Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Baker’s Yeast Reduction
2.2. Lipase-Mediated Transformations
2.3. Antifungal Assays
2.4. Study of the Detoxification by Botrytis cinerea UCA992
Biotransformation of 6-Chloroindanol (1) and 5-Chloroindanol (2) by Botrytis cinerea UCA992
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Chemical Transformations
3.2.1. Synthesis of Racemic Substrates
3.2.2. Chemical Hydrolysis of (R)-(-)-6-Chloroindanyl Acetate ((R)-5) and (R)-(-)-5-Chloroindanyl Acetate ((R)-6)
3.3. Baker’s Yeast Transformations
3.4. Lipase-Mediated Acetylations
3.5. Microorganism Culture and Antifungal Assays
3.6. Biotransformation of 6-Chloroindanol (1) and 5-Chloroindanol (2) by B. cinerea UCA992
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: An overview. Int. J. Biomed. Sci. 2006, 2, 85–100. [Google Scholar] [PubMed]
- Ugliarolo, E.A.; Gagey, D.; Lantaño, B.; Moltrasio, G.Y.; Campos, R.H.; Cavallaro, L.V.; Moglioni, A.G. Synthesis and biological evaluation of novel homochiral carbocyclic nucleosides from 1-amino-2-indanols. Bioorg. Med. Chem. 2012, 20, 5986–5991. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, H.; Walsh, J.J.; Cogan, C.; Jordan, M.; McCabe, T.; Passante, E.; Frankish, N.H. Diastereoisomers of 2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol: Potential anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2009, 19, 5927–5930. [Google Scholar] [CrossRef]
- Pinedo-Rivilla, C.; Aleu, J.; Grande Benito, M.; Collado, I.G. Biocatalytic preparation and absolute configuration of enantiomerically pure fungistatic anti-2-benzylindane derivatives. Study of the detoxification mechanism by Botrytis Cinerea. Org. Biomol. Chem. 2010, 8, 3784–3789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rackelmann, N.; Matter, H.; Englert, H.; Follmann, M.; Maier, T.; Weston, J.; Arndt, P.; Heyse, W.; Mertsch, K.; Wirth, K.; et al. Discovery and optimization of 1-phenoxy-2-aminoindanes as potent, selective, and orally bioavailable inhibitors of the Na+/H+ exchanger type 3 (NHE3). J. Med. Chem. 2016, 59, 8812–8829. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Ito, A.; Ito, J.I.; Nishiyama, H. Asymmetric iron-catalyzed hydrosilane reduction of ketones: Effect of zinc metal upon the absolute configuration. Angew. Chem. Int. Ed. 2010, 49, 9384–9387. [Google Scholar] [CrossRef]
- Pellissier, H. Catalytic non-enzymatic kinetic resolution. Adv. Synth. Catal. 2011, 353, 1613–1666. [Google Scholar] [CrossRef]
- Yin, C.; Dong, X.-Q.; Zhang, X. Iridium/f-Amphol-catalyzed efficient asymmetric hydrogenation of benzo-fused cyclic ketones. Adv. Synth. Catal. 2018, 360, 4319–4324. [Google Scholar] [CrossRef]
- Yoshimatsu, S.; Yamada, A.; Nakata, K. Silylative kinetic resolution of racemic 1-indanol derivatives catalyzed by chiral guanidine. J. Org. Chem. 2018, 83, 452–458. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Woodley, J.M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef]
- Loughlin, W.A. Biotransformations in organic synthesis. Bioresour. Technol. 2000, 74, 49–62. [Google Scholar] [CrossRef]
- Elad, Y.; Pertot, I.; Cotes Prado, A.M.; Stewart, A. Botrytis the Fungus, the Pathogen and Its Management in Agricultural Systems; Springer International Publishing: Cham, Switzerland, 2016; pp. 413–486. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Dalmais, B.; Schumacher, J.; Moraga, J.; Le Pêcheur, P.; Tudzynski, B.; Collado, I.G.; Viaud, M. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol. Plant Pathol. 2011, 12, 564–579. [Google Scholar] [CrossRef]
- Moraga, J.; Dalmais, B.; Izquierdo-Bueno, I.; Aleu, J.; Hanson, J.R.; Hernández-Galán, R.; Viaud, M.; Collado, I.G. Genetic and molecular basis of botrydial biosynthesis: Connecting cytochrome p450-encoding genes to biosynthetic intermediates. ACS Chem. Biol. 2016, 11, 2838–2846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinedo, C.; Wang, C.M.; Pradier, J.M.; Dalmais, B.; Choquer, M.; Le Pêcheur, P.; Morgant, G.; Collado, I.G.; Cane, D.E.; Viaud, M. Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem. Biol. 2008, 3, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Porquier, A.; Morgant, G.; Moraga, J.; Dalmais, B.; Luyten, I.; Simon, A.; Pradier, J.M.; Amselem, J.; Collado, I.G.; Viaud, M. The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn (II)2Cys6 transcription factor BcBot6. Fungal Genet. Biol. 2016, 96, 33–46. [Google Scholar] [CrossRef]
