Early Detection of Airborne Inoculum of Nothopassalora personata in Spore Trap Samples from Peanut Fields Using Quantitative PCR
Abstract
:1. Introduction
2. Results
2.1. qPCR Optimization
2.2. Amplification Specificity of the qPCR Primers
2.3. Detection Limit of the qPCR Assay
2.4. Detection of Airborne Inoculum in Peanut Fields
3. Discussion
4. Materials and Methods
4.1. Preparation of LLS Symptomatic Peanut Leaves, N. personata Spores, and Sampling Rods
4.1.1. Preparation of LLS Symptomatic Peanut Leaves for Use in the Initial Development of qPCR Assay
4.1.2. Preparation of N. personata Spores for Use in the Initial Development of the qPCR Assay
4.1.3. Preparation of Sampling Rods
4.1.4. Preparation of N. personata Spores and Fungal Isolates for Use in the Amplification Specificity Test of the qPCR Assay
4.2. DNA Extraction
4.2.1. DNA Extraction Procedures for Use in the Initial Development of the qPCR Assay
4.2.2. DNA Extraction Procedures for Analysis of Lab-prepared and Field Collected Sampling Rods
4.2.3. DNA Extraction Procedures for Use in the Amplification Specificity Test of the qPCR Assay
4.3. Primer Design
4.4. qPCR Reaction Conditions
4.5. Amplification Specificity of the qPCR Primers
4.6. Detection Limit of the qPCR Assay
4.6.1. Pure Spore Suspension
4.6.2. Rod-Borne Spores
4.7. Detection of Airborne Inoculum in Peanut Fields
4.7.1. Custom Impaction Spore Trap
4.7.2. Weather Data and Disease Incidence
4.7.3. DNA Sequencing of Air Samples with Positive Detection
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, D.; Littrell, R. Management of peanut foliar diseases with fungicides. Plant Dis. 1980, 64, 356. [Google Scholar] [CrossRef]
- Alderman, S.C.; Nutter, F.W., Jr. Effect of temperature and relative humidity on development of Cercosporidium personatum on peanut in Georgia. Plant Dis. 1994, 78, 690–694. [Google Scholar] [CrossRef]
- Alderman, S.; Matyac, C.; Bailey, J.; Beute, M. Aeromycology of Cercospora arachidicola on peanut. Trans. Br. Mycol. Soc. 1987, 89, 97–103. [Google Scholar] [CrossRef]
- Anco, D.J.; Thomas, J.S. Peanut varieties. In Peanut Money-Maker 2019 Production Guide; Clemson Cooperative Extension: Clemson, SC, USA, 2019; pp. 3–11. [Google Scholar]
- Bolotova, Y.V.; Smith, N.B. An analysis of the South Carolina peanut industry. In Proceedings of the Southern Agricultural Economics Association’s 2017 Annual Meeting, Mobile, AL, USA, 4–7 February 2017. [Google Scholar]
- Shew, B.; Beute, K.; Wynne, J. Effects of temperature and relative humidity on expression of resistance to Cercosporidium personatum in peanut. Phytopathology 1988, 78, 493–498. [Google Scholar] [CrossRef]
- Shokes, F.M.; Culbreath, A.K. Early and late leaf spot. In Compendium of Peanut, 2nd ed.; Kokalis-Burelle, N., Porter, D.M., Rodiguez-Kabana, R., Smith, D.H., Subrahmanyam, P., Eds.; The American Phytopathological Society (APS PRESS): St. Paul, MN, USA, 1997; pp. 17–20. [Google Scholar]
- Sommartya, T.; Beute, M. Temperature effects on germination and comparative morphology of conidia for Thai and USA isolates of Cercosporidium personatum. Peanut Sci. 1986, 13, 67–70. [Google Scholar] [CrossRef]
- McDonald, D.; Subrahmanyam, P.; Gibbons, R.; Smith, D. Early and Late Leaf Spots of Groundnut; Information Bulletin No. 21; International Crops Research Institute for the Semi-Arid Tropics: Patancheru P.O., Andhra Pradesh, India, 1985; pp. 1–19. [Google Scholar]
- Wadia, K.; McCartney, H.; Butler, D. Dispersal of Passalora personata conidia from groundnut by wind and rain. Mycol. Res. 1998, 102, 355–360. [Google Scholar] [CrossRef]
- Anco, D.J.; Thomas, J.S.; Jordan, D.L.; Shew, B.B.; Monfort, W.S.; Mehl, H.L.; Small, I.M.; Wright, D.L.; Tillman, B.L.; Dufault, N.S. Peanut yield loss in the presence of defoliation caused by late or early leaf spot. Plant Dis. 2020, 104, 1390–1399. [Google Scholar] [CrossRef]
