Growth and Phenology of Vulpia Myuros in Comparison with Apera Spica-Venti, Alopecurus Myosuroides and Lolium Multiflorum in Monoculture and in Winter Wheat
Abstract
:1. Introduction
2. Material and Methods
2.1. Field Studies
2.2. Greenhouse Study
2.3. Data Analysis
2.3.1. Field Studies
2.3.2. Greenhouse Study
3. Results
3.1. Field Studies
3.1.1. Weed Density
3.1.2. Cumulative Emergence
3.1.3. Phenological Behavior
3.1.4. Biomass Accumulation
3.1.5. Seed Shedding and Seed Production
3.2. Greenhouse Study
4. Discussion
4.1. Cumulative Emergence
4.2. Growth and Phenology
4.3. Seed Shedding and Seed Production
4.4. Greenhouse Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akhter, M.J.; Jensen, P.K.; Mathiassen, S.K.; Melander, B.; Kudsk, P. Biology and Management of Vulpia myuros—An Emerging Weed Problem in No-Till Cropping Systems in Europe. Plants 2020, 9, 715. [Google Scholar] [CrossRef]
- Mathiassen, S.K.; Kudsk, P. Control of Vulpia myuros in red fescue. In Proceedings of the 7th International Herbage Seed Conference, Dallas, TX, USA, 11–14 April 2010; Smith, G.R., Evers, G.W., Nelson, L.R., Eds.; International Herbage Seed Group (IHSG): Dallas, TX, USA, 2010; pp. 136–140. [Google Scholar]
- Jensen, P.K.; Kristensen, K. Annual grasses in crop rotations with grass seed production—A survey with special focus on Vulpia spp. in red fescue production. Acta Agric. Scand. Sect. B 2013, 63, 604–611. [Google Scholar]
- Akhter, M.J.; Mathiassen, S.K.; Melander, B.; Kudsk, P. Rattail Fescue (Vulpia myuros) Interference and Seed Production as Affected by Sowing Time and Crop Density in Winter Wheat. Weed Sci. 2009, 21, 583–590. [Google Scholar]
- Lemerle, D.; Luckett, D.J.; Lockley, P.; Koetz, E.; Wu, H. Competitive ability of Australian canola (Brassica napus) genotypes for weed management. Crop Pasture Sci. 2014, 65, 1300–1310. [Google Scholar] [CrossRef]
- Torner, C.; Sanchez, M.J.; Satorre, E.; Fernández-Quintanilla, C. A comparison of the growth patterns and the competitive ability of four annual weeds. Agronomie 2000, 20, 147–156. [Google Scholar] [CrossRef]
- Hegazy, A.K.; Fahmy, G.M.; Ali, M.I.; Gomaa, N.H. Growth and phenology of eight common weed species. J. Arid Environ. 2005, 61, 171–183. [Google Scholar] [CrossRef]
- Yu, Q.; Shane Friesen, L.J.; Zhang, X.Q.; Powles, S.B. Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic. Biochem. Physiol. 2004, 78, 21–30. [Google Scholar] [CrossRef]
- Carvalho, L.B.; Bianco, S.; Pitelli, R.A. Growth and mineral nutrition of Ipomoea quamoclit. Planta Daninha 2009, 27, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Dillon, S.P.; Forcella, F. Germination, Emergence, Vegetative Growth and Flowering of 2 Silvergrasses, Vulpia-Bromoides (L) Gray, S.F. And Vulpia-Myuros (L) Cc-Gmel. Aust. J. Bot. 1984, 32, 165–175. [Google Scholar] [CrossRef]
- Hull, R.; Mathiassen, S.K.; Moss, S.R. Herbicidal control of Vulpia myuros (Rat’s-tail fescue) in glasshouse screening tests. Asp. Appl. Biol. 2011, 106, 75–81. [Google Scholar]
- Hess, M.; Barralis, G.; Bleiholder, H.; Buhr, L.; Eggers, T.H.; Hack, H.; Stauss, R. Use of the extended BBCH scale—General for the descriptions of the growth stages of mono; and dicotyledonous weed species. Weed Res. 1997, 37, 433–441. [Google Scholar] [CrossRef]
- Melander, B. Impact of drilling date on Apera spica-venti L. and Alopecurus myosuroides Huds, in winter cereals. Weed Res. 1995, 35, 157–166. [Google Scholar] [CrossRef]
