Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management
Abstract
:1. Weeds in Agroecosystems
2. Theoretical Considerations on Fitness Costs
3. Fitness Costs Associated with Herbicide Resistance Mutations Are Not Universal
4. Fitness Costs May Arise as Direct Effects of the Herbicide Resistance Mutations vs. Pleiotropic Effects on Other Plant Traits
5. Effects of Fitness Costs on the Equilibrium Frequency of Herbicide Resistance Mutations
6. Implications of Fitness Costs to Resistance Management
Funding
Acknowledgments
Conflicts of Interest
References
- Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Cousens, R.; Mortimer, M. Dynamics of Weed Populations; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Powles, S. Global Herbicide Resistance Challenge. Pest Manag. Sci. 2014, 70, 1305. [Google Scholar] [CrossRef] [PubMed]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef]
- National Research Council. The Future Role of Pesticides in US Agriculture, 1st ed.; National Academic Press: Washington, DC, USA, 2000. [Google Scholar]
- Palumbi, S.R. Evolution-Humans as the world’s greatest evolutionary force. Science 2001, 293, 1786–1790. [Google Scholar] [CrossRef]
- Neve, P.; Vila-Aiub, M.; Roux, F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009, 184, 783–793. [Google Scholar] [CrossRef]
- James, C. Executive Summary of Global Status of Commercialized Biotech/GM Crops; ISAAA International Service for the Acquisition of the Agri-Biotech Applications: Ithaca, NY, USA, 2016; pp. 1–15. [Google Scholar]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Ann. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef]
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: www.weedscience.com (accessed on 22 May 2019).
- Neve, P.; Busi, R.; Renton, M.; Vila-Aiub, M.M. Expanding the eco-evolutionary context of herbicide resistance research. Pest Manag. Sci. 2014, 70, 1385–1393. [Google Scholar] [CrossRef]
- Maxwell, B.D.; Mortimer, A.M. Selection for Herbicide Resistance. In Herbicide Resistance in Plants: Biology and Biochemistry; Powles, S.B., Holtum, J.A.M., Eds.; Lewis: Boca Raton, FL, USA, 1994; pp. 1–25. [Google Scholar]
- Lenormand, T.; Harmand, N.; Gallet, R. Cost of resistance: An unreasonably expensive concept. Rethink. Ecol. 2018, 3, 51–70. [Google Scholar] [CrossRef]
- Gressel, J.; Levy, A.A. Agriculture: The selector of improbable mutations. Proc. Natl. Acad. Sci. USA 2006, 103, 12215–12216. [Google Scholar] [CrossRef] [Green Version]
- Délye, C.; Jasieniuk, M.; Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013, 29, 649–658. [Google Scholar] [CrossRef] [PubMed]
- McCourt, J.A.; Pang, S.S.; King-Scott, J.; Guddat, L.W.; Duggleby, R.G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. USA 2006, 103, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Schönbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.V.; Amrhein, N.; Evans, J.N.; Kabsch, W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Tweel, B.; Tong, L. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc. Natl. Acad. Sci. USA 2004, 101, 5910–5915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaines, T.A.; Patterson, E.L.; Neve, P. Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytol. 2019, 223, 1770–1775. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Yu, Q.; Han, H.; Mao, L.; Nyporko, A.; Fan, L.; Powles, S.B. Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol. 2019. [Google Scholar] [CrossRef]
- Casale, F.A.; Giacomini, D.A.; Tranel, P.J. Empirical investigation of mutation rate for herbicide resistance. Weed Sci. 2019, 67, 1–8. [Google Scholar] [CrossRef]
- Busi, R.; Gaines, T.A.; Walsh, M.J.; Powles, S.B. Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: Field selection at high doses versus recurrent selection at low doses. Weed Res. 2012, 52, 489–499. [Google Scholar] [CrossRef]