- Chiteka, Z.; Gorbet, D.; Shokes, F.; Kucharek, T.; Knauft, D. Components of resistance to late leafspot in peanut. I. Levels and variability—Implications for selection. Peanut Sci. 1988, 15, 25–30. [Google Scholar] [CrossRef]
- Grichar, W.; Besler, B.; Jaks, A. Use of azoxystrobin for disease control in Texas peanut. Peanut Sci. 2000, 27, 83–87. [Google Scholar] [CrossRef]
- Anco, D.J. Peanut disease management. In Peanut Money-Maker 2019 Production Guide; Clemson Cooperative Extension: Clemson, SC, USA, 2019; pp. 42–53. [Google Scholar]
- Culbreath, A.; Kemerait, R., Jr.; Brenneman, T. Management of early leaf spot of peanut as affected by fungicide and date of spray program initiation. Plant Health Prog. 2006, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Dhar, N.; Mamo, B.E.; Subbarao, K.V.; Koike, S.T.; Fox, A.; Anchieta, A.; Klosterman, S.J. Measurements of aerial spore load by qPCR facilitates lettuce downy mildew risk advisement. Plant Dis. 2020, 104, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Gent, D.; Nelson, M.; Farnsworth, J.; Grove, G. PCR detection of Pseudoperonospora humuli in air samples from hop yards. Plant Pathol. 2009, 58, 1081–1091. [Google Scholar] [CrossRef]
- Thiessen, L.; Keune, J.; Neill, T.; Turechek, W.; Grove, G.; Mahaffee, W. Development of a grower-conducted inoculum detection assay for management of grape powdery mildew. Plant Pathol. 2016, 65, 238–249. [Google Scholar] [CrossRef]
- Munir, M.; Wang, H.; Agudelo, P.; Anco, D.J. Rapid detection of fungicide resistance phenotypes among populations of Nothopassalora personata in South Carolina peanut fields. Plant Health Prog. 2020, 21, 123–132. [Google Scholar] [CrossRef]
- Mallaiah, K.; Rao, A. Aerobiology of two species of Cercospora pathogenic to groundnut. Proc. Indian Natl. Sci. Acad. 1980, 46, 215–222. [Google Scholar]
- Mallaiah, K.; Rao, A. Aerial dissemination of urediniospores of groundnut rust. Trans. Br. Mycol. Soc. 1982, 78, 21–28. [Google Scholar] [CrossRef]
- Capote, N.; Pastrana, A.M.; Aguado, A.; Sánchez-Torres, P. Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In Plant Pathology; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Klosterman, S.J.; Anchieta, A.; McRoberts, N.; Koike, S.T.; Subbarao, K.V.; Voglmayr, H.; Choi, Y.-J.; Thines, M.; Martin, F.N. Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii). Phytopathology 2014, 104, 1349–1359. [Google Scholar] [CrossRef] [Green Version]
- Kunjeti, S.G.; Anchieta, A.; Martin, F.N.; Choi, Y.-J.; Thines, M.; Michelmore, R.W.; Koike, S.T.; Tsuchida, C.; Mahaffee, W.; Subbarao, K.V. Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR. Phytopathology 2016, 106, 1426–1437. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Ma, Z.; Reyes, H.; Morgan, D.; Michailides, T. Quantification of airborne spores of Monilinia fructicola in stone fruit orchards of California using real-time PCR. Eur. J. Plant Pathol. 2007, 118, 145–154. [Google Scholar] [CrossRef]
- Mahaffee, W.F.; Stoll, R. The ebb and flow of airborne pathogens: Monitoring and use in disease management decisions. Phytopathology 2016, 106, 420–431. [Google Scholar] [CrossRef]
- Rogers, S.L.; Atkins, S.D.; West, J.S. Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR. Plant Pathol. 2009, 58, 324–331. [Google Scholar] [CrossRef]
- Falacy, J.S.; Grove, G.G.; Mahaffee, W.F.; Galloway, H.; Glawe, D.A.; Larsen, R.C.; Vandemark, G.J. Detection of Erysiphe necator in air samples using the polymerase chain reaction and species-specific primers. Phytopathology 2007, 97, 1290–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCartney, H.A.; Fitt, B.D.L.; Schmechel, D. Sampling bioaerosols in plant pathology. J. Aerosol Sci. 1997, 28, 349–364. [Google Scholar] [CrossRef]
