Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner
Abstract
:1. Introduction
2. Results
2.1. Exodermis Differentiation under Nutrient Deficiency in Maize Roots
2.2. Localized Response to Nutrient Deficiency at the Level of the Whole Root System (Split-Root Cultivation of Maize)
2.3. Localized Response to Nutrient Deficiency at the Level of a Single Root (“Sandwich” Cultivation of Maize)
2.4. Exodermal Differentiation Versus the Localization of Nutrient Transporters in Barley Roots
3. Discussion
3.1. Nutrient Deficiency Affects Differentiation of Apoplastic Barriers in a Nutrient-Specific Manner
3.2. Exodermis and Nutrient Uptake
3.3. K Deficiency and Variable Response among Species
4. Materials and Methods
4.1. Experimental Cultivations of Maize
4.2. Anatomical Analyses and Biometric Characteristics
4.3. Immunolocalization of Phosphate Transporters in Barley Roots
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Enstone, D.E.; Peterson, C.A.; Ma, F. Root endodermis and exodermis: Structure, function, and responses to the environment. J. Plant Growth Regul. 2003, 21, 335–351. [Google Scholar] [CrossRef]
- Perumalla, C.J.; Peterson, C.A.; Enstone, D.E. A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Bot. J. Linn. Soc. 1990, 103, 93–112. [Google Scholar] [CrossRef]
- Peterson, C.A.; Perumalla, C.J. A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Bot. J. Linn. Soc. 1990, 103, 113–125. [Google Scholar] [CrossRef]
- Meyer, C.J.; Seago, J.L., Jr.; Peterson, C.A. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Ann. Bot. 2009, 103, 687–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tylová, E.; Pecková, E.; Blascheová, Z.; Soukup, A. Casparian bands and suberin lamellae in exodermis of lateral roots: An important trait of roots system response to abiotic stress factors. Ann. Bot. 2017, 120, 71–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhardt, D.; Rost, T. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ. Exp. Bot. 1995, 35, 563–574. [Google Scholar] [CrossRef]
- Armstrong, J.; Armstrong, W. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann. Bot. 2005, 96, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Perumalla, C.; Peterson, C.A. Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. Can. J. Bot. 1986, 64, 1873–1878. [Google Scholar] [CrossRef]
- Enstone, D.E.; Peterson, C.A. Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ. 2005, 28, 444–455. [Google Scholar] [CrossRef]
- Lux, A.; Martinka, M.; Vaculik, M.; White, P.J. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 2011, 62, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Lux, A.; Šottníková, A.; Opatrná, J.; Greger, M. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol. Plant. 2004, 120, 537–545. [Google Scholar] [CrossRef]
- Redjala, T.; Zelko, I.; Sterckeman, T.; Legué, V.; Lux, A. Relationship between root structure and root cadmium uptake in maize. Environ. Exp. Bot. 2011, 71, 241–248. [Google Scholar] [CrossRef]
- Meyer, C.J.; Peterson, C.A.; Steudle, E. Permeability of Iris germanica’s multiseriate exodermis to water, NaCl, and ethanol. J. Exp. Bot. 2011, 62, 1911–1926. [Google Scholar] [CrossRef] [Green Version]
- Soukup, A.; Armstrong, W.; Schreiber, L.; Franke, R.; Votrubova, O. Apoplastic barriers to radial oxygen loss and solute penetration: A chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol. 2007, 173, 264–278. [Google Scholar] [CrossRef]
- Zimmermann, H.M.; Hartmann, K.; Schreiber, L.; Steudle, E. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta 2000, 210, 302–311. [Google Scholar] [CrossRef]
- Zimmermann, H.M.; Steudle, E. Apoplastic transport across young maize roots: Effect of the exodermis. Planta 1998, 206, 7–19. [Google Scholar] [CrossRef]
- Geldner, N. The endodermis. Annu. Rev. Plant Biol. 2013, 64, 531–558. [Google Scholar] [CrossRef]
- Caspary, R. Bemerkung über die Schutzscheide und die Bildung des Stammes und der Wurzel. In Jahrbücher für Wissenschaftliche Botanik; Pringsheim, N., Ed.; Verlag von Wilh. Engelmann: Leipzig, Germany, 1865. [Google Scholar]
