Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action
Abstract
:1. Introduction
2. Results
2.1. Biometric Measurements, Dry Biomass and Dry Matter Percentage
2.2. Colorimetric Indices, SPAD Index and Fluorescence
2.3. Sweet Basil Aromatic Profile
2.4. Sweet Basil Phenolic Acids
3. Discussion
4. Materials and Methods
4.1. Basil Cultivars, Nutrient Solution Concentrations, Growing Conditions and Experimental Design
4.2. Harvesting, Biometric Analysis and Sampling
4.3. Colorimetric Measurement, SPAD Index and Maximum Quantum Efficiency Determination
4.4. Extraction and Determination of Basil Aromatic Profile
4.5. Extraction, Determination and Quantification of Phenolic Acids
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corrado, G.; Chiaiese, P.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Rouphael, Y. Successive harvests affect yield, quality and metabolic profile of sweet basil (Ocimum basilicum L.). Agronomy 2020, 10, 830. [Google Scholar] [CrossRef]
- Carlo, N.; Silvia, S.; Stefano, B.; Paolo, S. Influence of cut number on qualitative traits in different cultivars of sweet basil. Ind. Crops Prod. 2013, 44, 465–472. [Google Scholar] [CrossRef]
- Kiferle, C.; Maggini, R.; Pardossi, A. Influence of nitrogen nutrition on growth and accumulation of rosmarinic acid in sweet basil (Ocimum basilicum L.) grown in hydroponic culture. Aust. J. Crop Sci. 2013, 7, 321–327. [Google Scholar]
- Makri, O.; Kintzios, S. Ocimum sp. (basil): Botany, cultivation, pharmaceutical properties, and biotechnology. J. Herbs. Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Maggio, A.; Roscigno, G.; Bruno, M.; De Falco, E.; Senatore, F. Essential-Oil Variability in a Collection of Ocimum basilicum L. (Basil) Cultivars. Chem. Biodivers. 2016, 13, 1357–1368. [Google Scholar] [CrossRef] [PubMed]
- Salachas, G.; Savvas, D.; Argyropoulou, K.; Tarantillis, P.A.; Kapotis, G. Yield and nutritional quality of aeroponically cultivated basil as affected by the available root-zone volume. Emir. J. Food Agric. 2015, 27, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Ho, C.T. Antioxidant Activities of Caffeic Acid and Its Related Hydroxycinnamic Acid Compounds. J. Agric. Food Chem. 1997, 45, 2374–2378. [Google Scholar] [CrossRef]
- Petersen, M. Rosmarinic acid. Phytochemistry 2003, 62, 121–125. [Google Scholar] [CrossRef]
- Lee, J.; Scagel, C.F. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Sgherri, C.; Cecconami, S.; Pinzino, C.; Navari-Izzo, F.; Izzo, R. Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem. 2010, 123, 416–422. [Google Scholar] [CrossRef]
- Loughrin, J.H.; Kasperbauer, M.J. Light Reflected from Colored Mulches Affects Aroma and Phenol Content of Sweet Basil (Ocimum basilicum L.) Leaves. J. Agric. Food Chem. 2001, 49, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Tarchoune, I.; Incerti, A.; Lachaal, M.; Ouerghi, Z.; Izzo, R.; Navari-Izzo, F. Relations between antioxidant activity and salinity in basil (Ocimum basilicum Mill.). Agrochimica 2009, 53, 56–64. [Google Scholar]
- Moghaddam, M.; Mehdizadeh, L. Variability of total phenolic, flavonoid and rosmarinic acid content among Iranian basil accessions. Lwt-Food Sci. Technol. 2015, 63, 535–540. [Google Scholar] [CrossRef]
