Salinity-Induced Changes of Photosynthetic Performance, Lawsone, VOCs, and Antioxidant Metabolism in Lawsonia inermis L.
Abstract
:1. Introduction
2. Results
2.1. Morphological Parameters
2.2. Effects of Salt Treatment on Chlorophyll Fluorescence Parameters and Leaf Gas Exchanges
2.3. Biochemical Analyses
2.4. Lawsone Production
2.5. VOC Evaluation
3. Discussion
3.1. Effect of Salt Treatment on Growth of Plants
3.2. Effects of Salt Treatment on Photosynthetic Parameters
3.3. Effects of Salt Treatment on Lawsone Production and Stress-Related Metabolic Compounds
3.4. Emission of Leaf VOCs in Henna Plants Subjected to Salt Stress
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Morphological Parameters
4.3. Gas Exchange and Chlorophyll Fluorescence Measurements
4.4. Biochemical Analyses
4.5. Lawsone Determination
4.6. VOC Analysis
4.7. Statistical Analysis
4.8. Chemicals
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Cartwright-Jones, C.; Viljoen, A. Lawsonia inermis L. (henna): Ethnobotanical, phytochemical and pharmacological aspects. J. Ethnopharm. 2014, 155, 80–103. [Google Scholar] [CrossRef] [PubMed]
- Dhaouadi, K.; Meliti, W.; Dallali, S.; Belkhir, M.; Ouerghemmi, S.; Sebei, H.; Fattouch, S. Commercial Lawsonia inermis L. dried leaves and processed powder: Phytochemical composition, antioxidant, antibacterial, and allelopathic activities. Ind. Crop. Prod. 2015, 77, 544–552. [Google Scholar] [CrossRef]
- Chakkilam, R.K.; Suneetha, Y.; Srikanth, P. Review of Lawsonia inermis (LINN.). World J. Pharm. Pharm. Sci. 2017, 6, 885–891. [Google Scholar] [CrossRef]
- Yusuf, M. A review on phytochemistry, pharmacological and coloring potential of Lawsonia inermis. In Handbook Renewable Materials for Coloration and Finishing; Yusuf, M., Ed.; Wiley: Hoboken, NJ, USA, 2018; pp. 169–188. [Google Scholar]
- Singh, D.K.; Luqman, S.; Mathur, A.K. Lawsonia inermis L.—A commercially important primaeval dying and medicinal plant with diverse pharmacological activity: A review. Ind. Crop. Prod. 2015, 65, 269–286. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, A.; Dora, J.; Kumar, A. Essential perspectives of Lawsonia inermis. Int. J. Pharm. Chemical. Sci. 2013, 2, 888–896. [Google Scholar]
- Enneb, H.; Belkadji, A.; Ferchichi, A. Change in henna (Lawsonia inermis L.) morphological traits under different deficit irrigations in the southern Tunisia. Plant Sci. Today 2015, 2, 2–6. [Google Scholar] [CrossRef]
- Farahbakhsh, H.; Pasandi Pour, A.; Reiahi, N. Physiological response of henna (Lawsonia inermis L.) to salicylic acid and salinity. Plant Prod. Sci. 2017, 20, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Enneb, H.; Belkadji, A.; Ferchichi, A. Physiological adaptation of Henna plant (Lawsonia inermis L.) to different irrigation conditions in Tunisian arid region. J. Anim. Plant Sci. 2016, 26, 1026–1033. [Google Scholar]
