Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments
Abstract
:1. Introduction
2. Results
2.1. General Structure
2.2. The Structure of Adventitious Roots Grown in Aquatic Environments
2.3. The Structure of Adventitious Roots Grown in Terrestrial Environments
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Processing
4.2. Histochemistry and Microscopy
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chu, K.L.; Cooper, W.S. An ecological reconnaissance in the native home of Metasequoia glyptostroboides. Ecology 1950, 31, 260–278. [Google Scholar] [CrossRef]
- Bartholomew, B.; Boufford, D.E.; Spongberg, S.A. Metasequoia glyptostroboides—Its present status in China. J. Arnold Arbor. 1983, 64, 105–128. [Google Scholar] [CrossRef]
- Merrill, E.D. Another “living fossil”. Arnoldia 1948, 8, 1–8. [Google Scholar]
- Basinger, J.F. The vegetative body of Metasequoia milleri from the Middle Eocene of southern British Columbia. Can. J. Bot. 1981, 59, 2379–2410. [Google Scholar] [CrossRef]
- Sterling, C. Some features in the morphology of Metasequoia. Am. J. Bot. 1949, 36, 461–471. [Google Scholar] [CrossRef]
- Hida, M. The affinity of Metasequoia to other conifers as shown by the form of the tracheid. Bot. Mag. 1953, 66, 783–784. [Google Scholar] [CrossRef]
- Leng, Q.; Yang, H.; Yang, Q.; Zhou, J. Variation of cuticle micromorphology of Metasequoia glyptostroboides (Taxodiaceae). Bot. J. Linn. Soc. 2001, 136, 207–219. [Google Scholar] [CrossRef]
- Dute, R.; Hagler, L.T.; Black, A. Comparative development of intertracheary pit membranes in Abies firma and Metasequoia glyptostroboides. IAWA J. 2008, 29, 277–289. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, G.; Yao, J.; Yu, S.; Fang, Y. Study on fine root anatomical structure and mycorrhizal colonization in Metasequoia glyptostroboides plantation. J. Nanjing For. Univ. 2016, 40, 97–102. [Google Scholar]
- Bannan, M.W. Vascular rays and adventitious root formation in Thuja Occidentalis L. Am. J. Bot. 1941, 28, 457–463. [Google Scholar] [CrossRef]
- Wilcox, H. Growth studies of the root of incense cedar, Libocedrus decurrens. I. The origin and development of primary tissues. Am. J. Bot. 1962, 49, 221–236. [Google Scholar] [CrossRef]
- Pesacreta, T.C.; Purpera, M.A. Light microscopy survey of extant gymnosperm root protophloem and comparison with basal angiosperms. Botany 2014, 92, 388–401. [Google Scholar] [CrossRef]
- Bonacorsi, N.K.; Seago, J.L., Jr. Root development and structure in seedlings of Ginkgo biloba. Am. J. Bot. 2016, 103, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Shen, W.; Du, L.; Wen, J.; Lin, J.X.; Li, R.L. Development and chemical characterization of Casparian strips in the roots of Chinese fir (Cunninghamia lanceolata). Trees 2019, 33, 827–836. [Google Scholar] [CrossRef]
- Gerrath, J.M.; Covington, L.; Doubt, J.; Larson, D.W. Occurrence of phi thickenings is correlated with gymnosperm systematics. Can. J. Bot. 2002, 80, 852–860. [Google Scholar] [CrossRef]
- Peterson, C.A.; Emanuel, M.E.; Weerdenburg, C.A. The permeability of phi thickenings in apple (Pyrus malus) and geranium (Pelargonium hortorum) roots to an apoplastic fluorescent dye tracer. Can. J. Bot. 1981, 59, 1107–1110. [Google Scholar] [CrossRef]
- López-Pérez, L.; Fernández-García, N.; Olmos, E.; Carvajal, M. The phi thickening in roots of broccoli plants. An adaptation mechanism to salinity. Inter. J. Plant Sci. 2007, 168, 1141–1149. [Google Scholar] [CrossRef]
- Fernández-García, N.; López-Pérez, L.; Hernandez, M.; Olmos, E. Role of phi cells and the endodermis under salt stress in Brassica Oleracea. New Phytol. 2009, 181, 347–360. [Google Scholar] [CrossRef]
- Song, Y.; Ye, L.; Nii, N. Effects of soil water availability on development of suberin lamellae in the endodermis and exodermis and on cortical cell wall thickening in red bayberry (Myrica rubra Sieb. et Zucc.) tree roots. Sci. Hort. 2011, 129, 554–560. [Google Scholar] [CrossRef]
- Xiang, J.Q.; Ming, J.J.; Yin, H.Q.; Zhu, Y.F.; Li, Y.J.; Long, L.; Ye, Z.Y.; Wang, H.Y.; Wang, X.E.; Zhang, F.; et al. Anatomy and histochemistry of the roots and shoots in the aquatic Selenium hyperaccumulator Cardamine hupingshanensis (Brassicaceae). Open Life Sci. 2019, 14, 318–326. [Google Scholar] [CrossRef]