- Dudai, N.; Chaimovitsh, D.; Fischer, R.; Belanger, F. Aroma as a factor in the breeding process of basil. Acta Hortic. 2010, 167–171. [Google Scholar] [CrossRef]
- De Masi, L.; Siviero, P.; Esposito, C.; Castaldo, D.; Siano, F.; Laratta, B. Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.). Eur. Food Res. Technol. 2006, 223, 273–281. [Google Scholar] [CrossRef]
- Chadha, K.L.; Gupta, R. Advances in Horticulture: Medicinal and Aromatic Plants; Chadha, K.L., Ed.; Malhotra Publishing House: New Delhi, India, 1995; Volume 11, ISBN 8185048304. [Google Scholar]
- Corrado, G.; Formisano, L.; De Micco, V.; Pannico, A.; Giordano, M.; El-Nakhel, C.; Chiaiese, P.; Sacchi, R.; Rouphael, Y. Understanding the Morpho-Anatomical, Physiological, and Functional Response of Sweet Basil to Isosmotic Nitrate to Chloride Ratios. Biology 2020, 9, 158. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Bogucka-Kocka, A.; Kowalski, R.; Borowski, B. Changes in the chemical composition of the essential oil of sweet basil (Ocimum basilicum L.) depending on the plant growth stage. Chemija 2012, 23, 216–222. [Google Scholar]
- Juliani, H.R.; Koroch, A.R.; Simon, J.E. Basil: A Source of Rosmarinic Acid. In DIetary SUpplements; Ho, C.-T., Simon, J.E., Shahidi, F., Shao, Y., Eds.; ACS Publications: Washington, DC, USA, 2008; pp. 129–142. ISBN 9780841239920. [Google Scholar]
- Di Cesare, L.F.; Nani, R.; Brambilla, A.; Bertolo, G.; Fusari, E.L. Drying of medicinal herbs: Evaluation of volatile composition. Riv. Ital. Eppos 2000, 29, 29–37. [Google Scholar]
- Di Cesare, L.F.; Viscardi, D.; Nani, R. Influence of blanching with MW and drying with dried air on the volatile composition of basil [micro waves]. Ind. Aliment. 2002, 41, 25–28. [Google Scholar]
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef]
- Kiferle, C.; Lucchesini, M.; Mensuali-Sodi, A.; Maggini, R.; Raffaelli, A.; Pardossi, A. Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Open Life Sci. 2011, 6, 946–957. [Google Scholar] [CrossRef]
- Tognoni, F.; Malorgio, F.; Incrocci, L.; Carmassi, G.; Massa, D.; Pardossi, A. Hydroponic Technologies for Greenhouse Crops. In Proceedings of the Strategie per il Miglioramento dell’Orticoltura Protetta in Sicilia; Assessorato Agricoltura e Foreste; WFL Publisher Science & Tecnology: Scoglitti, Italy, 2005; pp. 39–51. [Google Scholar]
- Rouphael, Y.; Cardarelli, M.; Lucini, L.; Rea, E.; Colla, G. Nutrient Solution Concentration Affects Growth, Mineral Composition, Phenolic Acids, and Flavonoids in Leaves of Artichoke and Cardoon. HortScience 2012, 47, 1424–1429. [Google Scholar] [CrossRef] [Green Version]
- Fallovo, C.; Rouphael, Y.; Cardarelli, M.; Rea, E.; Battistelli, A.; Colla, G. Yield and quality of leafy lettuce in response to nutrient solution composition and growing season. J. Food Agric. Environ. 2009, 7, 456–462. [Google Scholar]
- El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; De Pascale, S.; Rouphael, Y. Macronutrient deprivation eustress elicits differential secondary metabolites in red and green-pigmented butterhead lettuce grown in a closed soilless system. J. Sci. Food Agric. 2019, 99, 6962–6972. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Monroe, A.; Day, M.R. Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Petropoulos, S.A.