Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain
Abstract
:1. Introduction
2. Results and Discussion
2.1. RAPD Fingerprinting
2.2. Analysis of the rrs Gene
2.3. Analysis of recA and atpD Genes
Strain | RAPD Group | recA Gene * Similarity (%) | atpD Gene * Similarity (%) | Cellulases Production | Cellulose Production | AHL Production § | IAA (mg/L) | Siderophore Production ¥ | Phosphate Solubilization ƒ |
---|---|---|---|---|---|---|---|---|---|
AMPS04 | VI | 96.7 | 100 | w | w | 1:125 | 0.082 | 4 | 0.00 |
AMPS05 | II | 96.8 | 99.4 | w | + | 1:125 | 0.081 | 5 | 0.00 |
AMPS17 | IV | 99.8 | 100 | w | + | 1:3125 | 0.040 | 4 | 0.00 |
AMPS22 | III | 96.5 | 98.1 | + | + | 1:3125 | 0.023 | 1 | 0.00 |
AMPS23 | V | 96.7 | 100 | + | + | 1:25 | 0.023 | 1 | 1.33 |
AMPS34 | I | 97.6 | 99.5 | + | w | 1.25 | 0.079 | 7 | 1.17 |
2.4. Analysis of the nodC Gene
2.5. Biofilm Formation and Quorum Sensing
2.6. In Vitro Plant Growth Promotion Mechanisms
2.7. Effectiveness on Pea Plants
3. Materials and Methods
3.1. Diversity Analysis of Strains by RAPD Fingerprinting
3.2. Gene Sequencing and Analysis
3.3. Quorum Sensing Signals and Biofilm Production
3.4. In Vitro Plant Growth Promoting Mechanisms
3.5. Effectiveness Assays in Pisum sativum
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dahl, W.J.; Foster, L.M.; Tyler, R.T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 2012, 108, S3–S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, C.S.; Carbas, B.; Castanho, A.; Vasconcelos, M.W.; Vaz Patto, M.C.; Domoney, C.; Brites, C. Variation in pea (Pisum sativum L.) seed quality traits defined by physicochemical functional properties. Foods 2019, 8, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spanish Ministry of Agriculture, Fishing and Food (Ministerio de Agricultura, Pesca y Alimentación). Anuario de Estadística 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2019/default.aspx (accessed on 14 July 2020).
- Frank, B. Ueber die Pilzsymbiose der Leguminosen. Ber. Deutsch. Bot. Ges. 1889, 7, 332–346. [Google Scholar]
- Ramírez-Bahena, M.H.; García-Fraile, P.; Peix, A.; Valverde, A.; Rivas, R.; Igual, J.M.; Mateos, P.F.; Martínez-Molina, E.; Velázquez, E. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 2484–2490. [Google Scholar] [CrossRef]
- Rahi, P.; Giram, P.; Chaudhari, D.; di Cenzo, G.C.; Kiran, S.; Khullar, A.; Chandel, M.; Gawari, S.; Mohan, A.; Chavan, S.; et al. Rhizobium indicum sp. nov., isolated from root nodules of pea (Pisum sativum) cultivated in the Indian trans-Himalayas. Syst. Appl. Microbiol. 2020, 43, 126127. [Google Scholar] [CrossRef]
- Jorrin, B.; Palacios, J.M.; Peix, A.; Imperial, J. Rhizobium ruizarguesonis sp. nov., isolated from nodules of Pisum sativum L. Syst. Appl. Microbiol. 2020, 43, 126090. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zheng, W.T.; Everall, I.; Young, J.P.W.; Zhang, X.X.; Tian, C.F.; Sui, X.H.; Wang, E.T.; Chen, W.X. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int. J. Syst. Evol. Microbiol. 2015, 65, 2960–2967. [Google Scholar] [CrossRef]
- Rahi, P.; Kapoor, R.; Young, J.P.; Gulati, A. A genetic discontinuity in root-nodulating bacteria of cultivated pea in the Indian trans-Himalayas. Mol. Ecol. 2012, 21, 145–159. [Google Scholar] [CrossRef]
- Ruiz-Díez, B.; Fajardo, S.; Felipe, M.R.; Fernández-Pascual, M. Characterization of rhizobia from legumes of agronomic interest grown in semi-arid areas of Central Spain relates genetic differences to soil properties. J. Basic Microbiol. 2012, 52, 66–78. [Google Scholar] [CrossRef]
