Growth and Drought Stress Tolerance; Utah State University: Logan, UT, USA, 2012. [Google Scholar]
- Balakhnina, T.I.; Matichenkov, V.V.; Wlodarczyk, T.; Borkowska, A.; Nosalewicz, M.; Fomina, I.R. Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regul. 2012, 67, 35–43. [Google Scholar] [CrossRef]
- Saleh, J.; Najafi, N.; Oustan, S. Effects of silicon application on wheat growth and some physiological characteristics under different levels and sources of salinity. Commun. Soil Sci. Plant Anal. 2017, 48, 1114–1122. [Google Scholar] [CrossRef]
- Singh, K.K.; Singh, K.; Singh, R.; Singh, Y.; Singh, C.S. Response of nitrogen and silicon levels on growth, yield and nutrient uptake of rice (Oryza sativa L.). Oryza 2006, 43, 220. [Google Scholar]
- Marodin, J.C.; Resende, J.T.; Morales, R.G.; Silva, M.L.; Galvão, A.G.; Zanin, D.S. Yield of tomato fruits in relation to silicon sources and rates. Hortic. Bras. 2014, 32, 220–224. [Google Scholar] [CrossRef]
- Jafari, Y.; Tabrizi, E.F.M.; Bybordi, A. Effect of different stages and times of silicon foliar spray on yield and yield components of bean. Cumhur. Sci. J. 2015, 36, 81–92. [Google Scholar]
- White, B.; Tubana, B.S.; Babu, T.; Mascagni, H.; Agostinho, F.; Datnoff, L.E.; Harrison, S. Effect of silicate slag application on wheat grown under two nitrogen rates. Plants 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.N.; Nunes, U.R.; Stecca, J.D.L.; Pahins, D.B. Foliar application of silicon on yield component of wheat crop. Rev. Caatinga 2017, 30, 578–585. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, L.H.; Li, X.Y. Experimental determination of silicon isotope fractionation in Rice. PLoS ONE 2016, 11, e0168970. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M. General theory of phosphorus and arsenic diffusions in silicon. Jpn. J. Appl. Phys. 1980, 19, 2427. [Google Scholar] [CrossRef]
- Gong, H.J.; Chen, K.M.; Chen, G.C.; Wang, S.M.; Zhang, C.L. Effects of silicon on growth of wheat under drought. J. Plant Nutr. 2003, 26, 1055–1063. [Google Scholar] [CrossRef]
- Abro, S.A.; Qureshi, R.; Soomro, F.M.; Mirbahar, A.A.; Jakhar, G.S. Effects of silicon levels on growth and yield of wheat in silty loam soil. Pak. J. Bot. 2009, 41, 1385–1390. [Google Scholar]
- Gerami, M.; Fallah, A.; Moghadam, M.R.K. Study of potassium and sodium silicate on the morphological and chlorophyll content on the rice plant in pot experiment (Oryzasativa L.). Int. J. Agric. Crop Sci. 2013, 5, 6. [Google Scholar]
- Ahmed, A.H.; Harb, E.M.; Higazy, M.A.; Morgan, S.H. Effect of silicon and boron foliar applications on yield and quality of rice. Int. J. Agric. Res. 2008, 3, 1–26. [Google Scholar]
- Hattori, T.; Inanaga, S.; Araki, H.; An, P.; Morita, S.; Luxová, M.; Lux, A. Application of silicon enhanced drought tolerance in sorghum bicolor. Physiol. Plant. 2005, 123, 459–466. [Google Scholar] [CrossRef]
- Cuong, T.X.; Ullah, H.; Datta, A.; Hanh, T.C. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci. 2017, 24, 283–290. [Google Scholar] [CrossRef]
- Sarto, M.V.I.M.; do Carmo Lana, M.; Rampim, L.; Rosset, J.S.E.; Wobeto, J.R.; Ecco, M.; da Costa, P.F. Effect of silicate on nutrition and yield of wheat. Afr. J. Agric. Res. 2014, 9, 956–962. [Google Scholar]
- Lepolu Torlon, J.; Heckman, J.R.; Simon, J.E.; Wyenandt, C.A. Silicon soil amendments for suppressing powdery mildew on pumpkin. Sustainability 2016, 8, 293. [Google Scholar] [CrossRef]
- Marschner, H.; Rimmington, G. Mineral nutrition of higher plants. Plant Cell Environ. 1988, 11, 147–148. [Google Scholar]
- Hanan, M.S. Studies on Silicon in Some Egyptian Soils. Master’s Thesis, Cairo University Egypt, Giza, Egypt, 1996. [Google Scholar]
- Liang, Y.; Shen, Q.; Shen, Z.; Ma, T. Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr. 1996, 19, 173–183. [Google Scholar] [CrossRef]
- Hanafy Ahmed, A.H.; Higazy, M.A.; El-Shafey, Y.H.; Moussa, S.F. Effect of salinity, silicon and proline on the growth, yield and chemical composition of wheat plant. In Proceedings of the 2nd Congress of Recent Technologies in Agriculture, Cairo Univ., Faculty of Agriculture, Giza, Egypt, 28–30 October; pp. 965–978.