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; Colla, G.; Troise, A.D.; Vitaglione, P.; De Pascale, S.; Rouphael, Y. The bioactive profile of lettuce produced in a closed soilless system as configured by combinatorial effects of genotype and macrocation supply composition. Food Chem. 2020, 309, 125713. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. (Amst.) 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Zheng, Y.; Dixon, M.; Saxena, P. Greenhouse production of Echinacea purpurea (L.) and E. angustifolia using different growing media, NO3−/NH4+ ratios and watering regimes. Can. J. Plant Sci. 2006, 86, 809–815. [Google Scholar] [CrossRef]
- Maboko, M.M.; Du Plooy, C.P. High-plant density planting of basil (Ocimum basilicum) during summer/fall growth season improves yield in a closed hydroponic system. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2013, 63, 748–752. [Google Scholar] [CrossRef]
- Mahlangu, R.I.S.; Maboko, M.M.; Mudau, F.N. Growth, yield and mineral content of basil and cultivated rocket due to plant density and nitrogen level. Int. J. Veg. Sci. 2019, 1–15. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Vetrano, F.; D’Anna, F. First results on yield and quality response of basil (Ocimum basilicum L.) grown in a floating system. Acta Hortic. 2003, 377–381. [Google Scholar] [CrossRef]
- Morano, G.; Amalfitano, C.; Sellitto, M.; Cuciniello, A.; Maiello, R.; Caruso, G. Effects of nutritive solution electrical conductivity and plant density on growth, yield and quality of sweet basil grown in gullies by subirrigation. Adv. Hortic. Sci. 2017, 31, 25–30. [Google Scholar]
- Bekhradi, F.; Delshad, M.; Marín, A.; Luna, M.C.; Garrido, Y.; Kashi, A.; Babalar, M.; Gil, M.I. Effects of salt stress on physiological and postharvest quality characteristics of different Iranian genotypes of basil. Hortic. Env. Biotechnol. 2015, 56, 777–785. [Google Scholar] [CrossRef]
- Walters, K.J.; Currey, C.J. Effects of Nutrient Solution Concentration and Daily Light Integral on Growth and Nutrient Concentration of Several Basil Species in Hydroponic Production. HortScience 2018, 53, 1319–1325. [Google Scholar] [CrossRef]
- Santos, S.T.D.; Oliveira, F.D.A.D.; Oliveira, G.; Sá, F.V.D.S.; Costa, J.P.D.M.; Fernandes, P.D. Photochemical efficiency of basil cultivars fertigated with salinized nutrient solutions. Rev. Bras. Eng. Agrícola Ambient 2020, 24, 319–324. [Google Scholar] [CrossRef]
- Attia, H.; Karray, N.; Ellili, A.; Msilini, N.; Lachaâl, M. Sodium transport in basil. Acta Physiol. Plant. 2009, 31, 1045–1051. [Google Scholar] [CrossRef]
- Albornoz, F.; Heinrich Lieth, J. Over fertilization limits lettuce productivity because of osmotic stress. Chil. J. Agric. Res. 2015, 75, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Raimondi, G.; Orsini, F.; Maggio, A.; De Pascale, S.; Barbieri, G. Yield and quality of hydroponically grown sweet basil cultivars. In I International Symposium on the Labiatae: Advances in Production, Biotechnology and Utilisation; Cervelli, C., Ruffoni, B., Guda, C.D., Eds.; ISHS Acta Horticulturae: Sanremo, Italy, 2006; Volume 723, pp. 353–359. [Google Scholar]
