Can Biological Control Agents Reduce Multiple Fungal Infections Causing Decline of Milkwort in Ornamental Nursery?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effectiveness of Treatments
2.2. Experiment I
2.3. Experiment II
2.4. Experiment III
2.5. Experiment IV
2.6. Recovery Frequency and Identification of Isolates
3. Materials and Methods
3.1. Biological Control Agents and Fungicides
3.2. Effectiveness of Treatments
3.3. Experiment I
3.4. Experiment II
3.5. Experiment III
3.6. Experiment IV
3.7. Recovery Frequency (%) and Identification of Isolates
3.8. Pathogenicity Test
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Polizzi, G.; Crous, P.W. Root and collar rot of milkwort caused by Cylindrocladium pauciramosum, a new record for Europe. Eur. J. Plant Pathol. 1999, 105, 407–411. [Google Scholar] [CrossRef]
- Aiello, D.; Guarnaccia, V.; Formica, P.T.; Hyachumachi, M.; Polizzi, G. Occurrence and characterisation of Rhizoctonia species causing diseases of ornamental plants in Italy. Eur. J. Plant Pathol. 2017, 148, 967–982. [Google Scholar] [CrossRef]
- Vitullo, D.; De Curtis, F.; Palmieri, D.; Lima, G. Milkwort (Polygala myrtifolia L.) decline is caused by Fusarium oxysporum and F. solani in Southern Italy. Eur. J. Plant Pathol. 2014, 140, 883–886. [Google Scholar] [CrossRef]
- Polizzi, G.; Vitale, A.; Castello, I.; Groenewald, J.Z.; Crous, P.W. Cylindrocladium leaf spot, blight, and crown rot, new diseases of mastic tree seedlings caused by Cylindrocladium scoparium. Plant Dis. 2006, 90, 1110. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, G.; Vitale, A.; Aiello, D.; Parlavecchio, G. First record of crown and root rot caused by Cylindrocladium pauciramosum on California lilac in Italy. Plant Dis. 2006, 90, 1459. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, G.; Grasso, F.M.; Vitale, A.; Aiello, D. First occurrence of Calonectria leaf spot on Mexican blue palm in Italy. Plant Dis. 2007, 91, 1052. [Google Scholar] [CrossRef]
- Polizzi, G.; Vitale, A.; Aiello, D.; Dimartino, M.A.; Parlavecchio, G. First report of damping-off and leaf spot caused by Cylindrocladium scoparium on different accessions of bottlebrush cuttings in Italy. Plant Dis. 2007, 91, 769. [Google Scholar] [CrossRef]
- Polizzi, G.; Vitale, A.; Aiello, D.; Castello, I.; Guarnaccia, I.; Parlavecchio, G. First record of crown and root rot caused by Cylindrocladium pauciramosum on brush cherry in Italy. Plant Dis. 2009, 93, 547. [Google Scholar] [CrossRef]
- Polizzi, G.; Aiello, D.; Castello, I.; Parlavecchio, G.; Vitale, A.; Nigro, F. First report of crown rot caused by Cylindrocladium pauciramosum on scarlet honey myrtle in Italy. Plant Dis. 2009, 93, 1217. [Google Scholar] [CrossRef]
- Polizzi, G.; Aiello, D.; Guarnaccia, V.; Parlavecchio, G.; Vitale, A. First report of leaf spot and shoot blight caused by Cylindrocladium scoparium on mallee honey myrtle in Italy. Plant Dis. 2009, 93, 1078. [Google Scholar] [CrossRef]
