Comparative Analysis of Volatile Compounds in Flowers of Different Actinidia Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of Volatile Compounds in Actinidia Flowers
2.2. Differences in the Composition of Volatile Compounds in Flowers of Different Actinidia Species
2.3. Diversity of Volatile Compounds in Flowers of Different A. arguta Genoptypes
2.4. Male Versus Female A. arguta and A. kolomikta Genotypes Comparison
2.5. Pollinators’ Interest
3. Materials and Methods
3.1. Plant Material
3.2. Identification and Determination of Volatile Compounds
3.2.1. Collecting Flowers and Volatile Samples
3.2.2. Determination of Volatile Compounds
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Li, J.; Soejarto, D.D. Advances in the study of the systematics of Actinidia Lindley. Front. Biol. China 2008, 4, 55–61. [Google Scholar] [CrossRef]
- Ferguson, A.R. Botanical Description; Springer Science and Business Media LLC: Cham, Switzerland, 2016; pp. 1–13. [Google Scholar]
- Pinto, T. Kiwifruit, a botany, chemical and sensory approach a review. Adv. Plants Agric. Res. 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Chesoniene, L.; Daubaras, R.; Viskelis, P. Biochemical composition of berries of some Kolomikta kiwi (Actinidia Kolomikta) cultivars and detection of harvest maturity. Acta Hortic. 2004, 663, 305–308. [Google Scholar] [CrossRef]
- Latocha, P.; Łata, B.; Stasiak, A. Phenolics, ascorbate and the antioxidant potential of kiwiberry vs. common kiwifruit: The effect of cultivar and tissue type. J. Funct. Foods 2015, 19, 155–163. [Google Scholar] [CrossRef]
- Leontowicz, M.; Leontowicz, H.; Jesion, I.; Bielecki, W.; Najman, K.; Latocha, P.; Park, Y.-S.; Gorinstein, S. Actinidia arguta supplementation protects aorta and liver in rats with induced hypercholesterolemia. Nutr. Res. 2016, 36, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Latocha, P. The Nutritional and health benefits of Kiwiberry (Actinidia arguta)—A review. Plant Foods Hum. Nutr. 2017, 72, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, F.; Delerue-Matos, C.; Rodrigues, F. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: A review. Food Res. Int. 2020, 136, 109449. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kang, H.J.; Lee, K.T.; Choi, J.G.; Chung, S.H. Anti-inflammation activity of Actinidia polygama. Arch. Pharmacal Res. 2003, 26, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Testolin, R. Male density and arrangement in kiwifruit orchards. Sci. Hortic. 1991, 48, 41–50. [Google Scholar] [CrossRef]
- Costa, G.; Testolin, R.; Vizzotto, G. Kiwifruit pollination: An unbiased estimate of wind and bee contribution. N. Z. J. Crop. Hortic. Sci. 1993, 21, 189–195. [Google Scholar] [CrossRef]
- Tiyayon, C.; Strik, B.C. Flowering and fruiting morphology of hardy kiwifruit, Actinidia arguta. Acta Hortic. 2003, 610, 171–176. [Google Scholar] [CrossRef]
- Fraser, L.; Mcneilage, M. Reproductive Biology; Springer Science and Business Media LLC: Cham, Switzerland, 2016; pp. 65–84. [Google Scholar]
- Kawagoe, T.; Suzuki, N. Cryptic dioecy in Actinidia polygama: A test of the pollinator attraction hypothesis. Can. J. Bot. 2004, 82, 214–218. [Google Scholar] [CrossRef]