- Menezes, R.V.; Azevedo Neto, A.D.; Gheyi, H.R.; Cova, A.M.W.; Silva, H.H.B. Tolerance of Basil Genotypes to Salinity. J. Agric. Sci. 2017, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Singh, H.; Dunn, B.; Payton, M.; Brandenberger, L. Fertilizer and Cultivar Selection of Lettuce, Basil, and Swiss Chard for Hydroponic Production. Horttechnology 2019, 29, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.B.; Khandaker, L.; Oba, S. Comparative study on functional components, antioxidant activity and color parameters of selected colored leafy vegetables as affected by photoperiods. J. Food Agric. Env. 2009, 7, 392–398. [Google Scholar]
- Rahimikhoob, H.; Sohrabi, T.; Delshad, M. Development of a Critical Nitrogen Dilution Curve for Basil (Ocimum basilicum L.) Under Greenhouse Conditions. J. Soil Sci. Plant Nutr. 2020, 20, 881–891. [Google Scholar] [CrossRef]
- Yang, H.; Yang, J.; Lv, Y.; He, J. SPAD Values and Nitrogen Nutrition Index for the Evaluation of Rice Nitrogen Status. Plant Prod. Sci. 2014, 17, 81–92. [Google Scholar] [CrossRef]
- Hassanpouraghdam, M.B.; Gohari, G.R.; Tabatabaei, S.J.; Dadpour, M.R. Inflorescence and leaves essential oil composition of hydroponically grown Ocimum basilicum L. J. Serb. Chem. Soc. 2010, 75, 1361–1368. [Google Scholar] [CrossRef]
- Marotti, M.; Piccaglia, R.; Giovanelli, E. Differences in Essential Oil Composition of Basil (Ocimum basilicum L.) Italian Cultivars Related to Morphological Characteristics. J. Agric. Food Chem. 1996, 44, 3926–3929. [Google Scholar] [CrossRef]
- Lahlou, S.; Figueiredo, A.F.; Magalhães, P.J.C.; Leal-Cardoso, J.H. Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Can. J. Physiol. Pharm. 2002, 80, 1125–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, X.; Alderson, P.G.; Hollowood, T.A.; Hewson, L.; Wright, C.J. Flavour and aroma of fresh basil are affected by temperature. J. Sci. Food Agric. 2007, 87, 1381–1385. [Google Scholar] [CrossRef]
- Pinto, J.; Blank, A.; Nogueira, P.C.; Arrigoni-Blank, M.d.F.; Andrade, T.; Sampaio, T.S.; Pereira, K. Chemical characterization of the essential oil from leaves of basil genotypes cultivated in different seasons. Bol. Lat. Y Caribe Plantas Med. Y Aromat. 2019, 18, 58–70. [Google Scholar] [CrossRef]
- Onofrei, V.; Benchennouf, A.; Jancheva, M.; Loupassaki, S.; Ouaret, W.; Burducea, M.; Lobiuc, A.; Teliban, G.C.; Robu, T. Ecological foliar fertilization effects on essential oil composition of sweet basil (Ocimum basilicum L.) cultivated in a field system. Sci. Hortic. (Amst.) 2018, 239, 104–113. [Google Scholar] [CrossRef]
- Jukić, M.; Politeo, O.; Miloš, M. Chemical composition and antioxidant effect of free volatile aglycones from nutmeg (Myristica fragrans Houtt.) compared to its essential oil. Croat. Chem. Acta 2006, 79, 209–214. [Google Scholar]
- Nurzyńska-Wierdak, R.; Borowski, B. Changes in the content and chemical composition of sweet basil essential oil under the influence of fertilization of plants with nitrogen and potassium. Ann. Umcs. Sec. Ddd. Pharm. 2011, 24, 15. [Google Scholar]
- Grayer, R.J.; Kite, G.C.; Goldstone, F.J.; Bryan, S.E.; Paton, A.; Putievsky, E. Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry 1996, 43, 1033–1039. [Google Scholar] [CrossRef]