- Fernández-García, N.; Olmos, E.; Bardisi, E.; García-De la Garma, J.; López-Berenguer, C.; Rubio-Asensio, J.S. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). J. Plant Physiol. 2014, 171, 64–75. [Google Scholar] [CrossRef]
- Bakkali, A.T.; Jaziri, M.; Foriers, A.; Vander Heyden, Y.; Vanhaelen, M.; Homès, J. Lawsone accumulation in normal and transformed cultures of henna, Lawsonia inermis. Plant Cell Tiss. Org. 1997, 51, 83–87. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said-Al Ahl, H.A.H.; Omer, E.A. Medicinal and aromatic plants production under salt stress. A review. Herba Pol. 2011, 57, 72–87. [Google Scholar]
- Caser, M.; D’Angiolillo, F.; Chitarra, W.; Lovisolo, C.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Scariot, V. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. to drought stress. Plant Growth Regul. 2018, 84, 383–394. [Google Scholar] [CrossRef]
- Moles, T.M.; De Brito, F.R.; Mariotti, L.; Pompeiano, A.; Lupini, A.; Incrocci, L.; Carmassi, G.; Scartazza, A.; Pistelli, L.; Guglielminetti, L.; et al. Salinity in autumn-winter season and fruit quality of tomato landraces. Front. Plant Sci. 2019, 10, 1078. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, J.J.; Morales, M.A.; Ferrandez, T.; Sanchez-Blanco, M.J. Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. J. Hortic. Sci. Biotechnol. 2006, 81, 845–853. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Pompeiano, A.; Huarancca Reyes, T.; Moles, T.M.; Villani, M.; Volterrani, M.; Guglielminetti, L.; Scartazza, A. Inter-and intraspecific variability in physiological traits and post-anoxia recovery of photosynthetic efficiency in grasses under oxygen deprivation. Physiol. Plant. 2017, 161, 385–399. [Google Scholar] [CrossRef]
- Müller, P.; Li, X.-P.; Niyogi, K.K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001, 125, 1558–1566. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Qiu, N.; Lu, Q.; Lu, C. Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol. 2003, 159, 479–486. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Bosa, K.; Kościelniak, J.; Żuk-Gołaszewska, K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 2011, 73, 64–72. [Google Scholar] [CrossRef]
- Moles, T.M.; Pompeiano, A.; Reyes, T.H.; Scartazza, A.; Guglielminetti, L. The efficient physiological strategy of a tomato landrace in response to short-term salinity stress. Plant Physiol. Biochem. 2016, 109, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Banon, S.; Olmos, E.; Sanchez-Blanco, M.J. Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci. 2007, 172, 473–480. [Google Scholar] [CrossRef]
- Sairam, R.K.; Rao, K.V.; Srivastava, G.C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002, 163, 1037–1046. [Google Scholar] [CrossRef]