- Reisenman, C.E.; Riffell, J.A.; Bernays, E.A.; Hildebrand, J.G. Antagonistic effects of floral scent in an insect–plant interaction. Proc. R. Soc. B: Boil. Sci. 2010, 277, 2371–2379. [Google Scholar] [CrossRef] [Green Version]
- Dötterl, S.; Burkhardt, D.; Weißbecker, B.; Jürgens, A.; Schütz, S.; Mosandl, A. Linalool and lilac aldehyde/alcohol in flower scents. J. Chromatogr. A 2006, 1113, 231–238. [Google Scholar] [CrossRef]
- Twidle, A.M.; Mas, F.; Harper, A.R.; Horner, R.M.; Welsh, T.J.; Suckling, D.M. Kiwifruit flower odor perception and recognition by honey bees, Apis mellifera. J. Agric. Food Chem. 2015, 63, 5597–5602. [Google Scholar] [CrossRef] [PubMed]
- Twidle, A.M.; Barker, D.; Seal, A.G.; Fedrizzi, B.; Suckling, D.M. Identification of floral volatiles and pollinator responses in kiwifruit cultivars, Actinidia chinensis var. chinensis. J. Chem. Ecol. 2018, 44, 406–415. [Google Scholar] [CrossRef]
- Stasiak, A.; Latocha, P.; Drzewiecki, J.; Hallmann, E.; Najman, K.; Leontowicz, H.; Leontowicz, M.; Łata, B. The choice of female or male parent affects some biochemical characteristics of fruit or seed of kiwiberry (Actinidia arguta). Euphytica 2019, 215, 52. [Google Scholar] [CrossRef] [Green Version]
- Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H. Volatile constituents of kiwi fruit flowers: Simultaneous distillation and extraction versus headspace sampling. J. Agric. Food Chem. 1990, 38, 2176–2180. [Google Scholar] [CrossRef]
- Samadi-Maybodi, A.; Shariat, M.R.; Zarei, M.; Rezai, M.B. Headspace analysis of the male and female flowers of kiwifruit grown in Iran. J. Essent. Oil Res. 2011, 14, 414–415. [Google Scholar] [CrossRef]
- Twidle, A.M.; Suckling, D.M.; Seal, A.G.; Fedrizzi, B.; Pilkington, L.I.; Barker, D. Identification of in situ flower volatiles from kiwifruit (Actinidia chinensis var. deliciosa) cultivars and their male pollenisers in a New Zealand orchard. Phytochemistry 2017, 141, 61–69. [Google Scholar] [CrossRef]
- Matich, A.J.; Young, H.; Allen, J.M.; Wang, M.Y.; Fielder, S.; Mcneilage, M.; Macrae, E.A. Actinidia arguta: Volatile compounds in fruit and flowers. Phytochemistry 2003, 63, 285–301. [Google Scholar] [CrossRef]
- Bertrand, C.; Comte, G.; Piola, F. Solid-phase microextraction of volatile compounds from flowers of two Brunfelsia species. Biochem. Syst. Ecol. 2006, 34, 371–375. [Google Scholar] [CrossRef]
- Matich, A.J.; Bunn, B.; Comeskey, D.; Hunt, M.; Rowan, D.D. Chirality and biosynthesis of lilac compounds in Actinidia arguta flowers. Phytochemistry 2007, 68, 1746–1751. [Google Scholar] [CrossRef] [PubMed]
- Kohlmünzer, S. Farmakognozja, 5th ed.; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2007; pp. 277–337. (In Polish) [Google Scholar]
- Huang, H. The Genus Actinidia. A World Monograph; Science Press: Beijng, China, 2014. [Google Scholar]
- Xu, M.; Jin, Z.; Yang, Z.; Rao, J.; Chen, B. Optimization and validation of in-situ derivatization and headspace solid-phase microextraction for gas chromatography-mass spectrometry analysis of 3-MCPD esters, 2-MCPD esters and glycidyl esters in edible oils via central composite design. Food Chem. 2020, 307, 125542. [Google Scholar] [CrossRef]