- Singh, M.; Ali, A.A.; Irfan Qureshi, M. Unravelling the Impact of Essential Mineral Nutrients on Active Constituents of Selected Medicinal and Aromatic Plants. In Essential Plant Nutrients; Naeem, M., Ansari, A., Gill, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 183–209. ISBN 978-3-319-58840-7. [Google Scholar]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Javanmardi, J.; Khalighi, A.; Kashi, A.; Bais, H.P.; Vivanco, J.M. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J. Agric. Food Chem. 2002, 50, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Surveswaran, S.; Cai, Y.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Trivellini, A.; Lucchesini, M.; Maggini, R.; Mosadegh, H.; Villamarin, T.S.S.; Vernieri, P.; Mensuali-Sodi, A.; Pardossi, A. Lamiaceae phenols as multifaceted compounds: Bioactivity, industrial prospects and role of “positive-stress”. Ind. Crops Prod. 2016, 83, 241–254. [Google Scholar] [CrossRef]
- Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into composition of bioactive phenolic compounds in leaves and flowers of green and purple basil. Plants 2020, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Flanigan, P.M.; Niemeyer, E.D. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chem. 2014, 164, 518–526. [Google Scholar] [CrossRef]
- Jayasinghe, C.; Gotoh, N.; Aoki, T.; Wada, S. Phenolics Composition and Antioxidant Activity of Sweet Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2003, 51, 4442–4449. [Google Scholar] [CrossRef]
- Dewanjee, S.; Gangopadhyay, M.; Das, U.; Sahu, R.; Samanta, A.; Banerjee, P. Signal transducer and oxidative stress mediated modulation of phenylpropanoid pathway to enhance rosmarinic acid biosynthesis in fungi elicited whole plant culture of Solenostemon scutellarioides. Enzym. Microb. Technol. 2014, 66, 1–9. [Google Scholar] [CrossRef]
- Filip, S. Basil (Ocimum basilicum L.) a Source of Valuable Phytonutrients. Int. J. Clin. Nutr. Diet. 2017, 3, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwee, E.M.; Niemeyer, E.D. Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chem. 2011, 128, 1044–1050. [Google Scholar] [CrossRef]
- Senizza, B.; Zhang, L.; Miras-Moreno, B.; Righetti, L.; Zengin, G.; Ak, G.; Bruni, R.; Lucini, L.; Sifola, M.I.; El-Nakhel, C.; et al. The Strength of the Nutrient Solution Modulates the Functional Profile of Hydroponically Grown Lettuce in a Genotype-Dependent Manner. Foods 2020, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, D.; Topuzović, M.; Stanković, M. Nutrient limitation as a tool for the induction of secondary metabolites with antioxidant activity in basil cultivars. Ind. Crops Prod. 2019, 138, 111462. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Niemeyer, E.D. Effects of Nitrogen Fertilization on the Phenolic Composition and Antioxidant Properties of Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2008, 56, 8685–8691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofo, A.; Lundegårdh, B.; Mårtensson, A.; Manfra, M.; Pepe, G.; Sommella, E.; De Nisco, M.; Tenore, G.C.; Campiglia, P.; Scopa, A. Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce. Sci. Hortic. (Amst.) 2016, 204, 106–115. [Google Scholar] [CrossRef]
- Wada, K.C.; Mizuuchi, K.; Koshio, A.; Kaneko, K.; Mitsui, T.; Takeno, K. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis. J. Plant Physiol. 2014, 171, 895–902. [Google Scholar] [CrossRef]
