Comparison of Soaking Corms with Moringa Leaf Extract Alone or in Combination with Synthetic Plant Growth Regulators on the Growth, Physiology and Vase Life of Sword Lily
Abstract
:1. Introduction
2. Results
2.1. Days to 50% Sprouting
2.2. Days to Harvest
2.3. Growth Parameters
2.4. Leaf Mineral Composition
2.5. Physiological and Biochemical Parameters
2.6. Corms Yield
2.7. Ornamental Parameters
3. Discussion
4. Materials and Methods
4.1. Solutions
4.2. Experimental Setup
4.3. Plant Vegetative and Reproductive Growth
4.4. Vase Life Determination
4.5. Leaf Physiological Parameters and Mineral Concentrations
4.6. Total Soluble Proteins and Leaf Free-Proline Contents
4.7. Experimental Design and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Younis, A.; Akhtar, M.S.; Riaz, A.; Zulfiqar, F.; Qasim, M.; Farooq, A.; Tariq, U.; Ahsan, M.; Bhatti, Z.M. Improved cut flower and corm production by exogenous moringa leaf extract application on gladiolus cultivars. Acta Sci. Pol. Hortorum Cultus 2018, 17, 25–38. [Google Scholar] [CrossRef]
- Hassan, F.; Fetouh, M.I. Does moringa leaf extract have preservative effect improving the longevity and postharvest quality of gladiolus cut spikes? Sci. Hortic. 2019, 250, 287–293. [Google Scholar] [CrossRef]
- Mollaei, S.; Farahmand, H.; Tavassolian, I. The effects of 24-epibrassinolide corm priming and foliar spray on morphological, biochemical, and postharvest traits of sword lily. Hortic. Environ. Biotechnol. 2018, 59, 325–333. [Google Scholar] [CrossRef]
- Bergmann, B.A.; Dole, J.M.; Fisher, P.; Njue, G.; McCall, I. Gibberellic acid promotes flower stem elongation in ‘Renaissance Red’poinsettia. Can. J. Plant Sci. 2016, 97, 14–16. [Google Scholar]
- Ayyub, C.M.; Haidar, M.W.; Zulfiqar, F.; Abideen, Z.; Wright, S.R. Potato tuber yield and quality in response to different nitrogen fertilizer application rates under two split doses in an irrigated sandy loam soil. J. Plant Nutr. 2019, 42, 1850–1860. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Saeed, T.; Hassana, I.; Abbasia, N.A.; Ghulam-Jilani, G. Antioxidative activities and qualitative changes in gladiolus cutfowers in response to salicylic acid application. Sci. Hortic. 2016, 210, 236–241. [Google Scholar] [CrossRef]
- Shabanian, S.; Esfahani, M.N.; Karamian, R.; Tran, L.S.P. Salicylic acid modulates cutting-induced physiological and biochemical responses to delay senescence in two gerbera cultivars. Plant Growth Regul. 2018, 87, 245–256. [Google Scholar] [CrossRef]
- Fu, L.; Tan, D.; Sun, X.; Ding, Z.; Zhang, J. Transcriptional analysis reveals potential genes and regulatory networks involved in salicylic acid-induced flowering in duckweed (Lemna gibba). Plant Physiol. Biochem. 2020, 155, 512–522. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Younis, A.; Abideen, Z.; Francini, A.; Ferrante, A. Bioregulators Can Improve Biomass Production, Photosynthetic Efficiency, and Ornamental Quality of Gazania rigens L. Agronomy 2019, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, B.A.; Dole, J.M.; McCall, I. Gibberellic Acid Shows Promise for Promoting Flower Stem Length in Four Field-grown Cut Flowers. Hort. Technol. 2016, 26, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Saeed, T.; Hassan, I.; Abbasi, N.A.; Jilani, G. Effect of gibberellic acid on the vase life and oxidative activities in senescing cut gladiolus flowers. Plant Growth Regul. 2014, 72, 89–95. [Google Scholar] [CrossRef]
- Rudnicki, R.; Nowak, J.; Saniewski, M. The effect of gibberellic acid on sprouting and flowering of some tulip cultivars. Sci. Hortic. 1976, 4, 387–397. [Google Scholar] [CrossRef]
- Ramzan, F.; Younis, A.; Riaz, A.; Ali, S.; Siddique, M.I.; Lim, K.-B. Pre-planting exogenous application of gibberellic acid influences sprouting, vegetative growth, flowering, and subsequent bulb characteristics of ‘Ad-Rem’ tulip. Hortic. Environ. Biotechnol. 2014, 55, 479–488. [Google Scholar] [CrossRef]
- Ahmad, I.; Tanveer, M.U.; Liaqat, M.; Dole, J.M. Comparison of corm soaks with preharvest foliar application of moringa leaf extract for improving growth and yield of cut Freesia hybrida. Sci. Hortic. 2019, 254, 21–25. [Google Scholar] [CrossRef]
- Ball RedBook: Greenhouse growing. Choice Rev. Online 1992, 29, 29. [CrossRef]
- Fuglie, L.J. The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics. The Multiple Attributes of Moringa. Int. J. Adv. Res. Ideas Innov. Tehnol. 2000, 3, 172. [Google Scholar]
- Price, M. The Moringa Tree. ECHO Technical Note, eBook. 2007. Available online: http://wwwmiracletrees.org./Moringa-doc/ebookMoringapdf (accessed on 12 October 2019).