- Howlett, B.G.; Read, S.; Jesson, L.; Benoist, A.; Evans, L.; Pattemore, D.E. Diurnal insect visitation patterns to ‘Hayward’ kiwifruit flowers in New Zealand. N. Z. Plant. Prot. 2017, 70, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, G.D.; Pinheiro, M.; Dötterl, S.; Alves-Dos-Santos, I.; Dafni, A. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: A new nocturnal pollination system mediated by floral scent. Plant. Biol. 2016, 19, 132–139. [Google Scholar] [CrossRef]
- Krug, C.; Cordeiro, G.D.; Schäffler, I.; Silva, C.I.; Oliveira, R.; Schlindwein, C.; Dötterl, S.; Alves-Dos-Santos, I. Nocturnal bee pollinators are attracted to guarana flowers by their scents. Front. Plant. Sci. 2018, 9, 1072. [Google Scholar] [CrossRef] [Green Version]
- Henning, J.A.; Peng, Y.-S.; Montague, M.A.; Teuber, L.R. Honey bee (Hymenoptera: Apidae) behavioral response to primary alfalfa (Rosales: Fabaceae) floral volatiles. J. Econ. Èntomol. 1992, 85, 233–239. [Google Scholar] [CrossRef]
- Lukas, K.; Harig, T.; Schulz, S.; Hadersdorfer, J.; Dötterl, S. Flowers of European pear release common and uncommon volatiles that can be detected by honey bee pollinators. Chemoecology 2019, 29, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Aceves-Chong, L.; Cruz-López, L.; Sánchez-Guillén, D.; Grajales-Conesa, J. Differences in volatile composition and sexual morphs in rambutan (Nephelium lappaceum L.) flowers and their effect in the Apis mellifera L. (Hymenoptera, Apidae) attraction. Rev. Bras. Èntomol. 2018, 62, 66–70. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
Compound | Retention Time | Retention Index * | Retention Index, Literature Data ** | A. chinensis var. deliciosa | A. polygama | A. kolomikta | A. arguta Male Genotypes | A. arguta Female Genotypes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Male | Male | Female | ‘Nostino’ | ‘Joker’ | ‘Rot’ | ‘Weiki’ | ‘Rubi’ | ‘Haya Kume’ | F7 | ‘Geneva’ | ‘Bingo’ | ‘Anna’ | ‘Weiki’ | ||||
Terpens | ||||||||||||||||||
Geranial | 28.451 | 1637 | - | - | - | 0.2 | 0.3 | - | - | - | - | - | - | - | - | - | - | - |
Neral | 29.451 | 1660 | 1660 | - | - | 0.2 | 0.4 | - | - | - | - | - | - | - | - | - | - | - |
beta-Citronellol | 31.677 | 1737 | 1755 | - | 13.2 | 3.5 | 6.3 | - | - | - | - | - | - | - | - | - | - | - |
D-Limonene | 9.114 | - | 1190 | 0.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Eucalyptol (43, 32, 81, 71, 84, 69 ***) | 8.812 | - | 1220 | - | - | - | - | - | - | - | - | - | - | - | - | 0.3 | - | - |
Alpha-Farnesene | 31.732 | 1739 | 1740 | 5.0 | - | 0.2 | 0.4 | - | - | 0.5 | - | - | - | - | - | - | 0.3 | - |
trans-Geraniol | 34.680 | 1833 | 1833 | - | - | 3.4 | 5.1 | - | - | - | - | - | - | - | - | - | - | - |
5-Hepten-2-one, 6-methyl- | 14.895 | - | 1323 | - | - | - | - | 0.9 | 2.9 | 2.6 | 1.3 | 4.9 | 1.2 | 0.5 | - | 0.2 | 0.4 | 0.4 |
Lilac aldehyde B (55, 43, 41, 67, 93, 29, 71, 27, 69, 111) | 22.855 | 1462 | - | - | - | - | - | - | - | - | - | - | - | - | 1.0 | - | - | 14.4 |
Lilac aldehyde C (55, 43, 41, 67, 93, 71, 27, 29, 111, 39) | 23.199 | 1473 | - | - | - | - | - | 12.8 | 12.9 | 9.8 | 7.8 | 19.9 | 1.6 | 13.4 | - | 13.7 | 8.5 | 4.3 |