- Heimler, D.; Romani, A.; Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: A review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Lucchesini, M.; Mensuali-Sodi, A. Plant tissue culture—An opportunity for the production of nutraceuticals. In Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology; Giardini, M.T., Rea, G., Berra, B., Eds.; Springer: Boston, MA, USA, 2010; pp. 185–202. ISBN 978-1-4419-7346-7. [Google Scholar]
- Ferracane, R.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010, 51, 399–404. [Google Scholar] [CrossRef]
Source of Variance | Leaf Number | Node Number | Fresh Yield | Dry Biomass | Leave/Stem Ratio | Dry Matter |
---|---|---|---|---|---|---|
(No. Plant−1) | (No. Plant−1) | (kg m−2) | (kg m−2) | (%) | ||
Cultivar (C) | ||||||
Eleonora | 13.07 ± 0.32 b | 4.83 ± 0.08 a | 3.06 ± 0.05 a | 0.20 ± 0.00 b | 2.50 ± 0.05 b | 6.44 ± 0.08 b |
Aroma 2 | 16.94 ± 0.88 a | 4.22 ± 0.05 b | 2.87 ± 0.14 b | 0.22 ± 0.01 a | 1.94 ± 0.07 c | 7.59 ± 0.13 a |
Italiano Classico | 10.65 ± 0.25 c | 4.01 ± 0.01 c | 3.04 ± 0.06 a | 0.20 ± 0.01 b | 2.72 ± 0.10 a | 6.46 ± 0.14 b |
Nutrient solution concentration (NS) | ||||||
1 dS m−1 | 12.99 ± 0.80 | 4.25 ± 0.10 b | 2.93 ± 0.11 | 0.19 ± 0.00 b | 2.30 ± 0.12 | 6.71 ± 0.33 |
2 dS m−1 | 14.08 ± 1.35 | 4.40 ± 0.17 a | 3.06 ± 0.08 | 0.21 ± 0.01 a | 2.44 ± 0.17 | 6.87 ± 0.12 |
3 dS m−1 | 13.60 ± 0.96 | 4.41 ± 0.12 a | 2.98 ± 0.08 | 0.21 ± 0.00 a | 2.42 ± 0.12 | 6.90 ± 0.15 |
C × NS | ||||||
Eleonora × 1 dS m−1 | 12.67 ± 0.61 | 4.63 ± 0.00 c | 3.23 ± 0.03 ab | 0.20 ± 0.01 c | 2.63 ± 0.11 bc | 6.23 ± 0.13 de |
Eleonora × 2 dS m−1 | 13.42 ± 0.40 | 5.04 ± 0.11 a | 2.97 ± 0.08 c | 0.20 ± 0.00 cd | 2.45 ± 0.10 c | 6.57 ± 0.10 cd |
Eleonora × 3 dS m−1 | 13.13 ± 0.75 | 4.83 ± 0.11 b | 2.99 ± 0.02 c | 0.19 ± 0.00 cd | 2.42 ± 0.04 c | 6.51 ± 0.08 cd |
Aroma 2 × 1 dS m−1 | 15.58 ± 1.06 | 4.12 ± 0.01 e | 2.54 ± 0.12 e | 0.20 ± 0.01 c | 1.88 ± 0.03 d | 7.97 ± 0.23 a |
Aroma 2 × 2 dS m−1 | 18.42 ± 2.21 | 4.17 ± 0.04 e | 3.36 ± 0.09 a | 0.25 ± 0.01 a | 1.86 ± 0.05 d | 7.32 ± 0.10 b |
Aroma 2 × 3 dS m−1 | 16.83 ± 1.18 | 4.36 ± 0.08 d | 2.72 ± 0.11 de | 0.20 ± 0.01 c | 2.08 ± 0.21 d | 7.47 ± 0.12 b |
Italiano Classico × 1 dS m−1 | 10.71 ± 0.48 | 4.01 ± 0.01 e | 3.02 ± 0.01 bc | 0.18 ± 0.00 d | 2.39 ± 0.11 c | 5.91 ± 0.06 e |
Italiano Classico × 2 dS m−1 | 10.42 ± 0.67 | 4.00 ± 0.00 e | 2.87 ± 0.04 cd | 0.19 ± 0.00 cd | 3.00 ± 0.07 a | 6.73 ± 0.09 c |
Italiano Classico × 3 dS m−1 | 10.83 ± 0.15 | 4.03 ± 0.03 e | 3.24 ± 0.07 ab | 0.22 ± 0.01 b | 2.78 ± 0.02 ab | 6.73 ± 0.04 c |
Significance | ||||||
Cultivar (C) | *** | *** | * | *** | *** | *** |
Nutrient solution (NS) | ns | * | ns | ** | ns | ns |
C × NS | ns | * | *** | *** | ** | *** |
Source of Variance | L* | a* | b* | SPAD Index | Fluorescence Fv/Fm |
---|---|---|---|---|---|
Cultivar (C) | |||||
Eleonora | 46.46 ± 0.22 a | −9.81 ± 0.31 b | 25.98 ± 0.99 b | 30.81 ± 0.46 b | 0.81 ± 0.00 a |
Aroma 2 | 44.69 ± 0.18 b | −6.76 ± 0.41 a | 14.94 ± 1.28 c | 32.54 ± 0.49 a | 0.82 ± 0.00 a |
Italiano Classico | 46.12 ± 0.46 a | −11.27 ± 0.18 c | 29.90 ± 0.87 a | 30.63 ± 0.41 b | 0.80 ± 0.00 b |
Nutrient solution concentration (NS) | |||||
1 dS m−1 | 45.67 ± 0.46 | −10.06 ± 0.53 c | 26.66 ± 1.93 a | 30.08 ± 0.35 c | 0.80 ± 0.00 b |
2 dS m−1 | 45.83 ± 0.44 | −9.21 ± 0.79 b | 23.51 ± 2.63 b | 31.54 ± 0.46 b | 0.81 ± 0.00 a |
3 dS m−1 | 45.77 ± 0.33 | −8.57 ± 0.76 a | 20.66 ± 2.35 c | 32.37 ± 0.46 a | 0.82 ± 0.00 a |
C × NS | |||||