- Gurkanli, C.T.; Ozkoc, I.; Gunduz, I. Genetic diversity of Vicia faba L. and Pisum sativum L. nodulating rhizobia in the central Black Sea region of Turkey. Ann. Microbiol. 2014, 64, 99–112. [Google Scholar] [CrossRef]
- Martínez-Molina, E.; Sánchez Juanes, F.; Carro, L.; Flores-Félix, J.D.; Martínez-Hidalgo, P.; Cerda Castillo, E.; González Buitrago, J.M.; Velázquez, E. Identification of rhizobial strains nodulating Pisum sativum in Northern Spain soils by MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry) analysis. In Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction; González-Andrés, F., James, E., Eds.; Springer: Cham, Switzerland, 2015; pp. 37–44. [Google Scholar] [CrossRef]
- Blažinkov, M.; Uher, D.; Romanjek Fajdetić, N.; Japundžić–Palenkić, B.; Sikora, S. Biodiversity and symbiotic efficiency of indigenous rhizobia nodulating field pea. J. Cent. Eur. Agric. 2020, 21, 292–299. [Google Scholar] [CrossRef]
- Boivin, S.; Lahmidi, N.A.; Sherlock, D.; Bonhomme, M.; Dijon, D.; Heulin-Gotty, K.; Le-Queré, A.; Pervent, M.; Tauzin, M.; Carlsson, G.; et al. Host-specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae. New Phytol. 2020, 226, 555–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missbah El-Idrissi, M.; Lamin, H.; Bouhnik, O.; Lamrabet, M.; Alami, S.; Jabrone, Y.; Bennis, M.; Bedmar, E.J.; Abdelmoumen, H. Characterization of Pisum sativum and Vicia faba microsymbionts in Morocco and definition of symbiovar viciae in Rhizobium acidisoli. Syst. Appl. Microbiol. 2020, 43, 126084. [Google Scholar] [CrossRef] [PubMed]
- Moschetti, G.; Peluso, A.L.; Protopapa, A.; Anastasio, M.; Pepe, O.; Defez, R. Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst. Appl. Microbiol. 2005, 28, 619–631. [Google Scholar] [CrossRef]
- Santillana, N.; Ramírez-Bahena, M.H.; García-Fraile, P.; Velázquez, E.; Zúñiga, D. Phylogenetic diversity based on rrs, atpD, recA genes and 16S-23S intergenic sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum in Peru. Arch. Microbiol. 2008, 189, 239–247. [Google Scholar] [CrossRef]
- Alvarez-Martínez, E.R.; Valverde, A.; Ramírez-Bahena, M.H.; García-Fraile, P.; Tejedor, C.; Mateos, P.F.; Santillana, N.; Zúñiga, D.; Peix, A.; Velázquez, E. The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds. Arch. Microbiol. 2009, 191, 659–668. [Google Scholar] [CrossRef]
- Van Cauwenberghe, J.; Verstraete, B.; Lemaire, B.; Lievens, B.; Michiels, J.; Honnay, O. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst. Appl. Microbiol. 2014, 37, 613–621. [Google Scholar] [CrossRef]
- Villadas, P.J.; Lasa, A.V.; Martínez-Hidalgo, P.; Flores-Félix, J.D.; Martínez-Molina, E.; Toro, N.; Velázquez, E.; Fernández-López, M. Analysis of rhizobial endosymbionts of Vicia, Lathyrus and Trifolium species used to maintain mountain firewalls in Sierra Nevada National Park (South Spain). Syst. Appl. Microbiol. 2017, 40, 92–101. [Google Scholar] [CrossRef]
- Flores-Félix, J.D.; Sánchez-Juanes, F.; García-Fraile, P.; Valverde, A.; Mateos, P.F.; Gónzalez-Buitrago, J.M.; Velázquez, E.; Rivas, R. Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Syst. Appl. Microbiol. 2019, 42, 240–247. [Google Scholar] [CrossRef]