Lilac aldehyde C (55, 43, 41, 71, 67, 93, 29, 27, 69, 68) | 23.671 | 1489 | - | - | - | - | - | 3.35 | 4.6 | 5.0 | 3.5 | 6.4 | 0.7 | 7.8 | - | 4.4 | 2.8 | - |
Lilac aldehyde D (55, 43, 41, 71, 67, 93, 29, 27, 69, 68) | 24.615 | 1519 | - | - | - | - | - | 1.7 | 3.4 | 10.3 | 3.4 | 3.2 | 0.4 | 11.2 | - | 6.1 | 2.1 | 3.7 |
Lilac aldehyde D (55, 43, 41, 71, 67, 93, 29, 69, 27, 39) | 24.947 | 1529 | - | - | - | - | - | - | - | - | 2.3 | - | - | 20.6 | - | 12.7 | 2.3 | 3.4 |
Linalool | 23.987 | 1499 | 1548 | - | 47.8 | 0.7 | 1.0 | 11.5 | 21.8 | 22.8 | - | 16.8 | 16.2 | - | - | 4.4 | 1.6 | 5.9 |
Lilac alcohol C (55, 43, 111, 93, 67, 41, 71, 69, 29, 81) | 29.696 | 1675 | - | - | - | - | - | 4.0 | 4.0 | 3.8 | 7.6 | 2.8 | 0.5 | 18.6 | 2.8 | 14.0 | 5.7 | 2.0 |
Lilac alcohol C (55, 43, 111, 93, 41, 67, 71, 29, 69, 81) | 30.276 | 1693 | - | - | - | - | - | 1.4 | 2.9 | 5.1 | 4.5 | 1.3 | 0.6 | 2.0 | 14.0 | 17.6 | 2.9 | 1.2 |
Lilac alcohol C (55, 43, 111, 93, 67, 41, 71, 69, 29, 81) | 30.967 | 1714 | - | - | - | - | - | 1.0 | 1.4 | 1.0 | 1.9 | 0.9 | - | - | 2.6 | 2.9 | 1.8 | - |
Lilac alcohol C (55, 43, 93, 111, 41, 67, 71, 69, 29, 81) | 32.197 | 1754 | - | - | - | - | - | - | 12.0 | - | - | - | - | - | - | - | - | - |
Lilac alcohol D (55, 43, 93, 111, 67, 41, 71, 69, 29, 81) | 32.754 | 1772 | - | - | - | - | - | 13.8 | - | 3.0 | 12.5 | 10.3 | 1.7 | 6.1 | 9.1 | 9.7 | 14.2 | 4.0 |
Lilac alcohol D (55, 43, 93, 111, 67, 41, 71, 69, 29, 81) | 33.700 | 1802 | - | - | - | - | - | - | - | - | - | - | 2.6 | 12.9 | - | - | - | 9.5 |
Lilac alcohol D (55, 43, 93, 111, 41, 67, 71, 69, 81, 29) | 34.228 | 1820 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 9.7 |
linalyl oxide | 20.602 | - | 1468 | - | 0.6 | - | - | 0.1 | - | - | - | 0.2 | 0.6 | - | - | 0.1 | - | - |
beta-Myrcene | 7.649 | - | 1148 | - | - | 74.7 | 67.2 | - | - | - | - | - | - | - | - | - | - | - |
Cis-myrtanol (41, 121, 67, 55, 29, 79) | 17.233 | - | - | - | - | - | - | - | 0.4 | - | - | - | - | - | - | - | - | - |
Nerol | 32.960 | 1778 | 1777 | - | - | 4.0 | 5.8 | - | - | - | - | - | - | - | - | - | - | - |
alpha-ocimene | 11.362 | - | 1232 | - | - | 3.9 | 3.6 | - | 0.4 | 0.3 | - | 0.4 | - | - | - | - | - | 0.1 |
E-beta-ocimene | 11.946 | - | 1230 | 1.2 | - | 3.9 | 3.5 | 2.8 | 2.2 | 2.1 | - | 1.6 | 7.0 | 0.3 | - | 0.4 | - | - |
1,6-Octadiene, 3,5-dimethyl-, trans- (69, 41, 39, 79, 53, 82) | 13.651 | - | - | - | - | - | - | - | - | 1.7 | - | - | - | - | - | - | 0.5 | 0.3 |
5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | 34.002 | 1842 | 1850 | - | - | - | - | 0.6 | 1.1 | 2.2 | 0.7 | 1.7 | 0.9 | 1.2 | 0.9 | 0.5 | 0.7 | 0.7 |
5,9-Undecadien-2-one, 6,10-dimethyl-, (Z)- | 35.478 | 1857 | 1855 | 0.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Trans-Linaloloxide | 19.432 | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - |
Benzenoid compounds | ||||||||||||||||||
Benzaldehyde (77, 106, 105, 51, 50, 52) | 22.335 | 1445 | 1504 | - | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | 0.2 |
Benzene, 1-(dimethoxymethyl)-4-(1-methoxy-1-methylethyl)-(193, 209, 97, 135, 165, 45) | 22.807 | 1460 | - | - | - | - | - | - | 0.1 | 0.4 | 0.2 | 0.3 | 0.3 | 0.3 | - | - | 0.2 | - |