- Polizzi, G.; Vitale, A.; Aiello, D.; Guarnaccia, V.; Crous, P.W.; Lombard, L. First report of Calonectria ilicicola causing a new disease on Laurus (Laurus nobilis). J. Phytopathol. 2012, 160, 41–44. [Google Scholar] [CrossRef]
- Vitale, A.; Polizzi, G. First record of the perfect stage Calonectria pauciramosa on mastic tree in Italy. Plant Dis. 2007, 91, 328. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.; Polizzi, G. First record of leaf spots and stem lesions on Pistacia lentiscus caused by Cylindrocladium pauciramosum and C. scoparium in Italy. Plant Pathol. 2008, 57, 384. [Google Scholar] [CrossRef]
- Vitale, A.; Aiello, D.; Castello, I.; Parlavecchio, G.; Polizzi, G. First report of crown rot and root rot caused by Cylindrocladium pauciramosum on Feijoa (Feijoa sellowiana) in Italy. Plant Dis. 2008, 92, 1590. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.; Aiello, D.; Castello, I.; Dimartino, M.A.; Parlavecchio, G.; Polizzi, G. Severe outbreak of crown rot and root rot caused by Cylindrocladium pauciramosum on strawberry tree in Italy. Plant Dis. 2009, 93, 842. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Crous, P.W.; Polizzi, G.; Koike, S.T. Female fertility and single nucleotide polymorphism comparisons in Cylindrocladium pauciramosum. Plant Dis. 2001, 85, 941–946. [Google Scholar] [CrossRef] [Green Version]
- Alfenas, R.F.; Pereira, O.L.; Jorge, V.L.; Crous, P.W.; Alfenas, A.C. A new species of Calonectria causing leaf blight and cutting rot of three forest tree species in Brazil. Trop. Plant Pathol. 2013, 38, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Vitale, A.; Crous, P.W.; Lombard, L.; Polizzi, G. Calonectria diseases on ornamental plants in Europe and the Mediterranean basin: An overview. J. Plant Pathol. 2013, 95, 463–476. [Google Scholar]
- Aiello, D.; Vitale, A.; Alfenas, R.F.; Alfenas, A.C.; Cirvilleri, G.; Polizzi, G. Effects of sublabeled rates of dazomet and metam-sodium applied under low-permeability films on Calonectria microsclerotia survival. Plant Dis. 2018, 102, 782–789. [Google Scholar] [CrossRef] [Green Version]
- Polizzi, G.; Aiello, D.; Guarnaccia, V.; Cinquerrui, A.; Formica, P.T.; Vitale, A.; Myrta, A. Effects of label and sub-label rates of dazomet and metham-sodium on survival of Calonectria microsclerotia. Acta Hort. 2014, 1044, 389–393. [Google Scholar] [CrossRef]
- Vitale, A.; Castello, I.; D’Emilio, A.; Mazzarella, R.; Perrone, G.; Epifani, F.; Polizzi, G. Short-term effects of soil solarization in suppressing Calonectria microsclerotia. Plant Soil 2013, 368, 603–617. [Google Scholar] [CrossRef]
- Aiello, D.; Cirvilleri, G.; Polizzi, G.; Vitale, A. Effects of fungicide treatments for the control of epidemic and exotic Calonectria diseases in Italy. Plant Dis. 2013, 97, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinquerrui, A.; Polizzi, G.; Aiello, D.; Vitale, A. Integrated management for the reduction of Calonectria infections in ornamental nurseries. Plant Dis. 2017, 101, 165–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Mondia, J.A. Fungicide efficacy against Calonectria pseudonaviculata, causal agent of boxwood blight. Plant Dis. 2014, 98, 99–102. [Google Scholar] [CrossRef] [Green Version]