- Saïdi, S.; Ramírez-Bahena, M.H.; Santillana, N.; Zúñiga, D.; Álvarez-Martínez, E.; Peix, A.; Mhamdi, R.; Velázquez, E. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int. J. Syst. Evol. Microbiol. 2014, 64, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Gaunt, M.W.; Turner, S.L.; Rigottier-Gois, L.; Lloyd-Macgilp, S.A.; Young, J.W.P. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol. 2001, 51, 2037–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belhadi, D.; de Lajudie, P.; Ramdani, N.; Le Roux, C.; Boulila, F.; Tisseyre, P.; Boulila, A.; Benguedouar, A.; Kaci, Y.; Laguerre, G. Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae, Rhizobium laguerreae and two new genospecies. Syst. Appl. Microbiol. 2018, 41, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H.; Gonzalez, J.; Young, J.P.; Wink, M. Rhizobium leguminosarum is the symbiont of lentils in the Middle East and Europe but not in Bangladesh. FEMS Microbiol. Ecol. 2014, 87, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, B.C.; Wang, E.T.; Li, Y.; Jia, R.Z.; Chen, W.F.; Man, C.X.; Sui, X.H.; Chen, W.X. Rhizobial resource associated with epidemic legumes in Tibet. Microb. Ecol. 2009, 57, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Trovato, A.; Seno, F.; Zanardo, M.; Alberghini, S.; Tondello, A.; Squartini, A. Quorum vs. diffusion sensing: A quantitative analysis of the relevance of absorbing or reflecting boundaries. FEMS Microbiol. Lett. 2014, 352, 198–203. [Google Scholar] [CrossRef]
- Srivastava, S.; Yodov, K.S.; Kundu, B.S. Prospects of using phosphate solubilizing Pseudomonas as biofungicide. Indian J. Microbiol. 2004, 44, 91–94. [Google Scholar]
- Rogel, M.A.; Ormeño-Orrillo, E.; Martinez Romero, E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 2011, 34, 96–104. [Google Scholar] [CrossRef]
- Peix, A.; Ramírez-Bahena, M.H.; Velázquez, E.; Bedmar, E.J. Bacterial associations with legumes. Crit. Rev. Plant Sci. 2015, 34, 17–42. [Google Scholar] [CrossRef]
- Broughton, W.J.; Perret, X. Genealogy of legume-Rhizobium symbioses. Curr. Opin. Plant Biol. 1999, 2, 305–311. [Google Scholar] [CrossRef]
- Jordan, D.C., III. Rhizobiaceae. In Bergey’s Manual of Systematic Bacteriology; Krieg, N.R., Holt, J.G., Eds.; Williams and Wilkins Co.: Baltimore, MD, USA, 1984; Volume 1, pp. 234–242. [Google Scholar] [CrossRef] [Green Version]
- Laguerre, G.; Nour, S.M.; Macheret, V.; Sanjuan, J.; Drouin, P.; Amarger, N. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001, 147, 981–993. [Google Scholar] [CrossRef] [Green Version]
- García-Fraile, P.; Mulas-García, D.; Peix, A.; Rivas, R.; González-Andrés, F.; Velázquez, E. Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: Biogeographical and evolutionary implications. Can. J. Microbiol. 2010, 56, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Tampakaki, A.P.; Fotiadis, C.T.; Ntatsi, G.; Savvas, D. A novel symbiovar (aegeanense) of the genus Ensifer nodulates Vigna unguiculata. J. Sci. Food Agric. 2017, 97, 4314–4325. [Google Scholar] [CrossRef] [PubMed]
- Robledo, M.; Rivera, L.; Jiménez-Zurdo, J.I.; Rivas, R.; Dazzo, F.; Velázquez, E.; Martínez-Molina, E.; Hirsch, A.M.; Mateos, P.F. Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb. Cell Fact. 2012, 11, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Gómez, A.; Flores-Félix, J.D.; García-Fraile, P.; Mateos, P.F.; Menéndez, E.; Velázquez, E.; Rivas, R. Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Sci. Rep. 2018, 8, 295. [Google Scholar] [CrossRef]