Eleonora × 1 dS m−1 | 46.20 ± 0.64 | −10.36 ± 0.63 | 28.53 ± 1.13 | 29.65 ± 0.47 c | 0.81 ± 0.01 |
Eleonora × 2 dS m−1 | 46.72 ± 0.28 | −9.99 ± 0.51 | 26.46 ± 0.78 | 30.46 ± 0.35 c | 0.81 ± 0.00 |
Eleonora × 3 dS m−1 | 46.47 ± 0.23 | −9.07 ± 0.22 | 22.95 ± 1.40 | 32.34 ± 0.50 ab | 0.82 ± 0.00 |
Aroma 2 × 1 dS m−1 | 44.89 ± 0.28 | −8.27 ± 0.14 | 19.58 ± 0.62 | 30.94 ± 0.71 bc | 0.81 ± 0.01 |
Aroma 2 × 2 dS m−1 | 44.61 ± 0.51 | −6.28 ± 0.46 | 13.50 ± 1.58 | 32.94 ± 0.45 a | 0.82 ± 0.00 |
Aroma 2 × 3 dS m−1 | 44.58 ± 0.13 | −5.74 ± 0.08 | 11.75 ± 0.08 | 33.76 ± 0.19 a | 0.82 ± 0.00 |
Italiano Classico × 1 dS m−1 | 45.93 ± 1.25 | −11.53 ± 0.42 | 31.87 ± 1.57 | 29.65 ± 0.47 c | 0.79 ± 0.01 |
Italiano Classico × 2 dS m−1 | 46.16 ± 0.89 | −11.37 ± 0.29 | 30.55 ± 0.94 | 31.22 ± 0.80 bc | 0.81 ± 0.00 |
Italiano Classico × 3 dS m−1 | 46.27 ± 0.37 | −10.90 ± 0.07 | 27.28 ± 0.32 | 31.02 ± 0.63 bc | 0.80 ± 0.00 |
Significance | |||||
Cultivar (C) | ** | *** | *** | *** | * |
Nutrient solution (NS) | ns | *** | *** | *** | * |
C × NS | ns | ns | ns | * | ns |
Source of Variance | Trans-2-Hexenal | 1-Octen-3-ol | Eucalyptol | β-cis-Ocimene | Linalool | Eugenol | α-Bergamotene |
---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | |
Cultivar (C) | |||||||
Eleonora | 1.79 ± 0.18 b | 4.44 ± 0.18 a | 33.56 ± 1.42 b | 1.99 ± 0.18 b | 35.57 ± 1.73 a | 5.78 ± 0.65 b | 3.93 ± 0.48 a |
Aroma 2 | 2.68 ± 0.16 a | 3.08 ± 0.14 b | 32.09 ± 1.26 b | 2.45 ± 0.13 a | 37.99 ± 1.54 a | 3.59 ± 0.28 c | 2.21 ± 0.22 b |
Italiano Classico | 2.82 ± 0.17 a | 3.49 ± 0.10 b | 45.13 ± 1.24 a | 1.50 ± 0.14 c | 20.74 ± 2.45 b | 9.70 ± 1.33 a | 3.61 ± 0.16 a |
Nutrient solution concentration (NS) | |||||||
1 dS m-1 | 2.52 ± 0.12 | 3.65 ± 0.19 | 36.21 ± 2.07 | 1.80 ± 0.16 b | 32.58 ± 3.51 | 7.42 ± 1.85 a | 2.81 ± 0.36 b |
2 dS m-1 | 2.39 ± 0.21 | 3.61 ± 0.26 | 38.34 ± 2.76 | 1.77 ± 0.21 b | 30.05 ± 3.48 | 6.28 ± 0.76 ab | 3.06 ± 0.34 b |
3 dS m-1 | 2.38 ± 0.32 | 3.75 ± 0.28 | 36.24 ± 2.37 | 2.36 ± 0.17 a | 31.67 ± 2.89 | 5.37 ± 0.62 b | 3.89 ± 0.43 a |
C × NS | |||||||
Eleonora × 1 dS m−1 | 2.34 ± 0.18 bc | 4.34 ± 0.20 | 32.66 ± 1.70 | 1.76 ± 0.26 | 37.08 ± 2.01 | 4.49 ± 0.63 cde | 2.86 ± 0.13 bc |
Eleonora × 2 dS m−1 | 1.64 ± 0.23 cd | 4.41 ± 0.39 | 33.50 ± 3.00 | 1.79 ± 0.37 | 35.05 ± 4.47 | 7.02 ± 1.07 bc | 3.41 ± 0.79 b |
Eleonora × 3 dS m−1 | 1.37 ± 0.24 d | 4.56 ± 0.43 | 34.54 ± 3.40 | 2.41 ± 0.24 | 34.56 ± 3.18 | 5.84 ± 1.37 bcde | 5.52 ± 0.35 a |
Aroma 2 × 1 dS m−1 | 2.77 ± 0.26 ab | 3.30 ± 0.07 | 32.68 ± 1.93 | 2.26 ± 0.20 | 40.04 ± 1.06 | 3.19 ± 0.53 e | 1.59 ± 0.28 d |
Aroma 2 × 2 dS m−1 | 2.86 ± 0.11 ab | 2.85 ± 0.16 | 33.33 ± 2.49 | 2.35 ± 0.07 | 35.60 ± 2.49 | 3.96 ± 0.60 de | 2.16 ± 0.11 cd |
Aroma 2 × 3 dS m−1 | 2.41 ± 0.41 b | 3.10 ± 0.40 | 30.27 ± 2.54 | 2.73 ± 0.30 | 38.34 ± 4.04 | 3.62 ± 0.36 e | 2.88 ± 0.28 bc |
Italiano Classico × 1 dS m−1 | 2.46 ± 0.17 b | 3.29 ± 0.12 | 43.28 ± 2.69 | 1.39 ± 0.06 | 20.62 ± 5.73 | 14.58 ± 1.26 a | 3.97 ± 0.15 b |
Italiano Classico × 2 dS m−1 | 2.65 ± 0.23 ab | 3.57 ± 0.12 | 48.19 ± 1.78 | 1.17 ± 0.16 | 19.48 ± 5.95 | 7.86 ± 1.12 b | 3.60 ± 0.41 b |
Italiano Classico × 3 dS m−1 | 3.35 ± 0.21 a | 3.60 ± 0.25 | 43.91 ± 0.96 | 1.93 ± 0.21 | 22.12 ± 1.41 | 6.65 ± 0.43 bcd | 3.26 ± 0.08 bc |
Significance | |||||||
Cultivar (C) | *** | *** | *** | *** | *** | *** | *** |