- Swanton, C.J.; Nkoa, R.; Blackshaw, R.E. Experimental methods for crop–weed competition studies. Weed Sci. 2015, 63, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Keshtkar, E.; Mathiassen, S.K.; Kudsk, P. No Vegetative and Fecundity Fitness Cost Associated with Acetyl-Coenzyme A Carboxylase Non-target-site Resistance in a Black-Grass (Alopecurus myosuroides Huds) Population. Front. Plant Sci. 2017, 8, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritz, C.; Pipper, C.B.; Streibig, J.C. Analysis of germination data from agricultural experiments. Eur. J. Agron. 2013, 45, 1–6. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritz, C.; Streibig, J.C. Bioassay analysis using R. J. Stat. Softw. 2005, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Labouriau, R. postHoc: Tools for Post-Hoc Analysis; Rodrigo Labouriau: Aarhus, Denmark, 2020. [Google Scholar]
- Chauvel, B.; Munier-Jolain, N.; Letouzé, A.; Grandgirard, D. Developmental patterns of leaves and tillers in a black-grass population (Alopecurus myosuroides Huds.). Agronomie 2000, 20, 247–257. [Google Scholar] [CrossRef]
- Naylor, R. Biological flora of the British Isles. No. 129 Alopecurus myosuroides Huds.(A. agrestis L.). J. Ecol. 1972, 60, 611–622. [Google Scholar] [CrossRef]
- Kirby, E.; Appleyard, M.; Fellowes, G. Effect of sowing date and variety on main shoot leaf emergence and number of leaves of barley and wheat. Agronomie 1985, 5, 117–126. [Google Scholar] [CrossRef]
- Scherner, A.; Melander, B.; Jensen, P.K.; Kudsk, P.; Avila, L.A. Reducing tillage intensity affects the cumulative emergence dynamics of annual grass weeds in winter cereals. Weed Res. 2017, 57, 314–322. [Google Scholar] [CrossRef]
- Scherner, A.; Melander, B.; Jensen, P.K.; Kudsk, P.; Avila, L.A. Germination of winter annual grass weeds under a range of temperatures and water potentials. Weed Sci. 2017, 65, 468–478. [Google Scholar] [CrossRef]
- Jensen, P.K. Use of integrated weed management tools in crop rotations with grass seed production. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 209–218. [Google Scholar] [CrossRef]
- Jensen, P.K. Model for spiring af ukrudtsgræsser. In Anvendelsesorienteret Planteværn 2012; Aarhus Universitet, Institut for Agroøkologi: Aarhus C, Denmark, 2013; pp. 135–139. [Google Scholar]
- Wallgren, B.; Avholm, K. Dormancy and germination of Apera spica-venti L. and Alopecurus myosuroides Huds. seeds. Swed. J. Agric. Res. 1978, 8, 11–15. [Google Scholar]
- Tribouillois, H.; Dürr, C.; Demilly, D.; Wagner, M.H.; Justes, E. Determination of germination response to temperature and water potential for a wide range of cover crop species and related functional groups. PLoS ONE 2016, 11, e0161185. [Google Scholar] [CrossRef]
- Keshtkar, E.; Mathiassen, S.K.; AghaAlikhani, M.; Kudsk, P. Differences in growth, development and innate seed dormancy of susceptible and fenoxaprop-P non-target site resistant black-grass sub-populations. Crop Prot. 2020, 129, 105022. [Google Scholar] [CrossRef]
- Friend, D.J.C. Tillering and leaf production in wheat as affected by temperature and light intensity. Can. J. Bot. 1965, 43, 1063–1076. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Bajwa, A.; Matloob, A.; Areeb, A.; Ashraf, U.; Hafeez, A.; Imran, M.J.P.D. Crop growth and yield losses in wheat due to little seed canary grass infestation differ with weed densities and changes in environment. Planta Daninha 2017, 35. [Google Scholar] [CrossRef] [Green Version]
- Spink, J.H.; Semere, T.; Sparkes, D.L.; Whaley, J.M.; Foulkes, M.J.; Clare, R.W.; Scott, R.K. Effect of sowing date on the optimum plant density of winter wheat. Ann. Appl. Biol. 2000, 137, 179–188. [Google Scholar] [CrossRef]
- Fielder, A. Interactions Between Variety and Sowing Date for Winter Wheat and Winter Barley; Home-Grown Cereals Authority: Stoneleigh, UK, 1988.