- Downie, J.; González, J. Cell-to-Cell communication in rhizobia: Quorum Sensing and Plant Signaling. In Chemical Communication among Bacteria; Winans, S., Bassler, B., Eds.; ASM Press: Washington, DC, USA, 2008; pp. 213–232. [Google Scholar] [CrossRef]
- Calatrava-Morales, N.; McIntosh, M.; Soto, M.J. Regulation mediated by N-Acyl homoserine lactone quorum sensing signals in the Rhizobium-Legume symbiosis. Genes 2018, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Lithgow, J.K.; Danino, V.E.; Jones, J.; Downie, J.A. Analysis of N-acyl homoserine-lactone quorum-sensing molecules made by different strains and biovars of Rhizobium leguminosarum containing different symbiotic plasmids. Plant Soil 2001, 232, 3–12. [Google Scholar] [CrossRef]
- Beringer, J.E.; Brewin, N.J.; Johnston, A.W.B. The genetic analysis of Rhizobium in relation to symbiotic nitrogen fixation. Heredity 1980, 45, 161–186. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, E.; Carro, L.; Flores-Félix, J.D.; Menéndez, E.; Ramírez-Bahena, M.H.; Peix, A. Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition. In Microbiome in Plant Health and Disease; Kumar, V., Prasad, R., Kumar, M., Choudhary, D., Eds.; Springer: Singapore, 2019; pp. 79–104. [Google Scholar] [CrossRef]
- García-Fraile, P.; Carro, L.; Robledo, M.; Ramírez-Bahena, M.H.; Flores-Félix, J.D.; Fernández, M.T.; Mateos, P.F.; Rivas, R.; Igual, J.M.; Martínez-Molina, E.; et al. Rhizobium promotes non-legumes growth and quality in several production steps: Towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 2012, 7, e38122. [Google Scholar] [CrossRef] [Green Version]
- Flores-Félix, J.D.; Menéndez, E.; Rivera, L.P.; Marcos-García, M.; Martínez-Hidalgo, P.; Mateos, P.; Martínez-Molina, E.; Velázquez, E.; García-Fraile, P.; Rivas, R. Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J. Plant Nutr. Soil Sci. 2013, 176, 876–882. [Google Scholar] [CrossRef]
- Ayuso-Calles, M.; García-Estévez, I.; Jiménez-Gómez, A.; Flores-Félix, J.D.; Escribano-Bailón, M.T.; Rivas, R. Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions. Foods 2020, 9, 1166. [Google Scholar] [CrossRef]
- Lindström, K.; Mousavi, S.A. Effectiveness of nitrogen fixation in rhizobia. Microb. Biotechnol. 2019, 13, 1314–1335. [Google Scholar] [CrossRef] [Green Version]
- Parsons, R.; Stanforth, A.; Raven, J.A.; Sprent, J.I. Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ. 1993, 16, 125–136. [Google Scholar] [CrossRef]
- Murray, J.D.; Liu, C.W.; Chen, Y.; Miller, A.J. Nitrogen sensing in legumes. J. Exp. Bot. 2017, 68, 1919–1926. [Google Scholar] [CrossRef]
- Rigaud, J.; Puppo, A. Indole-3-acetic acid catabolism by soybean bacteroids. J. Gen. Microbiol. 1975, 88, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Rivas, R.; Peix, A.; Mateos, P.F.; Trujillo, M.E.; Martinez-Molina, E.; Velázquez, E. Biodiversity of populations of phosphate solubilizing rhizobia that nodulate chickpea in different Spanish soils. Plant Soil 2006, 287, 23–33. [Google Scholar] [CrossRef]
- Carro, L.; Spröer, C.; Alonso, P.; Trujillo, M.E. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst. Appl. Microbiol. 2012, 35, 73–80. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The clustalX windows interface: Flexible strategies for multiple sequence alignement aided by quality analysis tools. Nucleic Acids Res. 1997, 24, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. A neighbour-joining method: A new method for reconstructing phylogenetics trees. Mol. Biol. Evol. 1987, 44, 406–425. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 3, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.M. A Manual for the Practical Study of the Root-Nodule Bacteria; IBP Handbook 15; Blackwell Scientific Publications: Oxford, UK, 1970; pp. 1–13. [Google Scholar] [CrossRef]