- Schweigkofler, W.; O’Donnell, K.; Garbelotto, M. Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach combined with a simple spore trapping method. Appl. Environ. Microbiol. 2004, 7, 3512–3520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villari, C.; Mahaffee, W.F.; Mitchell, T.K.; Pedley, K.F.; Pieck, M.L.; Hand, F.P. Early detection of airborne inoculum of Magnaporthe oryzae in turfgrass fields using a quantitative LAMP assay. Plant Dis. 2017, 101, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zijlstra, C.; Lund, I.; Justesen, A.F.; Nicolaisen, M.; Jensen, P.K.; Bianciotto, V.; Posta, K.; Balestrini, R.; Przetakiewicz, A.; Czembor, E. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document). Pest Manag. Sci. 2011, 67, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Downey, N. Interpreting melt curve: An indicator, not a diagnosis. Integr. DNA Technol. 2014, 1–7. [Google Scholar]
- Gong, L. Monocyclic Component for Evaluating Disease Resistance to Cercospora arachidicola and Cercosporidium Personatum in Peanut. Ph.D. Dissertation, Auburn University, Auburn, AL, USA, 2016. [Google Scholar]
- Kurose, D.; Furuya, N.; Tsuchiya, K.; Evans, H.C.; Djeddour, D.H.; Cannon, P.F. Systematics of Mycosphaerella species associated with the invasive weed Fallopia japonica, including the potential biological control agent M. polygoni-cuspidati. Mycoscience 2009, 50, 179–189. [Google Scholar] [CrossRef]
- Videira, S.; Groenewald, J.; Nakashima, C.; Braun, U.; Barreto, R.W.; de Wit, P.J.; Crous, P. Mycosphaerellaceae—Chaos or clarity? Stud. Mycol. 2017, 87, 257–421. [Google Scholar] [CrossRef]
- Hospodsky, D.; Yamamoto, N.; Peccia, J. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl. Environ. Microbiol. 2010, 76, 7004–7012. [Google Scholar] [CrossRef] [Green Version]
- Olson, N.D.; Morrow, J.B. DNA extract characterization process for microbial detection methods development and validation. BMC Res. Notes 2012, 5, 668. [Google Scholar] [CrossRef] [Green Version]
- Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M.W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannell, D.J. Pests and pesticides, risk and risk aversion. Agric. Econ. 1991, 5, 361–383. [Google Scholar] [CrossRef]
- Anco, D.J.; (Extension Peanut Specialist, Clemson University, Blackville, SC, USA). Personal Communication, 2019.
- Jordan, D.L.; Hare, A.T.; Roberson, G.T.; Shew, B.B.; Brandenburg, R.L.; Anco, D.; Balota, M.; Mehl, H.; Taylor, S. Summary of variables associated with application of plant protection products in peanut. Crop Forage Turfgrass Manag. 2018, 4, 1–3. [Google Scholar] [CrossRef]
- Edisto Research and Education Center EREC Weather Data and Report 2014–2020. Available online: https://www.clemson.edu/extension/bulltest/edisto/erecwx/ (accessed on 4 October 2020).
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, M.; Wang, H.; Dufault, N.S.; Anco, D.J. Early Detection of Airborne Inoculum of Nothopassalora personata in Spore Trap Samples from Peanut Fields Using Quantitative PCR. Plants 2020, 9, 1327. https://doi.org/10.3390/plants9101327
Munir M, Wang H, Dufault NS, Anco DJ. Early Detection of Airborne Inoculum of Nothopassalora personata in Spore Trap Samples from Peanut Fields Using Quantitative PCR. Plants. 2020; 9(10):1327. https://doi.org/10.3390/plants9101327
Chicago/Turabian StyleMunir, Misbakhul, Hehe Wang, Nicholas S. Dufault, and Daniel J. Anco. 2020. "Early Detection of Airborne Inoculum of Nothopassalora personata in Spore Trap Samples from Peanut Fields Using Quantitative PCR" Plants 9, no. 10: 1327. https://doi.org/10.3390/plants9101327
APA StyleMunir, M., Wang, H., Dufault, N. S., & Anco, D. J. (2020). Early Detection of Airborne Inoculum of Nothopassalora personata in Spore Trap Samples from Peanut Fields Using Quantitative PCR. Plants, 9(10), 1327. https://doi.org/10.3390/plants9101327