- Jacometti, M.A.; Wratten, S.D.; Walter, M. Review: Alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust. J. Grape Wine Res. 2010, 16, 154–172. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Y.; Han, Z.; Ding, K. Lutidine-based chiral pincer manganese catalysts for enantioselective hydrogenation of ketones. Angew. Chem. Int. Ed. 2019, 58, 4973–4977. [Google Scholar] [CrossRef]
- Aleu, J.; Fronza, G.; Fuganti, C.; Perozzo, V.; Serra, S. On the baker’s yeast mediated transformation of α-bromoenones. Synthesis of (1S,2R)-2-bromoindan-1-ol and (2S,3S)-3-bromo-4-phenylbutan-2-ol. Tetrahedron Asymmetry 1998, 9, 1589–1596. [Google Scholar] [CrossRef]
- Bustillo, A.J.; Aleu, J.; Hernández-Galán, R.; Collado, I.G. Biocatalytically assisted preparation of antifungal chlorophenylpropanols. Tetrahedron Asymmetry 2002, 13, 1681–1686. [Google Scholar] [CrossRef]
- Pinedo-Rivilla, C.; Bustillo, A.J.; Hernández-Galán, R.; Aleu, J.; Collado, I.G. Asymmetric preparation of antifungal 1-(4′-chlorophenyl)-1-cyclopropyl methanol and 1-(4′-chlorophenyl)-2-phenylethanol. Study of the detoxification mechanism by Botrytis cinerea. J. Mol. Catal. B Enzym. 2011, 70, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Wolfson, A.; Dlugy, C.; Tavor, D. Baker’s yeast catalyzed asymmetric reduction of prochiral ketones in different reaction mediums. Org. Commun. 2013, 6, 1–11. [Google Scholar]
- Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzyme Microb. Technol. 2006, 39, 235–251. [Google Scholar] [CrossRef]
- Ascari, J.; Boaventura, M.A.D.; Takahashi, J.A.; Durán-Patrón, R.; Hernández-Galán, R.; Macías-Sánchez, A.J.; Collado, I.G. Phytotoxic activity and metabolism of Botrytis cinerea and structure-activity relationships of isocaryolane derivatives. J. Nat. Prod. 2013, 76, 1016–1024. [Google Scholar] [CrossRef]
- Choi, Y.M. Preparation of Carbamate Derivative Compounds for Treating or Preventing CNS Disorders; Bio-Pharm Solutions Co. Ltd: Seoul, Korea, 2017. [Google Scholar]
- He, G.; Wu, C.; Zhou, J.; Yang, Q.; Zhang, C.; Zhou, Y.; Zhang, H.; Liu, H. A method for synthesis of 3-hydroxy-1-indanones via Cu-catalyzed intramolecular annulation reactions. J. Org. Chem. 2018, 83, 13356–13362. [Google Scholar] [CrossRef]
Substrate | Enz. | Time (h) | Conversion (%) | Acetylated Product (R) | Alcohol Recovered (S) | E | ||
---|---|---|---|---|---|---|---|---|
ee (%) | Yield a (%) | ee (%) | Yield (%) | |||||
PPL | 48 | 17 | >99 | 12 | 20 | 56 | 243 | |
1 | CRL | 48 | 50 | 95 | 49 | 98 | 52 | 146 |
CRL | 48 | 50 | 95 | 42 | 94 | 42 | 146 | |
CRL | 24 | 47 | >99 | 11 | 88 | 84 | >400 | |
2 | CRL | 72 | 38 | >99 | 53 | 61 | 45 | 371 |
CRL | 216 | 50 | >99 | 61 | >99 | 32 | >400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinedo-Rivilla, C.; Moraga, J.; Pérez-Sasián, G.; Peña-Hernández, A.; G. Collado, I.; Aleu, J. Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea. Plants 2020, 9, 1648. https://doi.org/10.3390/plants9121648
Pinedo-Rivilla C, Moraga J, Pérez-Sasián G, Peña-Hernández A, G. Collado I, Aleu J. Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea. Plants. 2020; 9(12):1648. https://doi.org/10.3390/plants9121648
Chicago/Turabian StylePinedo-Rivilla, Cristina, Javier Moraga, Guillermo Pérez-Sasián, Alba Peña-Hernández, Isidro G. Collado, and Josefina Aleu. 2020. "Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea" Plants 9, no. 12: 1648. https://doi.org/10.3390/plants9121648
APA StylePinedo-Rivilla, C., Moraga, J., Pérez-Sasián, G., Peña-Hernández, A., G. Collado, I., & Aleu, J. (2020). Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea. Plants, 9(12), 1648. https://doi.org/10.3390/plants9121648