- Soukup, A.; Tylová, E. Apoplastic barriers: Their structure and function from a historical perspective. In Concepts in Cell Biology—History and Evolution. Plant Cell Monographs; Sahi, V., Baluška, F., Eds.; Springer: Cham, Switzerland, 2018; Volume 23, pp. 155–183. [Google Scholar]
- Schreiber, L.; Franke, R.; Hartmann, K. Effects of NO3- deficiency and NaCl stress on suberin deposition in rhizo-and hypodermal (RHCW) and endodermal cell walls (ECW) of castor bean (Ricinus communis L.) roots. Plant Soil 2005, 269, 333–339. [Google Scholar] [CrossRef]
- Kamula, S.; Peterson, C.; Mayfield, C. The plasmalemma surface area exposed to the soil solution is markedly reduced by maturation of the exodermis and death of the epidermis in onion roots. Plant Cell Environ. 1994, 17, 1183–1193. [Google Scholar] [CrossRef]
- Barberon, M. The endodermis as a checkpoint for nutrients. New Phytol. 2017, 213, 1604–1610. [Google Scholar] [CrossRef]
- Barberon, M.; Vermeer, J.E.M.; De Bellis, D.; Wang, P.; Naseer, S.; Andersen, T.G.; Humbel, B.M.; Nawrath, C.; Takano, J.; Salt, D.E. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 2016, 164, 447–459. [Google Scholar] [CrossRef] [Green Version]
- Priestley, J.; Tupper-Carey, R. Physiological studies in plant anatomy. New Phytol. 1922, 21, 210–229. [Google Scholar] [CrossRef]
- Barberon, M.; Geldner, N. Radial transport of nutrients: The plant root as a polarized epithelium. Plant Physiol. 2014, 166, 528–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, T.G.; Barberon, M.; Geldner, N. Suberization—The second life of an endodermal cell. Curr. Opin. Plant Biol. 2015, 28, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Giehl, R.F.H.; Geldner, N.; Salt, D.E.; von Wiren, N. Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots. PLoS Biol. 2018, 16, e2006024. [Google Scholar] [CrossRef] [PubMed]
- Ranathunge, K.; Schreiber, L.; Bi, Y.M.; Rothstein, S.J. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta 2016, 243, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Končalová, H.; Květ, J.; Pokorný, J.; Hauser, V. Effect of flooding with sewage water on three wetland sedges. Wetl. Ecol. Manag. 1993, 2, 199–211. [Google Scholar] [CrossRef]
- Pozuelo, J.M.; Espelie, K.E.; Kolattukudy, P. Magnesium deficiency results in increased suberization in endodermis and hypodermis of corn roots. Plant Physiol. 1984, 74, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Armand, T.; Cullen, M.; Boiziot, F.; Li, L.; Fricke, W. Cortex cell hydraulic conductivity, endodermal apoplastic barriers and root hydraulics change in barley (Hordeum vulgare L.) in response to a low supply of N and P. Ann. Bot. 2019, 124, 1091–1107. [Google Scholar] [CrossRef]
- Drew, M. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 1975, 75, 479–490. [Google Scholar] [CrossRef]
- Giehl, R.F.; von Wiren, N. Root nutrient foraging. Plant Physiol. 2014, 166, 509–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Arredondo, D.L.; Leyva-Gonzalez, M.A.; Gonzalez-Morales, S.I.; Lopez-Bucio, J.; Herrera-Estrella, L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 2014, 65, 95–123. [Google Scholar] [CrossRef] [PubMed]
- Karahara, I.; Ikeda, A.; Kondo, T.; Uetake, Y. Development of the Casparian strip in primary roots of maize under salt stress. Planta 2004, 219, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Priestley, J.H. Further observations upon the mechanism of root pressure. New Phytol. 1922, 21, 41–47. [Google Scholar] [CrossRef]
- Hayward, H.; Spurr, W.B. Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot. Gaz. 1943, 105, 152–164. [Google Scholar] [CrossRef]
- Carvajal, M.; Cooke, D.T.; Clarkson, D.T. Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 1996, 199, 372–381. [Google Scholar] [CrossRef]
- Quintero, J.M.; Fournier, J.M.; Ramos, J.; Benlloch, M. K+ status and ABA affect both exudation rate and hydraulic conductivity in sunflower roots. Physiol. Plant. 1998, 102, 279–284. [Google Scholar] [CrossRef]