- Kudsk, P. Optimising herbicide performance. In Weed Research: Expanding Horizons Hatcher, 1st ed.; Hatcher, P.E., Froud-Williams, R.J., Eds.; Wiley, Garsington Road: Oxford, UK, 2017; Volume 1, pp. 149–179. [Google Scholar]
- Soukup, J.; Novakova, K.; Hamouz, P.; Namestek, J.J.Z. Ecology of silky bent grass (Apera spica-venti (L.) Beauv.), its importance and control in the Czech Republic. J. Plant Dis. Prot. 2006, 20, 73–80. [Google Scholar]
- Tozer, K. Ecology and Management of Vulpia spp. G.C. Gmelin in Perennial Pastures of Southern Australia. Ph.D. Thesis, Institute of Land and Food Resources, University of Melbourne, Melbourne, Australia, 2004. [Google Scholar]
- Peacock, J.M. Temperature and leaf growth in four grass species. J. Appl. Ecol. 1976, 13, 225–232. [Google Scholar] [CrossRef]
- Scursoni, J.A.; Palmano, M.; De Notta, A.; Delfino, D. Italian ryegrass (Lolium multiflorum Lam.) density and N fertilization on wheat (Triticum aestivum L.) yield in Argentina. Crop Prot. 2012, 32, 36–40. [Google Scholar] [CrossRef]
- Barroso, A.; Ferreira, P.; Martins, D.J.P.D. Crescimento e Desenvolvimento de Plantas Daninhas do Gênero Ipomoea. Planta Daninha 2019, 37, e019186421. [Google Scholar]
- Gerhards, R.; Massa, D. Zweijährige Untersuchungen mit Herbizidresistenten Populationen von Windhalm (Apera spica-venti L. Beauv.) in Winterweizen–Populationsdynamik, Ertragsverlsute, Bekämpfungserfolg und Auskreuzung der Herbizidresistenz in Sensitive Populationen; 2011 United States Department of Agriculture: Washington, DC, USA; pp. 75–82.