- Neve, P.; Powles, S. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity 2005, 95, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Preston, C.; Powles, S.B. Evolution of herbicide resistance in weeds: Initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum. Heredity 2002, 88, 8–13. [Google Scholar] [CrossRef]
- Fisher, R.A. The Genetical Theory of Natural Selection; Dover Publications: New York, NY, USA, 1958; p. 291. [Google Scholar]
- Cousens, R.D.; Fournier-Level, A. Herbicide resistance costs: What are we actually measuring and why? Pest Manag. Sci. 2018, 74, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Vila-Aiub, M.M.; Yu, Q.; Powles, S.B. Do plants pay a fitness cost to be resistant to glyphosate? New Phytol. 2019, 223, 532–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergelson, J.; Purrington, C.B. Surveying patterns in the cost of resistance in plants. Am. Nat. 1996, 148, 536–558. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Neve, P.; Roux, F. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 2011, 107, 386–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila-Aiub, M.M.; Neve, P.; Powles, S.B. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 2009, 184, 751–767. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.S.; Thill, D.C. Growth and Productivity of Resistant Plants. In Herbicide Resistance in Plants. Biology and Biochemistry; Powles, S.B., Holtum, J.A.M., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 299–316. [Google Scholar]
- Harper, J. Population Biology of Plants; Academic Press: London, UK, 1977. [Google Scholar]
- Solbrig, O.T. Plant Traits and Adaptive Strategies: Their Role in Ecosystem Function. In Biodiversity and Ecosystem Function; Schulze, E.D., Mooney, H.A., Eds.; Springer: Berlin, Germany, 1994; pp. 97–116. [Google Scholar]
- Lerdau, M.; Gershenzon, J. Allocation Theory and Chemical Defense. In Plant Resource Allocation; Bazzaz, F., Grace, J., Eds.; Academic Press: London, UK, 1997; pp. 265–277. [Google Scholar]
- Strauss, S.Y.; Rudgers, J.A.; Lau, J.A.; Irwin, R.E. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 2002, 17, 278–285. [Google Scholar] [CrossRef]
- Coley, P.D.; Bryant, J.P.; Chapin, F.S. Resource availability and plant antiherbivore defense. Science 1985, 230, 895–899. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Autumn, K.; Pugnaire, F. Evolution of suites of traits in response to environmental-stress. Am. Nat. 1993, 142, S78–S92. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J. The dilemma of plants—To grow or defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Yu, Q.; Powles, S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiol. 2014, 166, 1106–1118. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Gundel, P.E.; Preston, C. Experimental methods for estimation of plant fitness costs associated with herbicide-resistance genes. Weed Sci. 2015, 63 (Suppl. 1), 203–216. [Google Scholar] [CrossRef]
- Keshtkar, E.; Abdolshahi, R.; Sasanfar, H.; Zand, E.; Beffa, R.; Dayan, F.E.; Kudsk, P. Assessing Fitness Costs from a Herbicide-Resistance Management Perspective: A Review and Insight. Weed Sci. 2019, 67, 1–12. [Google Scholar] [CrossRef]
- Baucom, R.G. Evolutionary and ecological insights from herbicide resistant weeds: What have we learned about plant adaptation, and what is left to uncover? New Phytol. 2019, 223, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Han, H.; Vila-Aiub, M.M.; Powles, S.B. AHAS herbicide resistance endowing mutations: Effect on AHAS functionality and plant growth. J. Exp. Bot. 2010, 61, 3925–3934. [Google Scholar] [CrossRef]
- Ashigh, J.; Tardif, F. An Ala205Val substitution in acetohydroxyacid synthase of Eastern black nightshade (Solanum ptychanthum) reduces sensitivity to herbicides and feedback inhibition. Weed Sci. 2007, 55, 558–565. [Google Scholar] [CrossRef]