- Yamakawa, C.; Momohara, A.; Saito, T.; Nunotani, T. Composition and paleoenvironment of wetland forests dominated by Glyptostrobus and Metasequoia in the latest Pliocene (2.6 Ma) in central Japan. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 467, 191–210. [Google Scholar] [CrossRef]
- Vartapetian, B.B.; Jackson, M.B. Plant adaptations to anaerobic stress. Ann. Bot. 1997, 79 (Suppl. A), 3–20. [Google Scholar] [CrossRef]
- Jackson, M.B.; Colmer, T.D. Response and adaptation by plants to flooding stress. Ann. Bot. 2005, 96, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding stress: Acclimations and genetic diversity. Ann. Rev. Plant Biol. 2008, 59, 313–339. [Google Scholar] [CrossRef] [PubMed]
- Kotula, L.; Ranathunge, K.; Schreiber, L.; Steudle, E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J. Exp. Bot. 2009, 60, 2155–2167. [Google Scholar] [CrossRef]
- Colmer, T.D.; Gibberd, M.R.; Wiengweera, A.; Tinh, T.K. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solutions. J. Exp. Bot. 1998, 49, 1431–1436. [Google Scholar] [CrossRef]
- Enstone, D.E.; Peterson, C.A.; Ma, F. Root endodermis and exodermis: Structure, function, and responses to the environment. J. Plant Growth Regul. 2003, 21, 335–351. [Google Scholar] [CrossRef]
- Seago, J.L., Jr.; Marsh, L.C.; Stevens, K.J.; Soukup, A.; Votrubová, O.; Enstone, D.E. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann. Bot. 2005, 96, 565–579. [Google Scholar] [CrossRef]
- Armstrong, J.; Jones, R.E.; Armstrong, W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytol. 2006, 172, 719–731. [Google Scholar] [CrossRef]
- Soukup, A.; Armstrong, W.; Schreiber, L.; Rochus, F.; Votrubová, O. Apoplastic barriers to radial oxygen loss and solute penetration: A chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol. 2007, 173, 264–278. [Google Scholar] [CrossRef]
- Yang, C.D.; Zhang, X.; Zhou, C.Y.; Seago, J.L., Jr. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora 2011, 206, 653–661. [Google Scholar] [CrossRef]
- Yang, C.D.; Zhang, X.; Li, J.K.; Bao, M.Z.; Ni, D.J.; Seago, J.L., Jr. Anatomy and histochemistry of roots and shoots in wild rice (Zizania latifolia Griseb.). J. Bot. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L.J.; Yang, C.D.; Zhou, C.Y.; Yuan, L.; Chen, Z.; Seago, J.L., Jr. Structural features of Phalaris arundinacea L. in the Jianghan Floodplain of the Yangtze River, China. Flora 2017, 229, 100–106. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, C.D.; Seago, J.L., Jr. Anatomical and histochemical traits of roots and stems of Artemisia lavandulaefolia and A. selengensis (Asteraceae) in the Jianghan Floodplain, China. Flora 2018, 239, 87–97. [Google Scholar] [CrossRef]
- Yang, C.D.; Yang, X.L.; Zhang, X.; Zhou, C.Y.; Zhang, F.; Wang, X.E.; Wang, Q.F. Anatomical structures of alligator weed (Alternanthera philoxeroides) suggest it is well adapted to the aquatic–terrestrial transition zone. Flora 2019, 253, 27–34. [Google Scholar] [CrossRef]
- Ranathunge, K.; Lin, J.; Steudle, E.; Schreiber, L. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ. 2011, 34, 1223–1240. [Google Scholar] [CrossRef]
- Enstone, D.E.; Peterson, C.A. Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ. 2005, 28, 444–455. [Google Scholar] [CrossRef]
- Abiko, T.; Kotula, L.; Shiono, K.; Malik, A.I.; Colmer, T.D.; Nakazono, M. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. 2012, 35, 1618–1630. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Lin, Z.; Guan, B.; Liu, D.; Yang, L.; Deng, X.; Mei, F.; Zhou, Z. Histone acetylation modification affects cell wall degradation and aerenchyma formation in wheat seminal roots under waterlogging. Plant Growth Regul. 2019, 87, 149–163. [Google Scholar] [CrossRef]
- Šottniková, A.; Lux, A. Development, dilation and subdivision of cortical layers of gentian (Gentiana asclepiadea) root. New Phytol. 2003, 160, 135–143. [Google Scholar] [CrossRef]
- Evert, R.F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd ed.; Wiley–Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Fahn, A. Plant Anatomy, 4th ed.; Pergamon Press: Oxford, UK, 1990. [Google Scholar]