- Nagar, P.K.; Iyer, R.I.; Sircar, P.K. Cytokinins in developing fruits of Moringa pterigosperma Gaertn. Physiol. Plant 1982, 55, 45–50. [Google Scholar] [CrossRef]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, Y.; Jaskani, M.J.; Mehmood, A.; Qasim, M.; Akhtar, G. Alleviation of gladiolus (Gladiolus grandiflorus) corm dormancy through application of 6-benzylaminopurine and gibberellic acid. Pak. J. Bot. 2019, 52, 831–838. [Google Scholar] [CrossRef]
- Hedden, P.; Sponsel, V.M. A Century of Gibberellin Research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prajapati, S.; Sharma, S.K.; Kadwey, S. Salicylic Acid a multifaceted hormone for vegetable crops-A Review. Trends Biosci. 2015, 8, 1179–1185. [Google Scholar]
- Van Butselaar, T.; Ackerveken, G.V.D. Salicylic Acid Steers the Growth—Immunity Tradeoff. Trends Plant Sci. 2020, 25, 566–576. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Yameogo, C.W.; Bengaly, M.D.; Savadogo, A.; Nikiema, P.A.; Traore, S.A. Determination of Chemical Composition and Nutritional Values of Moringa oleifera Leaves. Pak. J. Nutr. 2011, 10, 264–268. [Google Scholar] [CrossRef] [Green Version]
- El Sohaimy, S.A.; Hamad, G.M.; Mohamed, S.E.; Amar, M.H.; Al-Hindi, R.R. Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food. Global Adv. Res. J. Agric. Sci. 2015, 4, 188–199. [Google Scholar]
- Rehman, H.U.; Basra, S.M.; Rady, M.M.; Ghoneim, A.M.; Wang, Q. Moringa Leaf Extract Improves Wheat Growth and Productivity by Affecting Senescence and Source-sink Relationship. Int. J. Agric. Biol. 2017, 19, 479–484. [Google Scholar] [CrossRef]
- Mbandlwa, N.P.; Fotouo-M, H.; Maboko, M.M.; Sivakumar, D. Stomatal conductance, leaf chlorophyll content, growth, and yield of sweet pepper in response to plant growth regulators. Int. J. Veg. Sci. 2019, 26, 116–126. [Google Scholar] [CrossRef]
- Foidl, N.; Makkar, H.P.S.; Becker, K. The potential use of moringa oleifera for agriculture and industrial uses. In The Miracle Tree: The Multiple Attributes of Moringa oleifera; Fuglie, L.J., Ed.; CWS: Dakar, Senegal, 2001; pp. 91–195. [Google Scholar]
- Nouman, W.; Siddiqui, M.T.; Basra, S.M.A. Moringa oleifera leaf extract: An innovative priming tool for rangeland grasses. Turk. J. Agric. For. 2012, 36, 65–75. [Google Scholar]
- Jackson, M. Soil Chemical Analysis; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1962; p. 498. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters. Soil Sci. 1962, 93, 68. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
* Treatments | 50% Germination (Days) | Production Time (Days to Harvest) | Plant Height (cm) | Leaves per Plant (Number) | Leaf Area (cm2) |
---|---|---|---|---|---|
Control | 9.1a 1 | 82.8a | 134.4c | 7.4c | 59.5c |
MLE | 6.8b | 75.0b | 148.8b | 8.5b | 62.0bc |