- Schraut, D.; Heilmeier, H.; Hartung, W. Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency. J. Exp. Bot. 2005, 56, 879–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffey, O.; Bonfield, R.; Corre, F.; Althea Sirigiri, J.; Meng, D.; Fricke, W. Root and cell hydraulic conductivity, apoplastic barriers and aquaporin gene expression in barley (Hordeum vulgare L.) grown with low supply of potassium. Ann. Bot. 2018, 122, 1131–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, P.; Ranathunge, K.; Nayak, S.; Schreiber, L.; Mathew, M.K. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J. Exp. Bot. 2011, 62, 4215–4228. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.; Groot, E.; Nichol, S.; Rost, T. Primary root growth and the pattern of root apical meristem organization are coupled. J. Plant Growth Regul. 2002, 21, 287–295. [Google Scholar] [CrossRef]
- Reinhardt, D.; Rost, T. On the correlation of primary root growth and tracheary element size and distance from the tip in cotton seedlings grown under salinity. Environ. Exp. Bot. 1995, 35, 575–588. [Google Scholar] [CrossRef]
- Rost, T.L.; Baum, S. On the correlation of primary root length, meristem size and protoxylem tracheary element position in pea seedlings. Am. J. Bot. 1988, 75, 414–424. [Google Scholar] [CrossRef]
- López-Bucio, J.; Cruz-Ramírez, A.; Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Schünmann, P.H.; Richardson, A.E.; Vickers, C.E.; Delhaize, E. Promoter analysis of the barley Pht1; 1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol. 2004, 136, 4205–4214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Calvo-Polanco, M.; Reyt, G.; Barberon, M.; Champeyroux, C.; Santoni, V.; Maurel, C.; Franke, R.B.; Ljung, K.; Novak, O.; et al. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci. Rep. 2019, 9, 4227. [Google Scholar] [CrossRef] [Green Version]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Pearson Education Inc. Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 1–960. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press Ltd.: London, UK; San Diego, CA, USA, 1995; pp. 1–889. [Google Scholar]
- Colmer, T.; Bloom, A. A comparison of NH4+ and NO3– net fluxes along roots of rice and maize. Plant Cell Environ. 1998, 21, 240–246. [Google Scholar] [CrossRef]
- Liu, J.; Han, L.; Chen, F.; Bao, J.; Zhang, F.; Mi, G. Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.). Plant Sci. 2008, 175, 272–282. [Google Scholar] [CrossRef]
- Líška, D.; Martinka, M.; Kohanová, J.; Lux, A. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses. Ann. Bot. 2016, 118, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.E.; Kojima, S.; Takahashi, H.; von Wirén, N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1; 3-dependent manner. Plant Cell 2010, 22, 3621–3633. [Google Scholar] [CrossRef] [Green Version]
- Forde, B.G. Nitrogen signalling pathways shaping root system architecture: An update. Curr. Opin. Plant Biol. 2014, 21, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, W.H.; Wang, Y. Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress. J. Int. Plant Biol. 2017, 59, 895–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teyker, R.H.; Jackson, W.A.; Volk, R.J.; Moll, R.H. Exogenous 15NO3− influx and endogenous 14NO3− efflux by two maize (Zea mays L.) inbreds during nitrogen deprivation. Plant Physiol. 1988, 86, 778–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.; Clarkson, D. Nitrogen-13 studies of nitrate fluxes in barley roots: I. Compartmental analysis from measurements of 13N efflux. J. Exp. Bot. 1986, 37, 1753–1767. [Google Scholar] [CrossRef]
- Elliott, G.C.; Lynch, J.; Läuchli, A. Influx and efflux of P in roots of intact maize plants: Double-labeling with 32P and 33P. Plant Physiol. 1984, 76, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brophy, L.S.; Heichel, G. Nitrogen release from roots of alfalfa and soybean grown in sand culture. Plant Soil 1989, 116, 77–84. [Google Scholar] [CrossRef]
- Kanno, S.; Arrighi, J.-F.; Chiarenza, S.; Bayle, V.; Berthomé, R.; Péret, B.; Javot, H.; Delannoy, E.; Marin, E.; Nakanishi, T.M. A novel role for the root cap in phosphate uptake and homeostasis. eLife 2016, 5, e14577. [Google Scholar] [CrossRef]