- Purrington, C.B.; Bergelson, J. Exploring the physiological basis of costs of herbicide resistance in Arabidopsis thaliana. Am. Nat. 1999, 154, S82–S91. [Google Scholar] [CrossRef]
- Menchari, Y.; Chauvel, B.; Darmency, H.; Délye, C. Fitness costs associated with three mutant acetyl-coenzyme A carboxylase alleles endowing herbicide resistance in black-grass Alopecurus myosuroides. J. Appl. Ecol. 2008, 45, 939–947. [Google Scholar] [CrossRef]
- Roux, F.; Gasquez, J.; Reboud, X. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines. Genetics 2004, 166, 449–460. [Google Scholar] [CrossRef]
- Paris, M.; Roux, F.; Berard, A.; Reboud, X. The effects of the genetic background on herbicide resistance fitness cost and its associated dominance in Arabidopsis thaliana. Heredity 2008, 101, 499–506. [Google Scholar] [CrossRef]
- Frenkel, E.; Matzrafi, M.; Rubin, B.; Peleg, Z. Effects of environmental conditions on the fitness penalty in herbicide resistant brachypodium hybridum. Front. Plant Sci. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Williams, M.M.I.; Jordan, N.; Yerkes, C. The fitness cost of triazine resistance in jimsonweed (Datura stramonium L.). Am. Midl. Nat. 1995, 133, 131–137. [Google Scholar]
- Sammons, R.D.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Jalaludin, A.; Han, H.; Chen, M.; Sammons, R.D.; Powles, S.B. Evolution of a double amino acid substitution in the EPSP synthase in Eleusine indica conferring high level glyphosate resistance. Plant Physiol. 2015, 167, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Vila-Aiub, M.M.; Jalaludin, A.; Yu, Q.; Powles, S.B. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost. Plant Cell Environ. 2017, 40, 3031–3042. [Google Scholar] [CrossRef]
- Gronwald, J.W. Resistance to Photosystem II Inhibiting Herbicides. In Herbicide Resistance in Plants. Biology and Biochemistry; Powles, S.B., Holtum, J.A.M., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 27–60. [Google Scholar]
- Devine, M.D.; Shukla, A. Altered target sites as a mechanism of herbicide resistance. Crop Prot. 2000, 19, 881–889. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Neve, P.; Powles, S.B. Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytol. 2005, 167, 787–796. [Google Scholar] [CrossRef]
- Bravo, W.; Leon, R.G.; Ferrell, J.A.; Mulvaney, M.J.; Wood, C.W. Differentiation of life-history traits among Palmer amaranth populations (Amaranthus palmeri) and its relation to cropping systems and glyphosate sensitivity. Weed Sci. 2017, 65, 339–349. [Google Scholar] [CrossRef]
- Van Etten, M.L.; Kuester, A.; Chang, S.M.; Baucom, R.S. Fitness costs of herbicide resistance across natural populations of the common morning glory, Ipomoea purpurea. Evolution 2016, 70, 2199–2210. [Google Scholar] [CrossRef]
- Kuester, A.; Fall, E.; Chang, S.M.; Baucom, R.S. Shifts in outcrossing rates and changes to floral traits are associated with the evolution of herbicide resistance in the common morning glory. Ecol. Lett. 2017, 20, 41–49. [Google Scholar] [CrossRef]
- Tardif, F.J.; Rajcan, I.; Costea, M. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii. New Phytol. 2006, 169, 251–264. [Google Scholar] [CrossRef]
- Comont, D.; Knight, C.; Crook, L.; Hull, R.; Beffa, R.; Neve, P. Alterations in Life-History Associated With Non-target-site Herbicide Resistance in Alopecurus myosuroides. Front. Plant Sci. 2019, 223, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Vila-Aiub, M.M.; Neve, P.; Steadman, K.J.; Powles, S.B. Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: Dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J. Appl. Ecol. 2005, 42, 288–298. [Google Scholar] [CrossRef]