Benzene, 1,3-dimethyl- | 6.998 | - | 1140 | 0.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Benzeneacetaldehyde | 26.797 | 1586 | 1617 | - | - | - | - | 0.6 | 0.9 | 0.3 | - | 0.7 | - | - | - | - | - | 1.9 |
2-(4-Methoxyphenyl) ethanol | 49.788 | - | - | - | - | - | - | 0.3 | 0.2 | 0.4 | 0.3 | 0.6 | 0.4 | - | 2.1 | 0.6 | 0.5 | 0.5 |
Phenylethyl Alcohol | 36.864 | 1900 | 1902 | 9.2 | - | - | - | 4.4 | 12.2 | 3.5 | 1.9 | 7.5 | 3.5 | 0.2 | 25.0 | 5.3 | 9.0 | 5.9 |
Esters | ||||||||||||||||||
Acetic acid, 1-(2-methyltetrazol-5-yl) ethenyl ester (43, 55, 126, 42, 26, 72) | 44.771 | 2164 | - | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | - | - |
Butanoic acid, 2-methyl-, 2-methylbutyl ester (43, 70, 56, 46, 85, 55) | 12.551 | - | 1274 | - | - | - | - | - | - | - | 0.3 | - | - | - | - | - | - | - |
Butanoic acid, 3-methyl-, 3-methylbutyl ester | 13.297 | - | 1312 | - | - | - | - | 0.1 | - | 2.1 | 3.3 | - | 0.4 | - | - | - | 2.3 | 0.5 |
Dichloroacetic acid, 4-hexadecyl ester | 26.944 | 1591 | - | 1.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5-Dodecen-1-ol, acetate, (Z)- | 32.178 | 1753 | - | 19.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Hexadecanoic acid, methyl ester | 46.421 | 2221 | 2223 | - | - | 0.3 | 0.5 | - | - | - | - | - | - | - | 0.7 | - | - | - |
Hexadecanoic acid, 15-methyl-, methyl ester | 52.424 | 2438 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.2 | - | - |
Octadecanoic acid, methyl ester | 52.532 | 2440 | 2417 | - | - | 0.2 | 0.7 | - | - | - | - | - | - | - | 1.6 | - | 0.2 | - |
9-Octadecenoic acid (Z)-, methyl ester | 46.027 | 2207 | 2430 | - | - | - | 0.5 | - | - | - | - | - | - | - | - | - | - | - |
10-Octadecenoic acid, methyl ester | 52.928 | 2455 | - | - | - | 0.5 | 0.9 | - | - | - | - | - | - | - | 2.7 | 0.4 | 0.4 | - |
12,15-Octadecadienoic acid, methyl ester (81, 67, 55, 41, 68, 82) | 54.272 | 2503 | - | - | - | - | 0.2 | - | - | 0.3 | - | - | - | - | - | - | - | - |
2-Phenylethyl acetate | 33.237 | 1787 | 1777 | 0.4 | - | - | - | - | - | - | - | - | - | - | - | - | 0.1 | 0.6 |
Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester | 35.558 | 1860 | - | - | - | - | - | - | - | - | 0.2 | 0.3 | - | - | - | - | - | - |
2-Propenoic acid, 3-phenyl-, pentyl ester (148, 131, 103, 147, 41, 149) | 66.841 | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - |
11-Tetradecen-1-ol, acetate, (Z)- (43, 55, 67, 41, 70, 68) | 6.825 | - | 2137 | - | - | - | - | - | - | - | 3.4 | - | - | - | - | - | - | 2.1 |
2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | 35.840 | 1864 | - | - | - | 0.2 | 0.2 | - | - | - | 1.5 | 1.8 | - | - | - | - | - | - |
Aldehydes | ||||||||||||||||||
Furfural (39, 96, 95, 57, 29, 38) | 20.040 | - | 1432 | - | - | - | - | 1.3 | - | - | - | - | - | - | - | - | - | - |
2-Hexenal | 9.667 | - | 1225 | - | 6.6 | - | - | - | - | - | - | - | - | - | - | - | - | - |
Nonanal | 21.166 | 1403 | 1395 | - | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | - |
5-methyl furfural (110, 53, 109, 27, 39, 41) | 24.344 | 1511 | 1560 | - | - | - | - | 0.3 | - | - | - | - | - | - | - | - | - | - |