- Kreszies, T.; Schreiber, L.; Ranathunge, K. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species. J. Plant. Physiol. 2018, 227, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Vecchia, F.D.; Cuccato, F.; Rocca, N.L.; Rascio, N. Endodermis -like sheaths in the submerged freshwater macrophyte Ranunculus trichophyllus Chaix. Ann. Bot. 1999, 83, 93–97. [Google Scholar] [CrossRef]
- Yang, C.D.; Li, S.F.; Yao, L.; Ai, X.R.; Cai, X.D.; Zhang, X. The study on anatomical structure and apoplastic barrier characters of Hydrocotyle Sibthorpioides. Acta Prata. Sin. 2015, 24, 139–145. [Google Scholar]
- Peterson, R.L.; Peterson, C.A.; Meiville, L.H. Teaching Plant Anatomy through Creative Laboratory Exercise; NRC Press: Ottawa, ON, Canada, 2008. [Google Scholar]
- Sutton, R.F. Root system morphogenesis. NZJ For. Sci. 1980, 10, 264–292. [Google Scholar]
- Brundrett, M.; Murase, G.; Kendrick, B. Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can. J. Bot. 1990, 68, 551–578. [Google Scholar] [CrossRef]
- Guo, D.; Xia, M.; Wei, X.; Chang, W.; Liu, Y.; Wang, Z. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 2008, 180, 673–683. [Google Scholar] [CrossRef]
- Justin, S.H.F.W.; Armstrong, W. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 1987, 105, 465–495. [Google Scholar] [CrossRef]
- Seago, J.L., Jr.; Peterson, C.A.; Enstone, D.E.; Scholey, C.A. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots. Can. J. Bot. 1999, 77, 122–134. [Google Scholar]
- Meyer, C.J.; Seago, J.L., Jr.; Peterson, C.A. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Ann.Bot. 2009, 103, 687–702. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.J.; Peterson, C.A. Casparian bands occur in the periderm of Pelargonium hortorum stem and root. Ann. Bot. 2011, 107, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Jensen, W.A. Botanical Histochemistry–Principles and Practice; Freeman, W.H., Ed.; McGraw-Hill Co., Inc.: San Francisco, CA, USA, 1962. [Google Scholar]
- Brundrett, M.C.; Kendrick, B.; Peterson, C.A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol–glycerol. Biotech. Histochem. 1991, 66, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill: New York, NY, USA, 1940. [Google Scholar]
- Brundrett, M.C.; Enstone, D.E.; Peterson, C.A. A berberine–aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue. Protoplasma 1988, 146, 133–142. [Google Scholar] [CrossRef]
- Feder, N.; O’Brien, T.P. Plant microtechnique: Some principles and new methods. Am. J. Bot. 1968, 55, 123–142. [Google Scholar] [CrossRef]
Organ Samples | Aquatic Habitat | Terrestrial Habitat |
---|---|---|
Primary structure | Endodermis and exodermis with Casparian bands, suberin, and lignin at 5–10 mm Dilated cortex, cortex sloughed off at 100 m Multiple lignified Φ thickenings in cortex Large air spaces in cortex and primary phloem Triarch to hexarch protoxylem and protophloem | Endodermis and exodermis with Casparian bands, suberin, and some lignin at 5 mm Cortex sloughed off at 25 mm Few lignified Φ thickenings in cortex narrow air spaces in cortex Diarch to triarch protoxylem and protophloem |
Secondary structure | Secondary structure begins at 10–15 mm Secondary phloem and phellogen flared in places Exodermis has dense suberin and lignin Large air spaces in cortex and cork dilated parenchyma | Secondary structure begins at 10–15 mm No evidence of flaring in secondary phloem or phellogen Exodermis has typical suberin and lignin Narrow air spaces in cortex Undilated parenchyma |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Zhang, X.; Wang, T.; Hu, S.; Zhou, C.; Zhang, J.; Wang, Q. Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments. Plants 2019, 8, 501. https://doi.org/10.3390/plants8110501
Yang C, Zhang X, Wang T, Hu S, Zhou C, Zhang J, Wang Q. Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments. Plants. 2019; 8(11):501. https://doi.org/10.3390/plants8110501
Chicago/Turabian StyleYang, Chaodong, Xia Zhang, Ting Wang, Shuangshuang Hu, Cunyu Zhou, Jian Zhang, and Qingfeng Wang. 2019. "Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments" Plants 8, no. 11: 501. https://doi.org/10.3390/plants8110501
APA StyleYang, C., Zhang, X., Wang, T., Hu, S., Zhou, C., Zhang, J., & Wang, Q. (2019). Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments. Plants, 8(11), 501. https://doi.org/10.3390/plants8110501