- Ashraf, M.P.J.C.; Harris, P.J.C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004, 166, 3–16. [Google Scholar] [CrossRef]
- Fusaro, L.; Mereu, S.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Manes, F.; Salvatori, E.; Marzuoli, R.; Gerosa, G.; Tattini, M. Photosynthetic performance and biochemical adjustments in two co-occurring Mediterranean evergreens, Quercus ilex and Arbutus unedo, differing in salt-exclusion ability. Funct. Plant Biol. 2014, 41, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Pompeiano, A.; Di Patrizio, E.; Volterrani, M.; Scartazza, A.; Guglielminetti, L. Growth responses and physiological traits of seashore paspalum subjected to short-term salinity stress and recovery. Agric. Water Manag. 2016, 163, 57–65. [Google Scholar] [CrossRef]
- Peñuelas, J.; Munné-Bosch, S. Isoprenoids: An evolutionary pool for photoprotection. Trends Plant Sci. 2005, 10, 166–169. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Lao, M.T. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic. 2018, 240, 430–439. [Google Scholar] [CrossRef]
- Loreto, F.; Schnitzler, J.P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Loreto, F.; Delfine, S. Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol. 2000, 123, 1605–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najar, B.; Pistelli, L. Essential oil composition of Lawsonia inermis leaves from Tunisia. Am. J. Essent. Oils Nat. Prod. 2017, 5, 7–11. [Google Scholar]
- Mengoni, T.; Vargas Peregrina, D.; Censi, R.; Cortese, M.; Ricciutelli, M.; Maggi, F.; Di Martino, P. SPME-GC-MS analysis of commercial henna samples (Lawsonia inermis L.). Nat. Prod. Res. 2016, 30, 268–275. [Google Scholar] [CrossRef]
- Ogunbinu, A.O.; Ogunwande, I.A.; Walker, T.M.; Setzer, W.N. Study on the essential oil of Lawsonia inermis (L) Lythraceae. J. Essent. Oil Bear. Plants 2007, 10, 184–188. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Kännaste, A.; Copolovici, L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant Sci. 2013, 4, 262–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelberth, J.; Alborn, H.T.; Schmelz, E.A.; Tumlinson, J.H. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. USA 2004, 101, 1781–1785. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Tang, N.; Huang, L.; Zhao, Y.; Tang, X.; Wang, K. Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. Int. J. Mol. Sci. 2018, 19, 252. [Google Scholar] [CrossRef] [Green Version]
- López-Gresa, M.P.; Payá, C.; Ozáez, M.; Rodrigo, I.; Conejero, V.; Klee, H.; Bellés, J.; Lisón, P. A new role for green leaf volatile esters in tomato stomatal defense against Pseudomonas syringe pv. Tomato. Front. Plant Sci. 2018, 9, 1855. [Google Scholar] [CrossRef]
- Tomescu, D.; Şumălan, R.; Copolovici, L.; Copolovici, D. The influence of soil salinity on volatile organic compounds emission and photosynthetic parameters of Solanum lycopersicum L. varieties. Open Life Sci. 2017, 12, 135–142. [Google Scholar] [CrossRef]