- Bitarafan, Z.; Andreasen, C. Seed Production and Retention at Maturity of Blackgrass (Alopecurus myosuroides) and Windgrass (Apera spica-venti) at Wheat Harvest. Weed Sci. 2020. [Google Scholar] [CrossRef]
- Walsh, M.J.; Broster, J.C.; Schwartz-Lazaro, L.M.; Norsworthy, J.K.; Davis, A.S.; Tidemann, B.D.; Beckie, H.J.; Lyon, D.J.; Soni, N.; Neve, P.J.P.M.S. Opportunities and challenges for harvest weed seed control in global cropping systems. Pest Manag. Sci. 2018, 74, 2235–2245. [Google Scholar] [CrossRef]
- Warwick, S.I.; Black, L.D.; Zilkey, B.F. Biology of Canadian Weeds: 72. Apera Spica-Venti. Can. J. Plant Sci. 1985, 65, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Menchari, Y.; Chauvel, B.; Darmency, H.; Délye, C. Fitness costs associated with three mutant acetyl-coenzyme A carboxylase alleles endowing herbicide resistance in black-grass Alopecurus myosuroides. J. Appl. Ecol. 2008, 45, 939–947. [Google Scholar] [CrossRef]
- Scherner, A.; Melander, B.; Kudsk, P. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil Till. Res. 2016, 161, 135–142. [Google Scholar] [CrossRef]
- Jensen, P.K. Longevity of seeds of four annual grass and two dicotyledon weed species as related to placement in the soil and straw disposal technique. Weed Res. 2009, 49, 592–601. [Google Scholar] [CrossRef]
- Jensen, P.K. Longevity of seeds of Poa trivialis and Vulpia myuros as affected by simulated soil tillage practices and straw disposal technique. Grass Forage Sci. 2010, 65, 76–84. [Google Scholar] [CrossRef]
- Sønderskov, M.; Somerville, G.J.; Lacoste, M.; Jensen, J.E.; Holst, N. DK-RIM: Assisting Integrated Management of Lolium multiflorum, Italian Ryegrass. Agronomy 2020, 10, 856. [Google Scholar] [CrossRef]
Regression Parameters a | ||||||||
---|---|---|---|---|---|---|---|---|
b (95% CI) c | GERM10 (°C) (95% CI) | GERM50 (°C) (95% CI) | GERM90 (°C) (95% CI) | |||||
2017/18 | 2018/19 | 2017/18 | 2018/19 | 2017/18 | 2018/19 | 2017/18 | 2018/19 | |
V. myuros | −5.0 (−5.4, −4.6) (1) | −4.9 (−5.3, −4.5) (1) | 127 (119–134) (1) | 152 (142–161) (1) | 197 (189–205) (1) | 237 (227–247) (1) | 305 (286–324) (1) | 371 (347–395) (1) |
L. multiflorum | −5.7 (−6.2, −5.2) (2) | −9.5 (−10.4, −8.5) (2) | 122 (116–128) (2) | 158 (153–163) (2) | 179 (173–186) (2) | 199 (195–203) (2) | 263 (248–277) (2) | 251 (242–260) (2) |
A. myosuroides | −5.0 (−5.5, −4.7) (3) | −5.0 (-5.4, −4.5) (3) | 144 (136–151) (3) | 161 (152–170) (3) | 221 (212–230) (3) | 250 (240–260) (3) | 340 (320–361) (3) | 389 (364–414) (3) |
A. spica-venti | −4.8 (−5.2, −4.4) (4) | −5.2 (−5.6, −4.7) (4) | 168 (156–178) (4) | 188 (178–198) (4) | 265 (254–276) (4) | 288 (276–299) (4) | 418 (393–444) (4) | 440 (412–468) (4) |