- La Mondia, J.A. Management of Calonectria pseudonaviculata in boxwood with fungicides and less susceptible host species and varieties. Plant Dis. 2015, 99, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Polizzi, G.; Vitale, A. First report of the prevalence of benzimidazole-resistant isolates in a population of Cylindrocladium pauciramosum in Italy. Plant Dis. 2001, 85, 1210. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Aiello, D.; Polizzi, G.; Perrone, G.; Stea, G.; Vitale, A. Emergence of prochloraz resistant populations of Calonectria pauciramosa and Calonectria polizzii in ornamental nurseries of Southern Italy. Plant Dis. 2014, 98, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Vitale, A.; Aiello, D.; Castello, I.; Polizzi, G. First report of benzimidazole-resistant isolates of Cylindrocladium scoparium in Europe. Plant Dis. 2009, 93, 110. [Google Scholar] [CrossRef]
- Polizzi, G.; Vitale, A. Biological control of Cylindrocladium root and collar rot of the myrtle-leaf milkwort by Trichoderma harzianum strain T-22. Biol. Cult. Tests Rep. 2002, 17, O14. [Google Scholar]
- Vitale, A.; Cirvilleri, G.; Castello, I.; Aiello, D.; Polizzi, G. Evaluation of Trichoderma harzianum strain T22 as biological control agent of Calonectria pauciramosa. Biocontrol 2012, 57, 687–696. [Google Scholar] [CrossRef]
- Daughtrey, M.L.; Benson, D.M. Principles of plant health management for ornamental plants. Ann. Rev. Phytopathol. 2005, 43, 41–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harman, G.E. Myths and dogmas of biocontrol, changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis. 2000, 84, 377–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Sutton, D.A.; Fothergill, A.; McCarthy, D.; Rinaldi, M.G.; Brandt, M.E.; Zhang, N.; Geiser, D. Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J. Clin. Microbiol. 2008, 46, 2477–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombard, L.; Van der Merwe, N.A.; Groenewald, J.Z.; Crous, P.W. Generic concepts in Nectriaceae. Stud. Mycol. 2015, 80, 189–245. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, K.; Gueidan, C.; Sink, S.; Johnston, P.R.; Crous, P.W.; Glenn, A.; Riley, R.; Zitomer, N.C.; Colyer, P.; Waalwijk, C.; et al. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet. Biol. 2009, 46, 936–948. [Google Scholar] [CrossRef]
- Polizzi, G.; Aiello, D.; Guarnaccia, V.; Vitale, A.; Perrone, G.; Epifani, F. First report of Fusarium wilt on Eremophila spp. caused by Fusarium oxysporum in Italy. Plant Dis. 2010, 94, 1509. [Google Scholar] [CrossRef]
- Polizzi, G.; Aiello, D.; Guarnaccia, V.; Vitale, A.; Perrone, G.; Stea, G. First report of Fusarium wilt of paper flower (Bougainvillea glabra) caused by Fusarium oxysporum in Italy. Plant Dis. 2010, 94, 483. [Google Scholar] [CrossRef]
