Analysis of Relative Scent Intensity, Volatile Compounds and Gene Expression in Freesia “Shiny Gold”
Abstract
:1. Introduction
2. Results and Discussion
2.1. Relative Scent Intensity in “Shiny Gold”
2.2. Comparison of Relative Scent Intensity in Freesia Cultivars
2.3. Volatile Compounds of Four Freesia Cultivars Detected by HS-SPME-GC–MS Analysis
2.4. Gene Expression in Flowering Stages
2.4.1. TPS Expression in “Shiny Gold”
2.4.2. Relative Expression of TPS Genes in “Shiny Gold” in Comparison to Three Cultivars
2.4.3. Linalool Synthase Gene Expression in Four Cultivars
3. Materials and Methods
3.1. Plant Materials
3.2. Floral Samples for E-Nose Analyses
3.3. Scent Pattern Detection Using E-Nose
3.4. Collection of Volatiles Using HS-SPME Combined with GC–MS Analysis
3.5. Analyses of Volatile Compounds Using GC–MS
3.6. RNA Isolation and cDNA Synthesis
3.7. Quantitative Real-Time PCR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schoonhoven, L.M.; Van Loon, B.; van Loon, J.J.; Dicke, M. Insect-Plant Biology; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Schiestl, F.P. The evolution of floral scent and insect chemical communication. J. Ecol. Lett. 2010, 13, 643–656. [Google Scholar] [CrossRef]
- Kessler, D.; Diezel, C.; Clark, D.G.; Colquhoun, T.A.; Baldwin, I.T. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol. Lett. 2013, 16, 299–306. [Google Scholar] [CrossRef]
- Kim, H. Effects of the floral arts program on psychology and brain EEG of middle-aged women. J. Korean Floral Art Res. Assn. 2006, 8, 56–69. [Google Scholar]
- Goldblatt, P. Systematics of Freesia Klatt (Iridaceae) [1982]. J. S. Afr. Bot. 2013, 48, 39–91. [Google Scholar]
- Motozu, T.; Center, I.A. Historical changes of breeding, cultivation research and commercial production in cut freesia. Hortic. Res. Jpn. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- YFMC. 2019. Available online: http://at.or.kr (accessed on 21 January 2019).
- Morinaka, Y.; Takatsu, Y.; Hayashi, M.J. Sensory evaluation of floral scent in freesia (Freesia hybrida hort.) cultivars. J. Jpn. Soc. Hortic. Sci. 2002, 71, 702–709. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.H.; Kim, M.S.; Park, P.H.; Park, S.Y. Scent analysis using an electronic nose and flowering period of potted diploid and tetraploid Cymbidium. Korean J. Hortic. Sci. Technol. 2016, 34, 163–171. [Google Scholar]
- Fujioka, K.; Shirasu, M.; Manome, Y.; Ito, N.; Kakishima, S.; Minami, T.; Tominaga, T.; Shimozono, F.; Iwamoto, T.; Ikeda, K.; et al. Objective display and discrimination of floral odors from Amorphophallus titanum, bloomed on different dates and at different locations, using an electronic nose. Sensors 2012, 12, 2152–2161. [Google Scholar] [CrossRef] [Green Version]
- Park, P.H.; Kim, M.S.; Lee, Y.R.; Park, P.M.; Lee, D.S. Fragrance pattern analysis of major floricultural crops using electronic nose. Flower Res. J. 2014, 22, 235–239. [Google Scholar] [CrossRef]
- Fan, R.; Chen, Y.; Ye, X.; Wu, J.; Lin, B.; Zhong, H.J. Transcriptome analysis of Polianthes tuberosa during floral scent formation. PLoS ONE 2018, 13, e0199261. [Google Scholar] [CrossRef]
- Mu, H.N.; Li, H.G.; Wang, L.G.; Yang, X.L.; Sun, T.Z.; Xu, C. Transcriptome sequencing and analysis of sweet osmanthus (Osmanthus fragrans Lour.). Genes Genom. 2014, 36, 777–788. [Google Scholar] [CrossRef]