- Marenda, M.; Zanardo, M.; Trovato, A.; Seno, F.; Squartini, A. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries. Sci. Rep. 2016, 6, 39142. [Google Scholar] [CrossRef] [PubMed]
- Mateos, P.F.; Jimenez-Zurdo, J.I.; Chen, J.; Squartini, A.S.; Haack, S.K.; Martinez-Molina, E.; Hubbell, D.H.; Dazzo, F.B. Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microbiol. 1992, 58, 1816–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peix, A.; Rivas-Boyero, A.A.; Mateos, P.F.; Rodríguez-Barrueco, C.; Martínez-Molina, E.; Velázquez, E. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 2001, 33, 103–110. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Alexander, D.B.; Zuberer, D.A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 1991, 12, 39–45. [Google Scholar] [CrossRef]
- O’Hara, G.W.; Goss, T.J.; Dilworth, M.J.; Glenn, A.R. Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl. Environ. Microbiol. 1989, 55, 1870–1876. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.; Arshad, M.; Zahir, Z.A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 2004, 96, 473–480. [Google Scholar] [CrossRef]
Treatment | Nodules/Plant (± S.E.) | Shoot Fresh Weight (g)/Plant (± S.E.) | Shoot Dry Weight (g)/Plant (± S.E.) | N (%) (± S.E.) | Total N (mg)/Plant (± S.E.) |
---|---|---|---|---|---|
Uninoculated plants (without N) | 1.19 (±0.02) a | 0.21 (±0.02) a | 2.77 (±0.08) a | 5.72 (±0.13) a | |
Uninoculated plants (with N) * | 2.81 (±0.03) f | 0.45 (±0.03) f | 4.28 (±0.12) bc | 19.22 (±0.26) f | |
R. pisi DSM 30132T | 52 (±2.44) a | 2.74 (±0.04) e | 0.42 (±0.03) de | 4.15 (±0.09) bc | 17.49 (±0.29) e |
AMPS04 | 60 (±2.31) b | 2.59 (±0.03) bcd | 0.38 (±0.04) c | 4.10 (±0.10) b | 15.66 (±0.34) c |
AMPS05 | 52 (±2.74) a | 2.66 (±0.02) cde | 0.39 (±0.03) cd | 4.14 (±0.13) bc | 16.12 (±0.23) cd |
AMPS17 | 53 (±2.55) a | 2.66 (±0.03) cde | 0.40 (±0.03) d | 4.13 (±0.07) bc | 16.70 (±0.26) d |
AMPS22 | 55 (±2.14) ab | 2.55 (±0.03) bc | 0.36 (±0.05) b | 4.08 (±0.05) b | 14.72 (±0.28) b |
AMPS23 | 52 (±1.86) a | 2.65 (±0.02) cd | 0.39 (±0.03) cd | 4.14 (±0.11) bc | 15.94 (±0.27) cd |
AMPS34 | 51 (±1.79) a | 2.70 (±0.04) e | 0.42 (±0.04) de | 4.17 (±0.08) bc | 17.42 (±0.28) de |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Félix, J.D.; Carro, L.; Cerda-Castillo, E.; Squartini, A.; Rivas, R.; Velázquez, E. Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain. Plants 2020, 9, 1755. https://doi.org/10.3390/plants9121755
Flores-Félix JD, Carro L, Cerda-Castillo E, Squartini A, Rivas R, Velázquez E. Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain. Plants. 2020; 9(12):1755. https://doi.org/10.3390/plants9121755
Chicago/Turabian StyleFlores-Félix, José David, Lorena Carro, Eugenia Cerda-Castillo, Andrea Squartini, Raúl Rivas, and Encarna Velázquez. 2020. "Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain" Plants 9, no. 12: 1755. https://doi.org/10.3390/plants9121755
APA StyleFlores-Félix, J. D., Carro, L., Cerda-Castillo, E., Squartini, A., Rivas, R., & Velázquez, E. (2020). Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain. Plants, 9(12), 1755. https://doi.org/10.3390/plants9121755