- Sánchez-Calderón, L.; López-Bucio, J.; Chacón-López, A.; Cruz-Ramírez, A.; Nieto-Jacobo, F.; Dubrovsky, J.G.; Herrera-Estrella, L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol. 2005, 46, 174–184. [Google Scholar] [CrossRef]
- Ferrol, N.; Azcon-Aguilar, C.; Perez-Tienda, J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Sci. 2019, 280, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Garcia, K.; Zimmermann, S.D. The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci. 2014, 5, 337. [Google Scholar] [CrossRef] [Green Version]
- Gruber, B.D.; Giehl, R.F.; Friedel, S.; von Wiren, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013, 163, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Kellermeier, F.; Chardon, F.; Amtmann, A. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol. 2013, 161, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, W.-H. Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 2013, 64, 451–476. [Google Scholar] [CrossRef] [Green Version]
- Baxter, I.; Hosmani, P.S.; Rus, A.; Lahner, B.; Borevitz, J.O.; Muthukumar, B.; Mickelbart, M.V.; Schreiber, L.; Franke, R.B.; Salt, D.E. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet. 2009, 5, e1000492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfister, A.; Barberon, M.; Alassimone, J.; Kalmbach, L.; Lee, Y.; Vermeer, J.E.; Yamazaki, M.; Li, G.; Maurel, C.; Takano, J. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife 2014, 3, e03115. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.G.; Naseer, S.; Ursache, R.; Wybouw, B.; Smet, W.; De Rybel, B.; Vermeer, J.E.M.; Geldner, N. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells. Nature 2018, 555, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Karahara, I.; Umemura, K.; Soga, Y.; Akai, Y.; Bando, T.; Ito, Y.; Tamaoki, D.; Uesugi, K.; Abe, J.; Yamauchi, D. Demonstration of osmotically dependent promotion of aerenchyma formation at different levels in the primary roots of rice using a ‘sandwich’ method and X-ray computed tomography. Ann. Bot. 2012, 110, 503–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soukup, A.; Tylová, E. Essential methods of plant sample preparation for light microscopy. In Plant Cell Morphogenesis. Methods and Protocols; Žárský, V., Cvrčková, F., Eds.; Springer Science: New York, NY, USA, 2014; pp. 1–23. [Google Scholar]
- Soukup, A. Selected simple methods of plant cell wall histochemistry and staining for light microscopy. In Plant Cell Morphogenesis. Methods and Protocols; Žárský, V., Cvrčková, F., Eds.; Springer Science: New York, NY, USA, 2014; pp. 25–40. [Google Scholar]
Treatments | |||||||
---|---|---|---|---|---|---|---|
Compounds | C (Control) | –N | –P | –K | –Ca | –Mg | –Fe |
Ca (NO3)2·4H2O | 295.5 | 0 | 295.5 | 442.7 | 0 | 295.5 | 295.5 |
KNO3 | 126.5 | 0 | 126.5 | 0 | 379 | 126.5 | 126.5 |
KH2PO4 | 34 | 34 | 0 | 0 | 34 | 34 | 34 |
MgSO4·7H2O | 61.4 | 61.4 | 61.4 | 61.4 | 61.4 | 0 | 61.4 |
CaCl2·H2O | 0 | 162.1 | 0 | 0 | 0 | 0 | 0 |
K2SO4 | 0 | 108.8 | 21.8 | 0 | 0 | 43.4 | 0 |
NaH2PO4·2H2O | 0 | 0 | 0 | 38.7 | 0 | 0 | 0 |
Fe citrate | 5 | 5 | 5 | 5 | 5 | 5 | 0 |
H3BO3 | 2.86 | 2.86 | 2.86 | 2.86 | 2.86 | 2.86 | 2.86 |
MnCl2·4H2O | 0.715 | 0.715 | 0.715 | 0.715 | 0.715 | 0.715 | 0.715 |
ZnSO4 | 0.453 | 0.453 | 0.453 | 0.453 | 0.453 | 0.453 | 0.453 |
(NH4)6Mo7O24·4H2O | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 |
CuSO4 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namyslov, J.; Bauriedlová, Z.; Janoušková, J.; Soukup, A.; Tylová, E. Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner. Plants 2020, 9, 201. https://doi.org/10.3390/plants9020201
Namyslov J, Bauriedlová Z, Janoušková J, Soukup A, Tylová E. Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner. Plants. 2020; 9(2):201. https://doi.org/10.3390/plants9020201
Chicago/Turabian StyleNamyslov, Jiří, Zuzana Bauriedlová, Jana Janoušková, Aleš Soukup, and Edita Tylová. 2020. "Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner" Plants 9, no. 2: 201. https://doi.org/10.3390/plants9020201
APA StyleNamyslov, J., Bauriedlová, Z., Janoušková, J., Soukup, A., & Tylová, E. (2020). Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner. Plants, 9(2), 201. https://doi.org/10.3390/plants9020201