- Polizzi, G.; Aiello, D.; Guarnaccia, V.; Vitale, A.; Perrone, G.; Stea, G. First report of Fusarium wilt on Philotheca myoporoides caused by Fusarium oxysporum in Italy. Plant Dis. 2011, 95, 877. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Aiello, D.; Polizzi, G.; Crous, P.W.; Sandoval-Denis, M. Soilborne diseases caused by Fusarium and Neocosmospora spp. on ornamental plants in Italy. Phytopathol. Mediterr. 2019, 58, 127–137. [Google Scholar]
- Lombard, L.; Polizzi, G.; Guarnaccia, V.; Vitale, A.; Crous, P.W. Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia. Persoonia 2011, 27, 73–79. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.L. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innes, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molec. Phylogenetics Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Crous, P.W.; Groenewald, J.Z.; Risède, J.-M.; Simoneau, P.; Hywel-Jones, N.L. Calonectria species and their Cylindrocladium anamorphs, species with sphaeropedunculate vesicles. Stud. Mycol. 2004, 50, 415–430. [Google Scholar]
- Hasegawa, M.; Kishino, H.; Yano, T. Dating the human-ape split by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Vitale, A.; Alfenas, A.C.; De Siqueira, D.L.; Magistà, D.; Perrone, G.; Polizzi, G. Cultivar resistance against Colletotrichum asianum in the world collection of mango germplasm in southeastern Brazil. Plants 2020, 9, 182. [Google Scholar] [CrossRef] [Green Version]
Treatments | Plant z | Recovery Frequency (%) | |
---|---|---|---|
Mortality (%) | Calonectria spp. | Fusarium spp. | |
Fosetyl-Al | 56.6 ± 1.6 e | 14.6 ± 8.2 ns | 8.8 ± 3.2 ns |
Propamocarb & fosetyl-Al mixture | 77.2 ± 3.8 bc | 28.6 ± 14.3 | 9.5 ± 4.8 |
Boscalid + pyraclostrobin mixture | 31.0 ± 2.6 f | 4.2 ± 4.2 | 10.6 ± 0.6 |
B. amyloliquefaciens D747 | 71.1 ± 3.8 cd | 11.1 ± 4.05 | 4.6 ± 2.0 |
B. amyloliquefaciens QST713 | 64.6 ± 1.5 de | 19.5 ± 11.7 | 23.4 ± 7.7 |
T. gamsii + T. asperellum | 65.8 ± 2.7 d | 19.5 ± 5.5 | 17.9 ± 5.8 |
Streptomyces K61 | 80.1 ± 1.6 ab | 1.2 ± 1.2 | 21.0 ± 5.8 |
B. amyloliquefaciens D747 & fosetyl-Al | 81.4 ± 3.3 ab | 30.2 ± 11.4 | 4.9 ± 3.7 |
B. amyloliquefaciens QST713 & fosetyl-Al | 67.4 ± 2.3 d | 42.9 ± 11.0 | 6.35 ± 4.2 |
T. gamsii + T. asperellum & fosetyl-Al | 68.6 ± 3.3 d | 31.1 ± 7.5 | 16.5 ± 8.3 |
Streptomyces K61 & fosetyl-Al | 68.4 ± 2.4 d | 26.8 ± 19.3 | 10.1 ± 10.1 |
Untreated control | 84.9 ± 1.9 a | 43.8 ± 7.40 | 27.1 ± 3.0 |
Treatments | Plant z | Recovery Frequency (%) | Mean Shoot | Mean Shoot | Mean | ||
---|---|---|---|---|---|---|---|
Mortality (%) | Calonectria spp. | Fusarium spp. | Binucleate Rhizoctonia | Number | Length (cm) | Weight (g) | |
Boscalid + pyraclostrobin mixture | 45.1 ± 4.2 cd | 19.0 ± 12.6 ns | 66.7 ± 33.3 ns | 0.0 ns | 5.7 ± 0.5 ns | 9.1 ± 0.7 ns | 80.8 ± 13.4 ns |
T. harzianum T22 and 908 | 77.2 ± 3.3 ab | 45.2 ± 2.4 | 35.7 ± 14.3 | 21.4 ± 8.2 | 5.2 ± 1.0 | 9.0 ± 1.0 | 64.4 ± 8.4 |
Streptomyces K61 | 66.2 ± 6.5 bc | 38.1 ± 21.2 | 50.0 ± 27.0 | 26.2 ± 14.5 | 5.4 ± 0.8 | 8.4 ± 0.7 | 60.6 ± 5.6 |
T. atroviride & T. asperellum | 67.0 ± 15.9 bc | 28.6 ± 7.1 | 83.3 ± 10.4 | 11.9 ± 11.9 | 4.9 ± 0.2 | 8.9 ± 0.3 | 65.8 ± 5.3 |