- Délye, C.; Menchari, Y.; Michel, S.; Cadet, É.; Le Corre, V. A new insight into arable weed adaptive evolution: Mutations endowing herbicide resistance also affect germination dynamics and seedling emergence. Ann. Bot. 2013, 111, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.J.; Michael, P.J.; Renton, M.; Steadman, K.J.; Powles, S.B. Towards large-scale prediction of Lolium rigidum emergence. II. Correlation between dormancy and herbicide resistance levels suggests an impact of cropping systems. Weed Res. 2011, 51, 133–141. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Davis, A.S. An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest Manag. Sci. 2018, 74, 2277–2286. [Google Scholar] [CrossRef]
- Gassmann, A.J. Resistance to herbicide and susceptibility to herbivores: Environmental variation in the magnitude of an ecological trade-off. Oecologia 2005, 145, 575–585. [Google Scholar] [CrossRef]
- Salzmann, D.; Handley, R.J.; Mueller-Scharer, H. Functional significance of triazine-herbicide resistance in defence of Senecio vulgaris against a rust fungus. Basic Appl. Ecol. 2008, 9, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Mithila, J.; McLean, M.D.; Chen, S.; Christopher Hall, J. Development of near-isogenic lines and identification of markers linked to auxinic herbicide resistance in wild mustard (Sinapis arvensis L.). Pest Manag. Sci. 2012, 68, 548–556. [Google Scholar] [CrossRef]
- Martin, S.L.; Benedict, L.; Sauder, C.A.; Wei, W.; da Costa, L.O.; Hall, L.M.; Beckie, H.J. Glyphosate resistance reduces kochia fitness: Comparison of segregating resistant and susceptible F2 populations. Plant Sci. 2017, 261, 69–79. [Google Scholar] [CrossRef]
- Kumar, V.; Jha, P.; Lim, C.A.; Stahlman, P.W. Differential Germination Characteristics of Dicamba-Resistant Kochia (Bassia scoparia) Populations in Response to Temperature. Weed Sci. 2018, 66, 1–8. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A. Fitness Outcomes Related to Glyphosate Resistance in Kochia (Kochia scoparia): What Life History Stage to Examine? Front. Plant Sci. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Beckie, H.J.; Blackshaw, R.E.; Leeson, J.Y.; Stahlman, P.W.; Gaines, T.A.; Johnson, E.N. Seedbank persistence, germination and early growth of glyphosate-resistant Kochia scoparia. Weed Res. 2018, 58, 177–187. [Google Scholar] [CrossRef]
- Baucom, R.S.; Mauricio, R. Fitness costs and benefits of novel herbicide tolerance in a noxious weed. Proc. Natl. Acad. Sci. USA 2004, 101, 13386–13390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila-Aiub, M.; García, F.; Han, H.; Jalaludin, A.; Yu, Q.; Powles, S.B. Resistance Benefit Endowed by a Double EPSPS Glyphosate Resistance Mutation (TIPS) in Eleusine Indica. In Resistance 2019; Rothamsted Research: Herts, UK, 2019. [Google Scholar]
- Vila-Aiub, M.M.; Neve, P.; Powles, S.B. Evidence for an ecological cost of enhanced herbicide metabolism in Lolium rigidum. J. Ecol. 2009, 97, 772–780. [Google Scholar] [CrossRef]
- Yanniccari, M.; Vila-Aiub, M.; Istilart, C.; Acciaresi, H.; Castro, A.M. Glyphosate resistance in perennial ryegrass (Lolium perenne L.) is associated with a fitness penalty. Weed Sci. 2016, 64, 71–79. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Futuyma, D.J. Consequence of herbivory for the fitness cost of herbicide resistance: Photosynthetic variation in the context of plant-herbivore interactions. J. Evol. Biol. 2005, 18, 447–454. [Google Scholar] [CrossRef]
- Murphy, B.P.; Tranel, P.J. Target-Site Mutations Conferring Herbicide Resistance. Plants 2019, 8, 382. [Google Scholar] [CrossRef]
- LeClere, S.; Wu, C.; Westra, P.; Sammons, R.D. Cross-resistance to dicamba, 2, 4-D, and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene. Proc. Natl. Acad. Sci. USA 2018, 115, 2911–2920. [Google Scholar] [CrossRef]
- Alstad, D. Basic Populus Models of Ecology; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Colbach, N.; Chauvel, B.; Darmency, H.; Délye, C.; Le Corre, V. Choosing the best cropping systems to target pleiotropic effects when managing single-gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Manag. Sci. 2016, 72, 1910–1925. [Google Scholar] [CrossRef]