- Scartazza, A.; Picciarelli, P.; Mariotti, L.; Curadi, M.; Barsanti, L.; Gualtieri, P. The role of Euglena gracilis paramylon in modulating xylem hormone levels, photosynthesis and water-use efficiency in Solanum lycopersicum L. Physiol. Plant. 2017, 161, 486–501. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Huarancca Reyes, T.; Scartazza, A.; Pompeiano, A.; Ciurli, A.; Lu, Y.; Guglielminetti, L.; Yamaguchi, J. Nitrate reductase modulation in response to changes in C/N balance and nitrogen source in Arabidopsis. Plant Cell Physiol. 2018, 59, 1248–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pistelli, L.; Ulivieri, V.; Giovanelli, S.; Avio, L.; Giovannetti, M.; Pistelli, L. Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in Bituminaria bituminosa L. Plant Biol. 2017, 19, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Szőllősi, R.; Szőllősi Varga, I. Total antioxidant power in some species of Labiatae (adaptation of FRAP method). Acta Biol. Szeged. 2002, 46, 125–127. [Google Scholar]
- Bretzel, F.; Benvenuti, S.; Pistelli, L. Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber. Environ. Sci. Pollut. Res. 2014, 21, 2325–2333. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Braca, A.; Sinisgalli, C.; De Leo, M.; Muscatello, B.; Cioni, P.L.; Milella, L.; Ostuni, L.; Giani, S.; Sanogo, R. Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L. (Baobab) from Mali, as a source of health-promoting compounds. Molecules 2018, 23, 3104. [Google Scholar] [CrossRef] [Green Version]
- Najar, B.; Pistelli, L.; Cervelli, C.; Fico, G.; Giuliani, C. Salvia broussonetii Benth.: Aroma profile and micromorphological analysis. Nat. Prod. Res. 2018, 32, 1660–1668. [Google Scholar] [CrossRef]
Control 0 mM | 75 mM NaCl | 150 mM NaCl | |
---|---|---|---|
Leaf number (0 DAT) | 11.1 ± 0.69 b | 9.5 ± 1.4 a | 9.5 ± 0.69 a |
Leaf number (3 DAT) | 11.25 ± 0.65 b | 10.75 ± 0.53 ab | 10 ± 0.38 a |
Leaf number (10 DAT) | 14.62 ± 0.65 ab | 16.62 ± 1.18 b | 13.87 ± 0.67 a |
Leaf number (20 DAT) | 21.5 ± 1.46 b | 19.87 ± 1.43 ab | 15 ± 0.54 a |
Leaf area (10 DAT, cm2 plant) | 3.272 ± 0.446 b | 2.906 ± 0.22 ab | 2.089 ± 0.259 a |
Leaf area (20 DAT, cm2 plant) | 4.845 ± 0.616 b | 4.622 ± 0. 203 b | 2.744 ± 0.163 a |
RWC (20 DAT, %) | 80.29 ± 2.84 b | 71.63 ± 2.61 a | 74.35 ± 2.17 ab |
Control 0 mM | 75 mM NaCl | 150 mM NaCl | |
---|---|---|---|
Chlorophyll a (Chla, µg cm−2 FW) | 12.47 ± 0.56 a | 15.68 ± 1.17 a | 20.95 ± 0.28 b |
Chlorophyll b (Chlb, µg cm−2 FW) | 3.70 ± 0.43 a | 5.22 ± 0.36 ab | 6.7 ± 0.52 b |
Total chlorophyll (Tchl, µg cm−2 FW) | 16.17 ± 0.89 a | 20.9 ± 1.46 b | 27.65 ± 0.39 c |
Ratio Chla/Chlb | 3.45 ± 0.38 b | 3.01 ± 0.16 a | 3.17 ± 0.26 ab |
Total carotenoids (Tcar, µg cm−2 FW) | 5.2 ± 0.22 a | 5.86 ± 0.5 a | 7.4 ± 0.33 b |