B. amyloliquefaciens QST713 | 69.1 ± 6.1 bc | 33.3 ± 19.5 | 42.9 ± 18.9 | 19.0 ± 12.6 | 5.3 ± 0.2 | 9.2 ± 0.4 | 73.1 ± 6.6 |
Boscalid+pyraclostrobin & T. harzianum T22 and 908 | 47.6 ± 4.0 cd | 21.4 ± 10.9 | 38.1 ± 8.6 | 2.4 ± 2.4 | 5.3 ± 0.5 | 8.0 ± 0.1 | 61.8 ± 4.1 |
Boscalid+pyraclostrobin & Streptomyces K61 | 54.0 ± 7.1 bcd | 31.0 ± 11.9 | 61.9 ± 14.5 | 35.7 ± 12.4 | 6.3 ± 0.7 | 10.4 ± 0.6 | 92.2 ± 11.6 |
Boscalid+pyraclostrobin & T. atroviride + T. asperellum | 48.0 ± 8.6 cd | 19.0 ± 8.6 | 88.1 ±11.9 | 0.0 | 6.2 ± 0.4 | 9.6 ± 0.4 | 80.4 ± 4.2 |
Boscalid+pyraclostrobin & B. amyloliquefaciens QST713 | 39.7 ± 6.8 d | 11.9 ± 6.3 | 59.5 ± 15.6 | 14.3 ± 14.3 | 6.0 ± 0.5 | 10.1 ± 0.8 | 84.5 ± 9.1 |
Untreated control | 90.9 ± 4.7 a | 45.2 ± 8.6 | 52.4 ± 9.5 | 11.9 ± 6.3 | 4.9 ± 0.1 | 7.8 ± 0.9 | 62.7 ± 8.9 |
Treatments | Plant y | Recovery Frequency (%) | Mean Shoot | Mean Shoot | Mean | Mean | ||
---|---|---|---|---|---|---|---|---|
Mortality (%) | Calonectria spp. | Fusarium spp. | Binucleate Rhizoctonia | Number | Length (cm) | Weight (g) | Diameter (cm) | |
Fosetyl-Al & B. amyloliquefaciens D747 | 7.1 ± 0.9 c | 0.0 ns | 65.2 ± 6.9 ns | 8.3 ± 4.3 ns | 3.9 ± 0.1 ns | 13.3 ± 0.2 ns | 47.5± 2.1 ns | 0.4 ± 0.01 ns |
Fosetyl-Al & T. gamsii + T. asperellum | 12.6 ± 3.0 bc | 0.0 | 64.8 ± 2.1 | 9.0 ± 3.7 | 3.2 ± 0.2 | 16.6 ± 0.1 | 49.3 ± 1.4 | 0.4 ± 0.03 |
Fosetyl-Al & T. asperellum ICC012, T25, TV1 | 11.3 ± 3.3 bc | 16.1 ± 8.2 | 60.9 ± 8.4 | 4.7 ± 1.3 | 2.4 ± 0.04 | 13.1 ± 0.1 | 37.0 ± 3.7 | 0.4 ± 0.02 |
Fosetyl-Al & P. chlororaphis | 6.8 ± 0.7 c | 5.2 ± 3.92 | 22.9 ± 2.2 | 6.7 ± 2.4 | 3.5 ± 0.2 | 14.2 ± 0.3 | 50.8 ± 3.6 | 0.4 ± 0.01 |
Fosetyl-Al & Streptomyces K61 | 7.2 ± 0.7 c | 0.0 ± 0.0 | 52.5 ± 4.1 | 5.2 ± 1.3 | 3.2 ± 0.03 | 14.6 ± 0.3 | 42.3 ± 0.9 | 0.4 ± 0.01 |
Fosetyl-Al | 13.9 ± 1.0 b | 14.7 ± 11.2 | 38.8 ± 6.4 | 1.9 ± 0.5 | 2.6 ± 0.01 | 12.0 ± 0.5 | 33.0 ± 3.2 | 0.4 ± 0.02 |
Propamocarb + fosetyl-Al mixture | 17.2 ± 2.6 ab | 5.7 ± 3.00 | 44.3 ± 12.1 | 3.8 ± 2.1 | 2.8 ± 0.2 | 13.2 ± 0.5 | 34.7 ± 0.6 | 0.4 ± 0.02 |
Thiophanate-methyl & prochloraz | 18.4 ± 4.2 ab | 5.2 ± 5.2 | 17.6 ± 5.6 | 11.9 ± 4.2 | 2.4 ± 0.2 | 12.6 ± 0.1 | 37.0 ± 3.0 | 0.4 ± 0.02 |
Untreated control | 20.6 ± 3.5 a | 20.4 ± 10.3 | 72.0 ± 8.4 | 6.6 ± 3.3 | 2.8 ± 0.1 | 13.0 ± 0.8 | 35.8 ± 1.4 | 0.4 ± 0.01 |
Treatments | Plant z | Recovery Frequency (%) | ||
---|---|---|---|---|
Mortality (%) | Calonectria spp. | Fusarium spp. | Binucleate Rhizoctonia | |
Boscalid + pyraclostrobin & fosethyl-Al (trts1) | 8.9 ± 0.4 ef | 7.9 ± 4.2 ns | 86.9 ± 5.2 ns | 1.2 ± 1.2 ns |
Boscalid + pyraclostrobin & propamocarb + fosetyl-Al | 15.9 ± 1.1 cd | 22.2 ± 10.4 | 86.9 ± 4.3 | 1.2 ± 1.2 |
Scheduled trts1 & B. amyloliquefaciens D747 | 11.6 ± 0.5 ef | 51.2 ± 4.3 | 79.8 ± 7.2 | 2.4 ± 2.4 |
Scheduled trts1 & B. amyloliquefaciens QST713 | 5.6 ± 0.3 g | 34.9 ± 3.2 | 41.7 ± 6.3 | 3.6 ± 3.6 |
Scheduled trts1 & Streptomyces K61 | 8.7 ± 0.4 fg | 11.5 ± 7.3 | 82.1± 10.9 | 1.2 ± 1.2 |
Scheduled trts1 & T. gamsii + T. asperellum | 17.4 ± 0.7 bc | 27.8 ± 14.3 | 52.4 ± 6.6 | 0 |