- Du, F.; Wang, T.; Fan, J.M.; Liu, Z.Z.; Zong, J.X.; Fan, W.X.; Han, Y.H.; Grierson, D. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. Hortic. Res. 2019, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Mihara, S. The volatile constituents of freesia flower (Freesia hybrida Hort.). Agric. Biol. Chem. 1984, 48, 2843–2845. [Google Scholar] [CrossRef]
- Huang, M.; Fan, R.; Ye, X.; Lin, R.; Luo, Y.; Fang, N.; Zhong, H.; Chen, S. The transcriptome of flower development provides insight into floral scent formation in Freesia hybrida. Plant Growth Regul. 2018, 86, 93–104. [Google Scholar] [CrossRef]
- Gao, F.; Liu, B.; Li, M.; Gao, X.; Fang, Q.; Liu, C.; Ding, H.; Wang, L.; Gao, X. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. J. Exp. Bot. 2018, 69, 4249–4265. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Hu, Z.; Guan, X.; Dou, D.; Bai, G.; Wang, Y.; Guo, Y.; Li, W.; Leng, P. Transcriptome analysis of Syringa oblata Lindl. inflorescence identifies genes associated with pigment biosynthesis and scent metabolism. PLoS ONE 2015, 10, e0142542. [Google Scholar] [CrossRef] [Green Version]
- Maricou, H.; Pereira, D.; Verschuere, L.; Philips, S.; Verstraete, W.J. Measurements of some volatile compounds by means of the electronic nose. Water Air Soil Pollut. 1998, 107, 423–442. [Google Scholar] [CrossRef]
- Lee, Y.; Chung, J.; Kim, S.R. Analysis of scent patterns of Rosa hybrida using electronic nose system. Flower Res. J. 2003, 11, 1–4. [Google Scholar]
- Manning, J.C.; Goldblatt, P.; Duncan, G.; Forest, F.; Kaiser, R.; Tatarenko, I. Botany and Horticulture of the Genus Freesia (Iridaceae); South African National Biodiversity Institute: Capetown, South Africa, 2010. [Google Scholar]
- Dudareva, N.; Pichersky, E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 2000, 122, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants; Lavoisier Publishing: Paris, France, 1995. [Google Scholar]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 2017, 22, 1148. [Google Scholar] [CrossRef] [Green Version]
- Klahre, U.; Gurba, A.; Hermann, K.; Saxenhofer, M.; Bossolini, E.; Guerin, P.; Kuhlemeier, C. Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Curr. Biol. 2011, 21, 730–739. [Google Scholar] [CrossRef] [Green Version]
- Pichersky, E.; Gang, D.R. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 2000, 5, 439–445. [Google Scholar] [CrossRef]
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef]
- Dudareva, N.; Cseke, L.; Blanc, V.M.; Pichersky, E. Evolution of floral scent in Clarkia: Novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 1996, 8, 1137–1148. [Google Scholar]
- McGarvey, D.J.; Croteau, R.J.T.P.C. Terpenoid metabolism. Plant Cell 1995, 8, 1015–1026. [Google Scholar]
- Aros, D.; Spadafora, N.; Venturi, M.; Núñez-Lillo, G.; Meneses, C.; Methven, L.; Müller, C.T.; Rogers, H. Floral scent evaluation of segregating lines of Alstroemeria caryophyllaea. Sci. Hortic. 2015, 185, 183–192. [Google Scholar] [CrossRef]
- Hu, Z.; Tang, B.; Wu, Q.; Zheng, J.; Leng, P.; Zhang, K. Transcriptome Sequencing Analysis Reveals a Difference in Monoterpene Biosynthesis between Scented Lilium ‘Siberia’ and Unscented Lilium ‘Novano’. Front. Plant Sci. 2017, 8, 1351. [Google Scholar] [CrossRef] [Green Version]
- Wongchaochant, S.; Inamoto, K.; Doi, M. Analysis of flower scent of Freesia species and cultivars. In Proceedings of the IX International Symposium on Flower Bulbs, Niigata, Japan, 19–22 April 2004; pp. 595–601. [Google Scholar]
- Ao, M.; Liu, B.; Wang, L.J. Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida. Nat. Prod. Res. 2013, 27, 37–40. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101. [Google Scholar] [CrossRef]