Ratio Tcar/Tchl | 0.32 ± 0.009 b | 0.28 ± 0.004 a | 0.267 ± 0.008 a |
Proline (mg g−1 FW) | 70.16 ± 7.78 a | 76.08 ± 3.68 ab | 91.3 ± 4.67 b |
Total polyphenols (TP, mg GAE g−1 FW) | 839.77 ± 55.598 a | 755 ± 27.7 a | 795.49 ± 26.86 a |
Total flavonoids (TF, mg CE g−1 FW) | 375.82 ± 27.92 a | 448.48 ± 30.12 ab | 551.52 ± 65.28 b |
Total anthocyanins (mg ME g−1 FW) | 29.35 ± 0.42 a | 34.53 ± 1.21 a | 48.96 ± 5.52 b |
Radical scavenging assay (DPPH-IC50 mg mL−1) | 24.51 ± 3.09 b | 19.72 ± 0.05 ab | 16.072 ± 0.22 a |
Antioxidant activity-FRAP assay (mmol Fe2+ g−1 FW) | 44.66 ± 1.71 a | 52.67 ± 1.74 ab | 58.66 ± 4.30 b |
Treatment | Starting Dried Aerial Parts (g) | Yield of the Extraction Process (g) | Lawsone (mg g−1FW) |
---|---|---|---|
0 NaCl | 1.0 | 0.1450 | 5.90 ± 0.1 b |
75 mM | 1.0 | 0.0200 | 1.38 ± 0.2 a |
150 mM | 1.0 | 0.0200 | 1.16 ± 0.1 a |
Relative Percentage | |||||
---|---|---|---|---|---|
Compounds | LRI § | Chemical Class | Control | 75 mM NaCl | 150 mM NaCl |
(E)-3-Hexen-1-ol * | 868 | ALC | 27.0 ± 2.33 | 6.2 ± 0.64 | 8.3 ± 0.64 |
1-Hexanol * | 875 | ALC | 3.9 ± 0.17 | 2.1 ± 0.16 | 3.9 ± 0.17 |
Santolina triene | 911 | MH | 0.4 ± 0.16 | 1.3 ± 0.14 | 0.5 ± 0.05 |
α-Fanchene | 951 | MH | – | 0.4 ± 0.05 | 0.3 ± 0.15 |
6-Methyl-5-hepten-2-one | 978 | KET | 0.5 ± 0.24 | 1.0 ± 0.10 | 0.3 ± 0.01 |
myrcene | 993 | MH | 0.5 ± 0.14 | 1.7 ± 0.44 | 0.4 ± 0.05 |
6-Methyl-5-hepten-2-ol | 995 | ALC | 0.6 ± 0.05 | 1.3 ± 0.14 | 0.2 ± 0.03 |
m-Mentha-1(7),8-diene | 1001 | MH | – | 0.7 ± 0.07 | – |
p-Mentha-1(7),8-diene | 1004 | MH | – | 1.2 ± 0.13 | – |
(Z)-3-Hexenyl acetate * | 1008 | EST | 7.9 ± 0.58 | 3.4 ± 0.34 | 3.3 ± 0.34 |
n-Hexyl acetate * | 1013 | EST | – | – | 0.2 ± 0.02 |
o-Cymene | 1026 | MH | – | 0.3 ± 0.02 | – |
3-Ethyl-1-hexanol * | 1032 | ALC | 1.9 ± 0.24 | – | – |
1,8-Cineole | 1036 | OM | 3.5 ± 0.37 | 1.3 ± 0.16 | |
(Z)-β-Ocimene | 1042 | MH | 2.3 ± 0.32 | 1.2 ± 0.70 | – |
(E)-β-Ocimene | 1053 | MH | 0.4 ± 0.09 | 0.5 ± 0.05 | 0.5 ± 0.29 |
γ-Terpinene | 1062 | MH | 0.9 ± 0.40 | – | – |
cis-Sabinene hydrate | 1072 | OM | – | 0.6 ± 0.01 | – |
trans-Arbusculone | 1077 | OM | – | 0.2 ± 0.03 | – |
Fenchone | 1090 | OM | – | 0.3 ± 0.03 | – |
Linalool | 1102 | OM | 10.8 ± 0.63 | 11.9 ± 1.22 | 6.4 ± 0.57 |
n-Nonanal * | 1104 | ALD | 5.5 ± 0.33 | 6.0 ± 0.62 | 1.8 ± 0.19 |
β-Thujone | 1120 | OM | 0.3 ± 0.01 | 1.0 ± 0.07 | 0.1 ± 0.00 |
2-Ethylhexanoic acid | 1123 | EST | – | – | 1.7 ± 0.22 |
Camphor | 1148 | OM | 1.4 ± 0.21 | 2.0 ± 0.21 | 1.5 ± 0.50 |
Isoborneol | 1160 | OM | – | 0.2 ± 0.10 | – |
Borneol | 1169 | OM | 0.9 ± 0.31 | 1.0 ± 0.10 | 0.8 ± 0.07 |
Neo-iso-isopulegol | 1171 | OM | 1.0 ± 0.06 | 1.0 ± 0.02 | 0.6 ± 0.15 |
4-Terpineol | 1180 | OM | 0.6 ± 0.46 | 0.8 ± 0.08 | 0.5 ± 0.14 |
α-Terpineol | 1192 | OM | 2.3 ± 0.25 | 2.9 ± 0.31 | 1.7 ± 0.26 |