Scheduled trts1 + P. chlororaphis | 18.9 ± 0.9 bc | 26.6 ± 4.6 | 79.8 ± 6.6 | 3.6 ± 2.1 |
Scheduled trts1 + T. harzianum T22 and 908 | 12.4 ± 0.9 de | 31.3 ± 10.6 | 57.1± 14.4 | 0 |
Untreated control | 35.8 ± 3.1 a | 54.4 ± 1.4 | 88.1 ± 6.6 | 1.2 ± 1.2 |
Standard trts (thiophanate-methyl & prochloraz) | 21.9 ± 4.1 b | 46.0 ± 5.7 | 19.1 ± 1.2 | 0 |
Active ingredient | Trade Name | Manufacturer | Rates (g or mL/100 L) | Formulation x | Experiment |
---|---|---|---|---|---|
Boscalid + pyraclostrobin mixture | Signum™ | Basf Italia S.p.A. | 100 | 26.7 + 6.7 WG | I, II, IV |
Propamocarb + fosetyl-Al | Previcur Energy™ | Bayer Crop Science S.r.l. | 250 | 47.3 + 27.7 SL | I, III, IV |
Fosetyl-Al | Aliette™ | Bayer Crop Science S.r.l. | 300 | 80 WG | I, III, IV |
Thiophanate-methyl | Enovit Metil FL™ | Sipcam Oxon S.p.A. | 100 | 41.7 FL | III, IV |
Prochloraz | Sportak 45 EW™ | Basf Italia S.p.A. | 100 | 39.8 EW | III, IV |
Bacillus amyloliquefaciens subsp. plantarum strain D747 | Amilo-X™ | CBC (Europe) S.r.l. | 250 | 25 WG | I, II, III |
Bacillus amyloliquefaciens (formerly B. subtilis) strain QST713 | Serenade Max™ | Bayer Crop Science S.r.l. | 400 | 15.67 WP | I, II, III |
Streptomyces K61 (formerly S. griseoviridis) | Mycostop™ | Danstar Ferment AG | 25 | 33 WP | I, II, III, IV |
Trichoderma gamsii (formerly T. viride) strain ICC080 + T. asperellum (formerly T. harzianum) strains ICC012, T25 and TV1 | Radix Soil™ | Isagro S.p.A. | 250 | 2 + 2 WP | I, III, IV |
Trichoderma harzianum strains T-22 and Item 908 | Trianum-P™ | Koppert B.V. | 250 | 1.15 WP | II, IV |
T. atroviride (formerly T. harzianum) strains T11 and IMI206040 + T. asperellum (formerly T. harzianum) strains ICC012, T25 and TV1 | Tusal™ | Newbiotechnic S.A. | 300 | 0.5 + 0.5 WG | II |
Pseudomonas chlororaphis strain MA312 | Cedomon (Cerall™) | Koppert B.V. | 400 | 9 AL | III, IV |
Trichoderma asperellum (former T. harzianum) strains ICC012, T25 and TV1 | Xedavir™ | Xeda International S.A. | 400 | 2.8 WP | III |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, D.; Vitale, A.; Perrone, G.; Tessitori, M.; Polizzi, G. Can Biological Control Agents Reduce Multiple Fungal Infections Causing Decline of Milkwort in Ornamental Nursery? Plants 2020, 9, 1682. https://doi.org/10.3390/plants9121682
Aiello D, Vitale A, Perrone G, Tessitori M, Polizzi G. Can Biological Control Agents Reduce Multiple Fungal Infections Causing Decline of Milkwort in Ornamental Nursery? Plants. 2020; 9(12):1682. https://doi.org/10.3390/plants9121682
Chicago/Turabian StyleAiello, Dalia, Alessandro Vitale, Giancarlo Perrone, Matilde Tessitori, and Giancarlo Polizzi. 2020. "Can Biological Control Agents Reduce Multiple Fungal Infections Causing Decline of Milkwort in Ornamental Nursery?" Plants 9, no. 12: 1682. https://doi.org/10.3390/plants9121682
APA StyleAiello, D., Vitale, A., Perrone, G., Tessitori, M., & Polizzi, G. (2020). Can Biological Control Agents Reduce Multiple Fungal Infections Causing Decline of Milkwort in Ornamental Nursery? Plants, 9(12), 1682. https://doi.org/10.3390/plants9121682