MLE + SA | 6.6b | 73.0c | 151.9b | 8.6ab | 63.6ab |
MLE + GA | 6.5b | 72.0d | 151.5b | 8.6ab | 62.2bc |
MLE+SA + GA | 5.4c | 71.0e | 159.5a | 8.8a | 65.8a |
** ANOVA p value | <0.0001 | 0.0000 | <0.0001 | <0.0001 | <0.0001 |
* Treatments | Leaf N (%) | Leaf P (%) | Leaf K (%) | Total Soluble Protein (mg g −1 FW) | Proline (µg g −1 FW) |
---|---|---|---|---|---|
Control | 0.94e 1 | 0.15d | 0.42e | 16.40ab | 22.70c |
MLE | 1.37d | 0.24c | 0.51d | 14.84b | 23.96b |
MLE + SA | 1.42c | 0.26b | 0.59b | 15.78ab | 23.06c |
MLE + GA | 1.45b | 0.25c | 0.56c | 16.76a | 23.94b |
MLE + SA + GA | 1.53a | 0.28a | 0.64a | 17.18a | 27.04a |
** ANOVA Significance | <0.0001 | <0.0001 | <0.0001 | 0.0041 | <0.0001 |
* Treatments | Corm Diameter (cm) | Corm Mass (g) | Leaf Greenness (SPAD) | Photosynthesis Rate (mmol m−2 s−1) |
---|---|---|---|---|
Control | 3.2e 1 | 13.3d | 84.4c | 4.6d |
MLE | 4.3d | 16.6b | 107.5b | 5.6c |
MLE + SA | 4.5b | 16.7b | 110.0ab | 6.0bc |
MLE + GA | 4.4c | 15.6c | 108.1ab | 6.2ab |
MLE + SA + GA | 4.6a | 22.2a | 112.1a | 6.6a |
** ANOVA Significance | <0.0001 | <0.0001 | < 0.0001 | <0.0001 |
* Treatments | Spike Length (cm) | Florets per Spike (No) | Vase Life (Days) | Stem Thickness (mm) |
---|---|---|---|---|
Control | 86.2b1 | 15.2b | 11.3c | 9.7a |
MLE | 92.3a | 18.7a | 13.0b | 9.9a |
MLE + SA | 93.4a | 19.4a | 12.4bc | 10.0a |
MLE + GA | 89.2ab | 18.6a | 13.7ab | 9.8a |
MLE + SA + GA | 91.0a | 20.0a | 14.8a | 9.8a |
** ANOVA Significance | 0.0002 | <0.0001 | <0.0001 | 0.2567 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulfiqar, F.; Younis, A.; Finnegan, P.M.; Ferrante, A. Comparison of Soaking Corms with Moringa Leaf Extract Alone or in Combination with Synthetic Plant Growth Regulators on the Growth, Physiology and Vase Life of Sword Lily. Plants 2020, 9, 1590. https://doi.org/10.3390/plants9111590
Zulfiqar F, Younis A, Finnegan PM, Ferrante A. Comparison of Soaking Corms with Moringa Leaf Extract Alone or in Combination with Synthetic Plant Growth Regulators on the Growth, Physiology and Vase Life of Sword Lily. Plants. 2020; 9(11):1590. https://doi.org/10.3390/plants9111590
Chicago/Turabian StyleZulfiqar, Faisal, Adnan Younis, Patrick M. Finnegan, and Antonio Ferrante. 2020. "Comparison of Soaking Corms with Moringa Leaf Extract Alone or in Combination with Synthetic Plant Growth Regulators on the Growth, Physiology and Vase Life of Sword Lily" Plants 9, no. 11: 1590. https://doi.org/10.3390/plants9111590
APA StyleZulfiqar, F., Younis, A., Finnegan, P. M., & Ferrante, A. (2020). Comparison of Soaking Corms with Moringa Leaf Extract Alone or in Combination with Synthetic Plant Growth Regulators on the Growth, Physiology and Vase Life of Sword Lily. Plants, 9(11), 1590. https://doi.org/10.3390/plants9111590