n-Decanal | 1206 | ALD | 4.7 ± 0.80 | 6.6 ± 0.69 | 3.3 ± 0.13 |
(Z)-3-Hexenyl 3-methylbutanoate * | 1233 | EST | – | – | 0.6 ± 0.14 |
Hexyl 3-methylbutanoate * | 1242 | EST | – | – | 1.8 ± 0.26 |
(Z)-3-Hexenyl isovalerate * | 1243 | EST | – | – | 20.9 ± 2.33 |
Linalyl acetate | 1260 | OM | 1.9 ± 0.17 | 1.8 ± 0.18 | 1.4 ± 0.24 |
Citronellyl formate | 1280 | OM | – | 0.8 ± 0.08 | 1.1 ± 0.17 |
Lavandulyl acetate | 1289 | OM | 2.1 ± 0.13 | 2.6 ± 0.26 | 1.9 ± 0.37 |
n-Tridecane | 1300 | ALK | – | 0.5 ± 0.06 | 2.1 ± 0.59 |
Undecanal | 1305 | ALD | – | 0.8 ± 0.09 | – |
Neryl acetate | 1368 | OM | 0.9 ± 0.09 | 0.9 ± 0.09 | 0.6 ± 0.08 |
Geranyl acetate | 1386 | OM | 2.6 ± 0.48 | 2.2 ± 0.23 | 1.4 ± 0.42 |
n-Tetradecane | 1400 | ALK | – | – | 1.0 ± 0.05 |
Dodecanal | 1409 | ALD | – | 1.0 ± 0.10 | 1.1 ± 0.10 |
cis-α-Bergamotene | 1417 | SH | – | – | 0.6 ± 0.06 |
β-Caryophyllene | 1418 | SH | – | – | 0.6 ± 0.19 |
(E)-Geranylacetone | 1455 | AC | 9.8 ± 1.67 | 6.2 ± 0.64 | 1.2 ± 0.34 |
(E)-β-Farnesene | 1460 | SH | – | – | 1.4 ± 0.18 |
n-Pentadecane | 1500 | ALK | 0.6 ± 0.08 | 1.4 ± 0.15 | 7.1 ± 0.96 |
β-Bisabolene | 1509 | SH | – | – | 0.3 ± 0.00 |
trans-γ-Cadinene | 1513 | SH | – | – | 0.6 ± 0.14 |
Tetradecanal | 1612 | ALD | – | – | 0.5 ± 0.09 |
τ-Cadinol | 1642 | OS | 0.9 ± 0.31 | 4.9 ± 0.50 | 2.5 ± 1.26 |
α-Cadinol | 1655 | OS | – | 0.5 ± 0.05 | – |
Octyl ether | 1677 | ETR | 0.8 ± 0.10 | 1.5 ± 0.16 | 0.4 ± 0.18 |
Epi-α-bisabolol | 1685 | OS | – | 3.1 ± 0.32 | 1.6 ± 0.23 |
n-Heptadecane | 1700 | ALK | – | 0.7 ± 0.07 | 0.4 ± 0.22 |
(E)-Conipheryl alcohol | 1727 | PP | 1.4 ± 0.08 | 4.3 ± 1.68 | 2.5 ± 0.25 |
n-Octadecane | 1800 | ALK | – | – | 0.3 ± 0.01 |
β-Chenopodiol | 1810 | OS | – | 0.6 ± 0.27 | – |
Octyl salicylate | 1816 | PP | – | – | 1.1 ± 0.38 |
Isopropyl tetradecanoate | 1824 | EST | – | – | 0.6 ± 0.08 |
(E,E)-Farnesyl acetate | 1843 | OS | 2.2 ± 0.57 | – | 1.5 ± 0.82 |
Methyl3,5-di-tert-butyl-4-hydroxybenzoate | 1859 | EST | 2.1 ± 0.19 | 5.2 ± 0.34 | 3.5 ± 0.55 |
n-Nonadecane | 1899 | ALK | – | 0.4 ± 0.18 | 0.2 ± 0.00 |
n-Eicosane | 2000 | ALK | 0.2 ± 0.01 | – | – |
Isopropyl hexadecanoate | 2027 | EST | – | 0.5 ± 0.14 | – |
Class of Compounds | Control | 75 mM | 150 mM | ||
Monoterpene hydrocarbons | 4.5 ± 1.11 | 7.3 ± 1.38 | 1.7 ± 0.53 | ||
Oxygenated monoterpenes | 24.8 ± 2.79 | 33.7 ± 3.41 | 19.3 ± 3.13 | ||
Sesquiterpene hydrocarbons | 0.0 ± 0.00 | 0.0 ± 0.00 | 3.5 ± 0.57 | ||
Oxygenated sesquiterpenes | 3.1 ± 0.88 | 9.1 ± 1.14 | 5.6 ± 2.31 | ||
Total terpenes | 32.4 ± 4.78 | 50.1 ± 5.88 | 30.1 ± 6.54 | ||
Phenylpropanoids | 1.4 ± 0.08 | 4.3 ± 1.68 | 3.6 ± 0.63 | ||
Apocarotenoides | 9.8 ± 1.67 | 6.2 ± 0.64 | 1.2 ± 0.34 | ||
Alcohol | 33.4 ± 2.79 | 9.6 ± 0.94 | 12.4 ± 0.85 | ||
Aldehydes | 10.2 ± 1.13 | 14.4 ± 1.50 | 6.7 ± 0.51 | ||
Alkane | 0.8 ± 0.09 | 3.0 ± 0.57 | 11.2 ± 1.83 | ||