Nutrient solution (NS) | ns | ns | ns | ** | ns | * | ** |
C × NS | * | ns | ns | ns | ns | *** | ** |
Source of Variance | Caffeic Acid | Chicoric Acid | Rosmarinic Acid | Ferulic Acid | Total Polyphenols |
---|---|---|---|---|---|
(µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | |
Cultivar (C) | |||||
Eleonora | 16.10 ± 1.04 c | 32.74 ± 0.64 c | 14.71 ± 1.61 c | 2.96 ± 0.20 c | 66.50 ± 1.65 c |
Aroma 2 | 23.57 ± 1.58 b | 50.54 ± 6.99 b | 151.62 ± 18.01 b | 12.07 ± 2.03 a | 237.76 ± 15.41 b |
Italiano Classico | 50.67 ± 1.43 a | 205.20 ± 31.70 a | 326.03 ± 54.21 a | 5.67 ± 0.55 b | 587.49 ± 79.71 a |
Nutrient solution concentration (NS) | |||||
1 dS m−1 | 32.32 ± 6.14 a | 121.30 ± 43.50 a | 148.92 ± 45.81 b | 7.67 ± 1.44 a | 310.19 ± 93.99 b |
2 dS m−1 | 29.68 ± 5.04 b | 115.90 ± 31.01 a | 218.21 ± 75.41 a | 9.09 ± 2.42 a | 372.81 ± 110.81 a |
3 dS m−1 | 28.34 ± 4.92 b | 51.30 ± 8.18 b | 125.21 ± 31.21 b | 3.94 ± 0.47 b | 208.76 ± 37.33 c |
C × NS | |||||
Eleonora x 1 dS m−1 | 12.49 ± 0.24 f | 33.35 ± 0.98 d | 20.09 ± 0.83 e | 3.40 ± 0.18 de | 69.33 ± 0.03 e |
Eleonora × 2 dS m−1 | 19.28 ± 1.07 de | 32.88 ± 1.84 d | 14.60 ± 1.36 e | 3.10 ± 0.36 de | 69.86 ± 1.85 e |
Eleonora × 3 dS m−1 | 16.52 ± 0.43 e | 31.98 ± 0.22 d | 9.44 ± 0.35 e | 2.37 ± 0.22 e | 60.31 ± 0.63 e |
Aroma 2 × 1 dS m−1 | 29.72 ± 0.65 c | 35.25 ± 0.70 d | 105.8 ± 2.77 d | 12.68 ± 1.39 b | 183.46 ± 5.33 d |
Aroma 2 × 2 dS m−1 | 20.29 ± 0.83 de | 78.17 ± 3.23 c | 127.72 ± 10.21 d | 18.29 ± 2.02 a | 244.49 ± 12.67 c |
Aroma 2 × 3 dS m−1 | 20.68 ± 0.46 d | 38.19 ± 0.75 d | 221.23 ± 5.43 c | 5.23 ± 0.73 cde | 285.34 ± 5.71 c |
Italiano Classico × 1 dS m−1 | 54.74 ± 1.08 a | 295.2 ± 7.31 a | 320.93 ± 34.02 b | 6.92 ± 1.02 c | 677.78 ± 37.34 b |
Italiano Classico × 2 dS m−1 | 49.48 ± 3.01 b | 236.5 ± 7.82 b | 512.23 ± 11.12 a | 5.88 ± 0.87 cd | 804.08 ± 8.68 a |
Italiano Classico × 3 dS m−1 | 47.80 ± 1.02 b | 83.74 ± 1.62 c | 144.84 ± 12.83 d | 4.23 ± 0.06 cde | 280.62 ± 12.34 c |
Significance | |||||
Cultivar (C) | *** | *** | *** | *** | *** |
Nutrient solution (NS) | ** | *** | *** | *** | *** |
C × NS | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciriello, M.; Pannico, A.; El-Nakhel, C.; Formisano, L.; Cristofano, F.; Duri, L.G.; Pizzolongo, F.; Romano, R.; De Pascale, S.; Colla, G.; et al. Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. Plants 2020, 9, 1786. https://doi.org/10.3390/plants9121786
Ciriello M, Pannico A, El-Nakhel C, Formisano L, Cristofano F, Duri LG, Pizzolongo F, Romano R, De Pascale S, Colla G, et al. Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. Plants. 2020; 9(12):1786. https://doi.org/10.3390/plants9121786
Chicago/Turabian StyleCiriello, Michele, Antonio Pannico, Christophe El-Nakhel, Luigi Formisano, Francesco Cristofano, Luigi Giuseppe Duri, Fabiana Pizzolongo, Raffaele Romano, Stefania De Pascale, Giuseppe Colla, and et al. 2020. "Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action" Plants 9, no. 12: 1786. https://doi.org/10.3390/plants9121786
APA StyleCiriello, M., Pannico, A., El-Nakhel, C., Formisano, L., Cristofano, F., Duri, L. G., Pizzolongo, F., Romano, R., De Pascale, S., Colla, G., Cardarelli, M., & Rouphael, Y. (2020). Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. Plants, 9(12), 1786. https://doi.org/10.3390/plants9121786