Ketones | ||||||||||||||||||
Cyclopentanone, 2-methyl- (45, 55, 28, 43, 42, 41) | 12.529 | - | - | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - |
3,4-Dimethyl-2-pentanone (43, 55, 71, 28, 114, 41) | 43.604 | 2124 | - | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | - | - |
2,6-Dimethyl-6-nitro-2-hepten-4-one (83, 55, 43, 29, 27, 39) | 32.005 | 1748 | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
4-Heptanone, 3-methyl- | 26.480 | 1576 | - | - | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - |
5-Hepten-3-one, 5-methyl- | 14.312 | - | - | - | - | - | - | - | - | - | - | - | 0.3 | - | - | - | - | - |
3-Octanone | 11.460 | - | 1205 | - | - | - | - | - | - | - | - | - | 4.2 | - | - | - | - | - |
2-Pentanone, 4-hydroxy-4-methyl- (43, 59, 56, 42, 41, 207) | 15.961 | - | 1352 | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - |
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy- 6-methyl- | 47.988 | 2278 | 2274 | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - |
Alcohols | ||||||||||||||||||
1,4-Butanediol | 37.292 | 1915 | - | - | - | - | - | - | - | - | - | - | - | - | 0.5 | - | - | - |
1-Butanol, 2-methyl- | 9.887 | - | 1201 | - | - | - | - | 29.9 | - | - | - | 12.1 | - | 1.5 | - | - | - | - |
1-Butanol, 3-methyl- (impure) | 9.577 | - | 1210 | - | - | - | - | - | 13.7 | 17.5 | 38.5 | - | 49.4 | - | 36.3 | 4.4 | 42.9 | 26.9 |
2-Buten-1-ol, 3-methyl- (71, 41, 43, 29, 39, 27) | 14.530 | - | 1301 | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - |
1-Decanol | 32.153 | 1753 | 1760 | - | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - |
1,1-Dimethyl-3-chloropropanol (59, 43, 41, 31, 27, 28) | 12.889 | - | - | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - |
Ethanol, 2-(2-ethoxyethoxy)- (45, 31, 59, 29, 72, 27) | 26.644 | 1582 | 1615 | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - |
2-Hepten-3-ol, 4,5-dimethyl- (71, 43, 32, 55, 29, 27) | 20.468 | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - |
6-Hepten-1-ol, 3-methyl- (55, 71, 73, 43, 67, 41) | 54.185 | 2501 | - | - | - | - | - | - | - | - | - | - | - | - | 0.6 | - | - | - |
1-Hexanol | 15.314 | - | 1356 | - | 8.6 | - | - | 0.2 | 0.3 | 0.3 | - | 0.6 | - | - | - | - | - | - |
1-Hexanol, 3-methyl- (56, 55, 70, 32, 69, 26) | 24.406 | 1515 | 1413 | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - |
2-Hexen-1-ol, (E)- | 17.570 | - | 1403 | - | 17.5 | - | - | - | - | - | - | - | - | - | - | - | - | - |
2-Hexen-1-ol, (Z)- | 17.948 | - | 1380 | - | 0.2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
3-Hexen-1-ol, (Z)- (41, 67, 55, 27, 29, 82) | 15.715 | - | 1373 | - | 4.5 | - | - | - | - | 0.5 | - | 0.3 | - | - | - | - | - | - |
3-Methyl-hepta-1,6-dien-3-ol (71, 43, 28, 55, 57, 29) | 20.409 | - | - | - | - | - | - | - | - | - | - | 0.3 | - | - | - | - | - | - |
4-Methyl-1-heptyn-3-ol (43, 71, 55, 27, 82, 41) | 43.636 | 2126 | - | - | - | - | - | - | - | - | - | - | - | 0.1 | - | - | - | - |
9,12-Octadecadien-1-ol (67, 81, 95, 55, 82, 96) | 36.871 | 1901 | - | 0.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
(5Z)-Octa-1,5-dien-3-ol (57, 70, 41, 29, 55, 27) | 21.335 | 1412 | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | 0.2 | - | - |