Ester | 10.0 ± 0.78 | 9.1 ± 0.69 | 32.6 ± 3.94 | ||
Ether + ketone | 1.3 ± 0.34 | 2.5 ± 0.26 | 0.7 ± 0.19 | ||
Non-terpene derivatives | 55.5 ± 5.13 | 38,6 ± 3.96 | 63.5 ± 7.33 | ||
Total Identified | 99.3 ± 0.66 | 99.2 ± 0.31 | 98.4 ± 0.95 |
F | p | Significant Pair-Wise Comparisons at p < 0.05 | |
---|---|---|---|
Salinity | 138.7 | 0.0003 | Control versus 75 mM NaCl (p = 0.0291) Control versus 150 mM NaCl (p = 0.0263) 150 mM NaCl versus 75 mM NaCl (p = 0.093) |
Compounds | Contribution % | Cumulative % | Control | 75 mM NaCl | 150 mM NaCl | Significant Pair-Wise Comparisons at p < 0.05 * |
---|---|---|---|---|---|---|
(Z)-3-Hexenyl isovalerate * | 39.86 | 39.86 | 0.0 | 0.0 | 20.9 | 1 vs. 3, 2 vs. 3 |
(E)-3-Hexen-1-ol * | 35.99 | 75.85 | 27.0 | 6.2 | 8.3 | 1 vs. 2, 1 vs. 3 |
(E)-Geranyl acetone | 5.28 | 81.13 | 9.8 | 6.2 | 1.2 | 1 vs. 2, 1 vs. 3, 2 vs. 3 |
n-Pentadecane | 3.47 | 84.60 | 0.6 | 1.4 | 7.1 | 1 vs. 3, 2 vs. 3 |
Linalool | 2.45 | 87.05 | 10.8 | 11.9 | 6.4 | 1 vs. 3, 2 vs. 3 |
(Z)-3-Hexenyl acetate * | 1.91 | 88.96 | 7.9 | 3.4 | 3.3 | 1 vs. 2, 1 vs. 3 |
n-Nonanal * | 1.46 | 90.42 | 5.5 | 6.0 | 1.8 | 1 vs. 3, 2 vs. 3 |
τ-Cadinol | 1.23 | 91.65 | 0.9 | 4.9 | 2.5 | 1 vs. 2, 1 vs. 3, 2 vs. 3 |
1,8-Cineole | 0.86 | 92.51 | 0.0 | 3.5 | 1.3 | 1 vs. 2, 1 vs. 3, 2 vs. 3 |
n-Decanal | 0.82 | 93.33 | 4.7 | 6.6 | 3.3 | 1 vs. 2, 1 vs. 3, 2 vs. 3 |
(E)-Conipheryl alcohol | 0.78 | 94.11 | 1.4 | 4.3 | 2.5 | 1 vs. 2, 2 vs. 3 |
Methyl 3,5-di-tert-butyl-4-hydroxybenzoate | 0.68 | 94.79 | 2.1 | 5.2 | 3.5 | 1 vs. 2, 1 vs. 3, 2 vs. 3 |
Epi-α-bisabolol | 0.66 | 95.45 | 0.0 | 3.1 | 1.6 | 1 vs. 2, 1 vs. 3, 2 vs. 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najar, B.; Pistelli, L.; Marchioni, I.; Pistelli, L.; Muscatello, B.; De Leo, M.; Scartazza, A. Salinity-Induced Changes of Photosynthetic Performance, Lawsone, VOCs, and Antioxidant Metabolism in Lawsonia inermis L. Plants 2020, 9, 1797. https://doi.org/10.3390/plants9121797
Najar B, Pistelli L, Marchioni I, Pistelli L, Muscatello B, De Leo M, Scartazza A. Salinity-Induced Changes of Photosynthetic Performance, Lawsone, VOCs, and Antioxidant Metabolism in Lawsonia inermis L. Plants. 2020; 9(12):1797. https://doi.org/10.3390/plants9121797
Chicago/Turabian StyleNajar, Basma, Laura Pistelli, Ilaria Marchioni, Luisa Pistelli, Beatrice Muscatello, Marinella De Leo, and Andrea Scartazza. 2020. "Salinity-Induced Changes of Photosynthetic Performance, Lawsone, VOCs, and Antioxidant Metabolism in Lawsonia inermis L." Plants 9, no. 12: 1797. https://doi.org/10.3390/plants9121797
APA StyleNajar, B., Pistelli, L., Marchioni, I., Pistelli, L., Muscatello, B., De Leo, M., & Scartazza, A. (2020). Salinity-Induced Changes of Photosynthetic Performance, Lawsone, VOCs, and Antioxidant Metabolism in Lawsonia inermis L. Plants, 9(12), 1797. https://doi.org/10.3390/plants9121797