- Islam, A.; Saha, R.C. Effects of silicon on the chemical composition of rice plants. Plant Soil 1969, 30, 446–458. [Google Scholar] [CrossRef]
- Neu, S.; Schaller, J.; Dudel, E.G. Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci. Rep. 2017, 7, 40829. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Takahashi, E. Interaction between calcium and silicon in water-cultured rice plants. Plant Soil 1993, 148, 107–113. [Google Scholar] [CrossRef]
- Segalin, S.R.; Huth, C.; Rosa, T.D.A.; Pahins, D.B.; Mertz, L.M.; Nunes, U.R.; Martin, T.N. Foliar application of silicon and the effect on wheat seed yield and quality. J. Seed Sci. 2013, 35, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Marchezan, E.; Villa, S.C.C.; Marzari, V.; Korndorfer, G.H.; do Santos, F.M. Aplicação de silício em arroz irrigado: efeito nos componentes da produção. Biosci. J. 2004, 20. Available online: http://www.seer.ufu.br/index.php/biosciencejournal/article/view/6550 (accessed on 27 March 2018).
- Freitas, T.M.D.S.; Almeida, V.H.D.C.; Valente, R.D.M.; Montag, L.F.D.A. Feeding ecology of Auchenipterichthys longimanus (Siluriformes: Auchenipteridae) in a riparian flooded forest of Eastern Amazonia, Brazil. Neotrop. Ichthyol. 2011, 9, 629–636. [Google Scholar] [CrossRef]
- Mauad, M.; Crusciol, C.A.C.; Grassi Filho, H.; Corrêa, J.C. Nitrogen and silicon fertilization of upland rice. Sci. Agric. 2003, 60, 761–765. [Google Scholar] [CrossRef]
- Montana Grow. Grow More with Less. Available online: http://www.montanagrow.com/ (accessed on 27 March 2018).
Si Application Treatment | Nutrient Content (%) of Winter Wheat Biomass | |||
---|---|---|---|---|
P | K | Mg | Ca | |
0:0 | 0.3908 a | 0.54 a | 0.1245 a | 0.0500 a |
560:0 | 0.3790 a | 0.52 ab | 0.1193 a | 0.0475 a |
0:560 | 0.3890 a | 0.52 ab | 0.1238 a | 0.0475 a |
280:0 | 0.3855 a | 0.51 ab | 0.1253 a | 0.0450 a |
0:280 | 0.3825 a | 0.50 b | 0.1235 a | 0.0450 a |
140:0 | 0.3800 a | 0.51 ab | 0.1218 a | 0.0475 a |
0:140 | 0.3905 a | 0.54 a | 0.1223 a | 0.0475 a |
2016 | 2017 | |
---|---|---|
Mean Temperature | 10.5 °C | 8 °C |
Total Precipitation | 200 mm | 300 mm |
Mean Humidity | 60% | 63% |
2016 | 2017 | ||
---|---|---|---|
E1 | M2 | A3 | |
Total N (kg ha−1) | 67.1 | 104.4 | 278.5 |
P (ppm) | 56 | 26 | 24 |
K (ppm) | 336 | 246 | 344 |
Organic Matter, % | 1.23 | 3.00 | 2.47 |
Treatment | At Planting Si Rate, kg Si ha−1 | At Tillering Si Rate, kg Si ha−1 |
---|---|---|
1 | 0 | 0 |
2 | 560 | 0 |
3 | 0 | 560 |
4 | 280 | 0 |
5 | 0 | 280 |
6 | 140 | 0 |
7 | 0 | 140 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walsh, O.S.; Shafian, S.; McClintick-Chess, J.R.; Belmont, K.M.; Blanscet, S.M. Potential of Silicon Amendment for Improved Wheat Production. Plants 2018, 7, 26. https://doi.org/10.3390/plants7020026
Walsh OS, Shafian S, McClintick-Chess JR, Belmont KM, Blanscet SM. Potential of Silicon Amendment for Improved Wheat Production. Plants. 2018; 7(2):26. https://doi.org/10.3390/plants7020026
Chicago/Turabian StyleWalsh, Olga S., Sanaz Shafian, Jordan R. McClintick-Chess, Kelli M. Belmont, and Steven M. Blanscet. 2018. "Potential of Silicon Amendment for Improved Wheat Production" Plants 7, no. 2: 26. https://doi.org/10.3390/plants7020026
APA StyleWalsh, O. S., Shafian, S., McClintick-Chess, J. R., Belmont, K. M., & Blanscet, S. M. (2018). Potential of Silicon Amendment for Improved Wheat Production. Plants, 7(2), 26. https://doi.org/10.3390/plants7020026