1,7-Octadien-3-ol, 2,6-dimethyl- (71, 43, 55, 41, 27, 39) | 44.471 | 2154 | - | - | - | - | - | 0.8 | 0.8 | 1.1 | 0.7 | 1.6 | 0.8 | 16 | - | 1.4 | 0.6 | 1.1 |
1,5,7-Octatrien-3-ol, 3,7-dimethyl- | 25.870 | 1558 | 1613 | - | 0.8 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1-Octen-3-ol | 19.472 | - | 1447 | - | - | - | - | - | - | 0.3 | - | - | 0.7 | - | - | 0.4 | 0.2 | 0.2 |
Z-5-octen-3-ol (59, 71, 70, 28, 55, 41) | 18.361 | - | - | - | - | - | - | - | - | - | - | - | 0.1 | - | - | - | - | - |
7-Octen-4-ol | 19.975 | - | 1453 | - | - | - | - | - | - | - | - | 0.4 | - | - | - | - | - | - |
1-Octyn-3-ol (43, 71, 41, 28, 55, 82) | 43.612 | 2125 | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - |
1-Penten-3-ol, 4-methyl- (57, 41, 70, 39, 66, 82) | 21.378 | 1414 | - | - | - | - | - | - | - | 0.4 | - | - | - | - | - | - | - | - |
Acids | ||||||||||||||||||
Benzoic acid | 52.562 | 2443 | 2444 | - | - | - | - | - | - | 0.2 | - | 0.3 | - | 0.2 | - | - | - | - |
n-Hexadecanoic acid | 65.080 | - | 2880 | - | - | - | - | - | - | 0.3 | 0.2 | 0.3 | - | - | - | - | - | - |
2-Methylbutanoic acid | 28.485 | 1638 | 1641 | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | - | - |
9,12,15-Octadecatrienoic acid, (ZZZ)- (79, 55, 41, 67, 93, 95) | 34.191 | 1818 | 3292 | 1.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Straight hydrocarbons | ||||||||||||||||||
6-Dodecyne | 24.713 | 1522 | - | 0.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9-Eicosene, (E)- | 37.632 | 1926 | - | 1.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Heptadecane | 30.150 | 1689 | 1700 | 3.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8-Heptadecene | 29.916 | 1682 | 1718 | - | - | - | - | - | - | - | - | 0.3 | - | - | - | - | - | - |
5-Heptadecene, 1-bromo- (91, 41, 55, 67, 81, 109) | 35.472 | 1857 | - | 0.7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Heptane, 1-fluoro- (75, 69, 41, 72, 28, 105) | 21.693 | 1424 | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - |
Hexadecane | 26.277 | 1570 | 1600 | 1.77 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2-Hexene, 3,5,5-trimethyl- (57, 41, 70, 29, 27, 42) | 21.405 | 1415 | - | - | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - |
Nonadecane | 37.199 | 1912 | 1900 | 0.7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9-octadecene (E)- | 30.799 | 1708 | - | 31.8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9-Octadecyne | 28.461 | 1637 | - | 0.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Pentadecane | 23.875 | 1495 | 1500 | 19.6 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5-Tetradecene, (E)- | 19.268 | - | - | 0.35 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Tridecane | 13.703 | - | 1300 | 0.49 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Others | ||||||||||||||||||
Butyrolactone | 25.260 | 1612 | 1617 | - | - | - | - | - | 0.2 | - | 0.3 | 0.5 | 0.5 | 1.1 | - | - | - | - |
gamma-Butyrolactone | 26.124 | 1567 | - | - | - | - | - | - | - | 0.3 | 0.3 | - | - | - | - | - | - | - |
Dihydroxyacetone (31, 29, 33, 43, 32, 44) | 42.282 | 2080 | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - |
2,5-divinyl-2-methyl-tetrahydrofuran | 7.724 | - | - | - | - | - | - | - | - | - | 2.4 | 0.3 | - | - | - | - | - | 0.7 |
Furan, 3-(4-methyl-3-pentenyl)- (41, 53, 69, 81, 27, 150) | 18.103 | - | 1431 | - | - | 0.5 | - | - | - | - | - | - | - | - | - | - | - | - |
2-Furancarboxaldehyde, 5-(hydroxymethyl)- | 54.536 | 2513 | 2513 | - | - | - | - | 4.2 | - | - | - | - | - | - | - | - | - | - |
Geranyl bromide (69, 41, 79, 121, 39, 81) | 13.693 | - | - | - | - | - | - | - | - | - | - | - | 0.5 | - | - | - | - | - |
1,4-Hexadiene, 5-methyl-3-(1-methylethylidene)- | 16.338 | - | - | - | - | 3.7 | 3.6 | 1.5 | 1.5 | 1.4 | 0.5 | 1.0 | 4.2 | 0.3 | - | 0.2 | - | - |
Hexanoyl chloride (43, 52, 41, 28, 93, 26) | 11.421 | - | - | - | - | - | - | 0.7 | - | - | - | - | - | - | - | - | - | - |
1-Imidazol-1-yl-2,2-dimethylpropan-1-one (57, 41, 85, 69, 68, 40) | 17.392 | - | - | - | - | - | - | - | - | 0.3 | - | - | - | - | - | - | - | - |
Isoamyl cinnamate (148, 131, 103, 147, 41, 149) | 66.838 | - | - | - | - | - | - | - | - | - | - | 0.4 | - | - | - | - | - | - |
1,3-Pentadiene, 5-(2,2-dimethylcyclopropyl)-2,4-dimethyl-, (Z or E)- (41, 121, 69, 105, 39, 79) | 17.358 | - | - | - | - | - | - | 0.3 | - | - | - | - | - | - | - | - | - | - |
Species | Gender | Genotype | Place of Plants Origin |
---|---|---|---|
A. chinensis var. deliciosa | male | seedling | Lublin Botanical Garden, Poland |
A. polygama | male | seedling | USDA Germplasm Repository, Corvallis, US |
A. kolomikta | male | ‘Adam’ | “Clematis the Source of Good Climbers” Nursery, Poland |
A. kolomikta | female | ‘Tallinn’ | Private collection, Poland |
A. arguta | male | ‘Haya Kume’ | USDA Germplasm Repository, Corvallis, US |
A. arguta | male | ‘Joker’ | Own selection |
A. arguta | male | ‘Nostino’ | Haeberli Nursery, Switzerland |
A. arguta | male | ‘Rot’ | Werner Merkel, Germany |
A. arguta | male | ‘Rubi’ | Own selection |
A. arguta | male | ‘Weiki’ | “Clematis the Source of Good Climbers” Nursery, Poland |
A. arguta | male | F7 | Own selection |
A. arguta | female | ‘Ananasnaya’(= ‘Anna’) | Fachhochschule Weihenstephan, Freising, Germany |
A. arguta | female | ‘Bingo’ | Own selection |
A. arguta | female | ‘Geneva’ | “Clematis the Source of Good Climbers” Nursery, Poland |
A. arguta | female | ‘Weiki’ | “Clematis the Source of Good Climbers” Nursery, Poland |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiak, A.; Latocha, P. Comparative Analysis of Volatile Compounds in Flowers of Different Actinidia Species. Plants 2020, 9, 1675. https://doi.org/10.3390/plants9121675
Stasiak A, Latocha P. Comparative Analysis of Volatile Compounds in Flowers of Different Actinidia Species. Plants. 2020; 9(12):1675. https://doi.org/10.3390/plants9121675
Chicago/Turabian StyleStasiak, Agnieszka, and Piotr Latocha. 2020. "Comparative Analysis of Volatile Compounds in Flowers of Different Actinidia Species" Plants 9, no. 12: 1675. https://doi.org/10.3390/plants9121675
APA StyleStasiak, A., & Latocha, P. (2020). Comparative Analysis of Volatile Compounds in Flowers of Different Actinidia Species. Plants, 9(12), 1675. https://doi.org/10.3390/plants9121675