Significance levels b | 1 vs. 2, p = 0.059 | 1 vs. 2, p < 0.001 | 1 vs. 2, p = 0.350 | 1 vs. 2, p = 0.260 | 1 vs. 2, p < 0.001 | 1 vs. 2, p < 0.001 | 1 vs. 2, p < 0.001 | 1 vs. 2, p < 0.001 |
1 vs. 3, p = 0.778 | 1 vs. 3, p = 0.835 | 1 vs. 3, p < 0.001 | 1 vs. 3, p = 0.166 | 1 vs. 3, p < 0.001 | 1 vs. 3, p = 0.067 | 1 vs. 3, p = 0.017 | 1 vs. 3, p = 0.330 | |
1 vs. 4, p = 0.609 | 1 vs. 4, p = 0.488 | 1 vs. 4, p < 0.001 | 1 vs. 4, p < 0.001 | 1 vs. 4, p < 0.001 | 1 vs. 4, p < 0.001 | 1 vs. 4, p < 0.001 | 1 vs. 4, p < 0.001 | |
2 vs. 3, p = 0.104 | 2 vs. 3, p < 0.001 | 2 vs. 3, p < 0.001 | 2 vs. 3, p = 0.550 | 2 vs. 3, p < 0.001 | 2 vs. 3, p < 0.001 | 2 vs. 3, p < 0.001 | 2 vs. 3, p < 0.001 | |
2 vs. 4, p = 0.016 | 2 vs. 4, p < 0.001 | 2 vs. 4, p < 0.001 | 2 vs. 4, p < 0.001 | 2 vs. 4, p < 0.001 | 2 vs. 4, p < 0.001 | 2 vs. 4, p < 0.001 | 2 vs. 4, p < 0.001 | |
3 vs. 4, p = 0.424 | 3 vs. 4, p = 0.627 | 3 vs. 4, p < 0.001 | 3 vs. 4, p < 0.001 | 3 vs. 4, p < 0.001 | 3 vs. 4, p < 0.001 | 3 vs. 4, p < 0.001 | 3 vs. 4, p < 0.001 |
Regression Parameters a | |||||||||
---|---|---|---|---|---|---|---|---|---|
c | TIME50 (°C) | d | |||||||
Weed species | −Wheat c | +Wheat | −Wheat | +Wheat | −Wheat | +Wheat | Ratio b | ||
V. myuros | 11.4 (2.1) | ns | 8.3 (31.2) | 1317.0 (19.6) | ns | 1020.0 (587.7) | 14.8 (0.7) | 1.5 (0.6) | 0.11 (0.04) p < 0.001 |
L. multiflorum | 6.0 (1.3) | ns | 4.5 (2.3) | 1251.0 (37.2) | ns | 1235.0 (178.3) | 14.9 (1.2) | 6.2 (2.2) | 0.42 (0.15) p < 0.001 |
A. myosuriodes | 8.7 (2.3) | ns | 5.6 (2.4) | 1230.0 (23.5) | ns | 1016.0 (107.7) | 16.4 (0.7) | 4.7 (0.5) | 0.29 (0.04) p < 0.001 |
Regression Parameters a | |||||||||
---|---|---|---|---|---|---|---|---|---|
c | TIME50 (°C) | d | |||||||
Weed species | −Wheat c | +Wheat | −Wheat | +Wheat | −Wheat | +Wheat | Ratio b | ||
V. myuros | −10.1 (1.7) | ns | −9.5 (5.9) | 1548.0 (36.5) | ns | 1384.0 (124.6) | 29.3 (2.6) | 5.4 (1.2) | 0.18 (0.04) p < 0.001 |
L. multiflorum | −11.7 (2.6) | ns | −15.4 (5.5) | 1380.0 (38.2) | ns | 1343.0 (44.8) | 15.2 (1.2) | 10.3 (1.0) | 0.68 (0.08) p < 0.001 |
A. myosuroides | −9.8 (1.7) | ns | −17.3 (14.4) | 1319.0 (34.9) | ns | 1263.0 (51.7) | 22.0 (1.6) | 7.1 (0.9) | 0.32 (0.05) p < 0.001 |
2017/18 | 2018/19 | |||||
---|---|---|---|---|---|---|
−Wheat a | +Wheat | ratio b | −Wheat | +Wheat | Ratio | |
V. myuros | 14478 (7833–22715) | 574 (472–678) | 0.04 (0.02–0.07) c | 16680 (15019–18446) | 1822 (1509–2169) | 0.11 c (0.10–0.12) |
L. multiflorum | 2364 (2136–2724) | 426 (339–818) | 0.20 (0.16–0.25) d | 4264 (3691–4774) | 958 (752–1158) | 0.22 d (0.20–0.24) |
A. myosuroides | 4896 (4320–5504) | 891 (702–1097) | 0.19 (0.14–0.24) d | 12120 (10119–14143) | 2912 (2172–3787) | 0.24 d (0.21–0.27) |