Result of Olfactory Test | ||||
---|---|---|---|---|
“Shiny Gold” | “Yvonne” | ‘10C3-894’ | ‘10C3-424’ | |
Scent intensity a | Level 4 a | Level 4 | Level 5 | Level 1 |
SI. No. | Molecular Formula | RT (min) | RI a | Compounds | Relative Content (%) b ± SD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
“Shiny Gold” | “Yvonne” | “10C3-894” | “10C3-424” | |||||||||||||
Monoterpenes | ||||||||||||||||
1 | C10H16 | 8.3 | 925 | α-Thujene | 0.1 | ± | 0.0 c | - | - | - | - | - | - | |||
2 | C10H16 | 10.9 | 989 | β-Myrcene | 3.6 | ± | 0.0 | 4.1 | ± | 0.7 | 5.8 | ± | 0.3 | - | - | |
3 | C10H16 | 11.9 | 1013 | (+)-4-Carene | 0.5 | ± | 0.0 | 0.6 | ± | 0.1 | 0.7 | ± | 0.0 | - | - | |
4 | C10H16 | 12.4 | 1024 | D-Limonene | 5.0 | ± | 0.1 | - | - | 5.2 | ± | 0.3 | 3.5 | ± | 1.9 | |
5 | C10H16 | 12.9 | 1035 | 2-Norpinene,3,6,6-trimethyl | 2.4 | ± | 0.1 | 2.6 | ± | 0.5 | 1.5 | ± | 0.1 | - | - | |
6 | C10H16 | 13.6 | 1051 | β-Ocimene | 29.6 | ± | 1.7 | 27.1 | ± | 3.4 | 3.4 | ± | 0.5 | 1.5 | ± | 0.8 |
7 | C10H16 | 13.8 | Y′-Terpinene | 1055 | 0.5 | ± | 0.0 | 0.5 | ± | 0.2 | 0.5 | ± | 0.0 | - | - | |
8 | C10H16 | 15.1 | 1084 | Terpinolene | 0.9 | ± | 0.0 | 1.0 | ± | 0.3 | - | - | - | - | ||
9 | C10H18O | 16.0 | 1104 | Linalool | 38.7 | ± | 2.2 | 40.9 | ± | 3.9 | 62.4 | ± | 5.5 | 23.4 | ± | 13.7 |
10 | C10H14 | 16.2 | 1108 | 1,3,8-p-Menthatriene | 0.1 | ± | 0.0 | - | - | - | - | - | - | |||
11 | C10H16 | 17.0 | 1126 | 2,4,6-Octatriene, 2,6-dimethyl-, (E,E)- | 1.8 | ± | 0.1 | 3.2 | ± | 1.9 | - | - | - | - | ||
12 | C10H16 | 17.5 | 1137 | allo-Ocimene | 1.3 | ± | 0.1 | 2.1 | ± | 1.3 | 0.6 | ± | 0.1 | - | - | |
13 | C10H18O | 19.8 | 1187 | α-Terpineol | 4.5 | ± | 0.5 | 1.7 | ± | 1.8 | 4.1 | ± | 0.9 | - | - | |
14 | C10H16O | 21.0 | 1213 | β-Cyclocitral | 0.4 | ± | 0.2 | 0.2 | ± | 0.1 | - | - | - | - | ||
15 | C10H18O | 22.6 | 1248 | Nerol | 0.1 | ± | 0.0 | - | - | - | - | - | - | |||
Sesquiterpenes | ||||||||||||||||
16 | C15H24 | 27.8 | 1367 | α-Cubebene | - | - | - | - | 2.4 | ± | 0.1 | - | - | |||
17 | C15H24 | 28.8 | 1390 | α-Cyperene | - | - | - | - | 0.4 | ± | 0.0 | - | - | |||
18 | C13H20O | 32.4 | 1480 | trans-β-Ionone | 0.1 | ± | 0.1 | 0.5 | ± | 0.3 | - | - | - | - | ||
19 | C15H24 | 32.7 | 1487 | α-Selinene | - | - | - | - | 2.0 | ± | 0.4 | - | - | |||
89.6 | 84.5 | 84.1 | 28.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasan, A.; Ahn, M.S.; Jo, G.S.; Suh, J.N.; Seo, K.H.; Kim, W.H.; Kang, Y.I.; Lee, Y.R.; Choi, Y.J. Analysis of Relative Scent Intensity, Volatile Compounds and Gene Expression in Freesia “Shiny Gold”. Plants 2020, 9, 1597. https://doi.org/10.3390/plants9111597
Srinivasan A, Ahn MS, Jo GS, Suh JN, Seo KH, Kim WH, Kang YI, Lee YR, Choi YJ. Analysis of Relative Scent Intensity, Volatile Compounds and Gene Expression in Freesia “Shiny Gold”. Plants. 2020; 9(11):1597. https://doi.org/10.3390/plants9111597
Chicago/Turabian StyleSrinivasan, Aparna, Myung Suk Ahn, Gyeong Suk Jo, Jung Nam Suh, Kyung Hye Seo, Won Hee Kim, Yun Im Kang, Young Ran Lee, and Youn Jung Choi. 2020. "Analysis of Relative Scent Intensity, Volatile Compounds and Gene Expression in Freesia “Shiny Gold”" Plants 9, no. 11: 1597. https://doi.org/10.3390/plants9111597
APA StyleSrinivasan, A., Ahn, M. S., Jo, G. S., Suh, J. N., Seo, K. H., Kim, W. H., Kang, Y. I., Lee, Y. R., & Choi, Y. J. (2020). Analysis of Relative Scent Intensity, Volatile Compounds and Gene Expression in Freesia “Shiny Gold”. Plants, 9(11), 1597. https://doi.org/10.3390/plants9111597