- Jordan, N.; Kelrick, M.; Brooks, J.; Kinerk, W. Biorational management tactics to select against triazine-resistant Amaranthus hybridus: A field trial. J. Appl. Ecol. 1999, 36, 123–132. [Google Scholar] [CrossRef]
- Uyenoyama, M. Pleiotropy and the Evolution of Genetic Systems Conferring Resistance to Pesticides. In Pesticide Resistance. Strategies and Tactics for Management; Glass, E., Ed.; National Academy of Sciences: Washington, DC, USA, 1986; pp. 207–221. [Google Scholar]
- Doole, G.J. Optimal management of annual ryegrass (Lolium rigidum Gaud.) in phase rotations in the Western Australian Wheatbelt. Aust. J. Agric. Resour. Econ. 2008, 52, 339–362. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Radicetti, E.; Ayeni, A.; Knezevic, S.Z. Impact of Cover Crop Management on Level of Weed Suppression: A Meta-Analysis. Crop Sci. 2019, 59, 833–842. [Google Scholar] [CrossRef]
- Sadras, V.O.; Lawson, C. Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop Pasture Sci. 2011, 62, 533–549. [Google Scholar] [CrossRef]
- Borger, C.P.; Hashem, A.; Pathan, S. Manipulating crop row orientation to suppress weeds and increase crop yield. Weed Sci. 2010, 58, 174–178. [Google Scholar] [CrossRef]
- Maino, J.L.; Renton, M.; Hoffmann, A.A.; Umina, P.A. Field margins provide a refuge for pest genes beneficial to resistance management. J. Pest Sci. 2019, 92, 1017–1026. [Google Scholar] [CrossRef]
Resistance Mutation/Trait | Weed Species | Fitness/Life History Trait | Environment | Biochemical/Physiological Change | Reference |
---|---|---|---|---|---|
ACCase/ALS CYP-450 metabolism | Lolium rigidum | Reduced RGR *, fecundity | Crop competition | [58,77] | |
ACCase/ALS target site resistance and CYP-450 metabolism | L. rigidum | Higher seed dormancy | Controlled conditions | [66] | |
EPSPS over-expression | L. perenne | Reduced height, leaf area, fecundity | Intra-specific competition in rain fed conditions | [78] | |
EPSPS TIPS mutation | Eleusine indica | Reduced RGR, fecundity | Crop competition | Reduced EPSPS Vmax Altered C-rich metabolite levels | [55] |
ACCase Ile-1781-Leu | L. rigidum | Light requirement for seed germination | Controlled conditions | Changes in sensitivity of phytochrome B | [64] (Vila-Aiub et al. unpublished) |
ACCase 2078 | Alopecurus myosuroides | Lower germination rate | Wheat competition | Reduced ACCase activity | [48] |
psbA Ser-264-Gly | Many broadleaf species | Reduced RGR, fecundity | Controlled and field conditions | Reduced QB affinity, inefficient PSII electron transport, lower photosynthesis | Reviewed in [33] |
psbA Ser-264-Gly | Amaranthus powelii | Higher susceptibility to herbivory | Field conditions | Higher leaf N concentration | [68,79] |
ALS Trp-574-Leu | A. powelli | Smaller roots, reduced leaf area and RGR | Intra-specific competition | Likely impaired ALS function | [62] |
Glyphosate resistance | Ipomoea purpurea | Higher selfing rate | Controlled and field conditions | Lower anther–stigma distance | [61] |
EPSPS amplification | Kochia scoparia | Delayed flowering | Controlled conditions | [71] | |
AUX/IAA KsIAA16 Gly-73-Asn | K. scoparia | Reduced RGR, leaf area, height, fecundity | Controlled conditions | [80,81] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vila-Aiub, M.M. Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management. Plants 2019, 8, 469. https://doi.org/10.3390/plants8110469
Vila-Aiub MM. Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management. Plants. 2019; 8(11):469. https://doi.org/10.3390/plants8110469
Chicago/Turabian StyleVila-Aiub, Martin M. 2019. "Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management" Plants 8, no. 11: 469. https://doi.org/10.3390/plants8110469
APA StyleVila-Aiub, M. M. (2019). Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management. Plants, 8(11), 469. https://doi.org/10.3390/plants8110469