2017/18 Experiment | 1-2-Leaf Stage | 3-4-Leaf Stage | ||||||
---|---|---|---|---|---|---|---|---|
Plant traits | Harvest time | V. myuros (1) | Significance level b | A. spica-venti (2) | V.myuros (3) | Significance level b | A. spica-venti (4) | Significance level c |
Biomass | BBCH (26–29) | 104 (21.0) | p = 0.008 | 35 (9.7) | 51 (25.8) | ns | 16 (7.2) | 1 vs. 3, p = 0.035, 2 vs. 4 = ns |
BBCH (39–47) | 28 (6.1) | p = 0.002 | 92 (31.0) | 47 (39.3) | ns | 52 (23.0) | 1 vs. 3 = ns, 2 vs. 4 = ns | |
BBCH (81–90) | 30 (5.6) | p = 0.043 | 82 (24.4) | 11 (3.52) | ns | 24 (11.7) | 1 vs. 3, p = 0.004, 2 vs. 4, p = 0.037 | |
Potential seed production | BBCH (81–90) | 39 (7.7) | ns | 35 (8.9) | 16 (7.39) | ns | 20 (7.7) | 1 vs. 3, p = 0.038, 2 vs. 4 = ns |
2018/19 experiment | ||||||||
Biomass | BBCH (26–29) | 30 (4.0) | ns | 17 (4.4) | 24 (10.2) | ns | 14 (12.7) | 1 vs. 3 = ns, 2 vs. 4 = ns |
BBCH (39–47) | 10 (4.5) | p = 0.0013 | 29 (6.8) | 9 (9.4) | ns | 14 (7.4) | 1 vs. 3 = ns, 2 vs. 4 = ns | |
BBCH (81–90) | 14 (5.9) | p < 0.001 | 51 (9.2) | 7 (3.4) | ns | 14 (4.2) | 1 vs. 3 = ns, 2 vs. 4, p < 0.001 | |
Potential seed production | BBCH (81–90) | 18 (4.6) | ns | 43 (15.8) | 6 (2.5) | ns | 14 (7.8) | 1 vs. 3, p = 0.018, 2 vs. 4 = ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javaid Akhter, M.; Melander, B.; Mathiassen, S.K.; Labouriau, R.; Vendelbo Nielsen, S.; Kudsk, P. Growth and Phenology of Vulpia Myuros in Comparison with Apera Spica-Venti, Alopecurus Myosuroides and Lolium Multiflorum in Monoculture and in Winter Wheat. Plants 2020, 9, 1495. https://doi.org/10.3390/plants9111495
Javaid Akhter M, Melander B, Mathiassen SK, Labouriau R, Vendelbo Nielsen S, Kudsk P. Growth and Phenology of Vulpia Myuros in Comparison with Apera Spica-Venti, Alopecurus Myosuroides and Lolium Multiflorum in Monoculture and in Winter Wheat. Plants. 2020; 9(11):1495. https://doi.org/10.3390/plants9111495
Chicago/Turabian StyleJavaid Akhter, Muhammad, Bo Melander, Solvejg Kopp Mathiassen, Rodrigo Labouriau, Svend Vendelbo Nielsen, and Per Kudsk. 2020. "Growth and Phenology of Vulpia Myuros in Comparison with Apera Spica-Venti, Alopecurus Myosuroides and Lolium Multiflorum in Monoculture and in Winter Wheat" Plants 9, no. 11: 1495. https://doi.org/10.3390/plants9111495
APA StyleJavaid Akhter, M., Melander, B., Mathiassen, S. K., Labouriau, R., Vendelbo Nielsen, S., & Kudsk, P. (2020). Growth and Phenology of Vulpia Myuros in Comparison with Apera Spica-Venti, Alopecurus Myosuroides and Lolium Multiflorum in Monoculture and in Winter Wheat. Plants, 9(11), 1495. https://doi.org/10.3390/plants9111495