DNA N6-Methyladenine Modification in Plant Genomes—A Glimpse into Emerging Epigenetic Code
Abstract
:1. Introduction
2. Adenine Methylation and Demethylation
3. Abundance of 6mA Level in Plants and Possible Functional Importance
4. 6mA Detection Methods
5. 6mA Methylome Databases
6. Bioinformatic Analysis Tools for 6mA
- (1)
- SDM6A: A sequence-based two-layer ensemble approach for the effective prediction of 6mA novel putative sites and non-6mA sites in the rice genome using Integrative Machine-Learning Framework [83].
- (2)
- SNNRice 6mA: Another 6mA identification method for the rice genome using a simple and lightweight deep learning model and the evaluation based on five metrics like accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and area under the curve (AUC)) [84].
- (3)
- i6mA-DCNP: Identification and prediction of 6mA sites in rice genome with high quality computational model. The prediction is based on encoding the genomic DNA samples using dinucleotide composition and optimized dinucleotide-based DNA properties [85].
- (4)
- csDMA: Identification and prediction of DNA 6mA modification in different species via Chou’s 5-step rule using three encoding features and different algorithms to generate the feature matrix [86].
- (5)
- iDNA6mA-Rice: Evaluation ofm6A sites in the rice genome using the machine learning random forest algorithm to formulate the sample as an input to discriminate from the methylated and non-methylated sites [87].
- (6)
- iDNA6mA-PseKNC: A sequence based predictor that enables identification of DNA 6mA sites with 100% specificity and 96% accuracy without going for complex mathematical formulae [88].
- (7)
- iDNA 6mA: Identification of 6mA sites in the rice genome using deep learning method based on conventional neural network, which takes single input of DNA sequences [89].
- (8)
- i6mA-Pred: Identification of 6mA sites in the rice genome with 83% accuracy in which the DNA sequences were formulated and encoded effectively by the use of chemical property and frequency of nucleotide based on support vector machine method [90].
- (9)
- MM-6mA-Pred: Identification of 6mA and non-6mA sites by significant difference in transition probability among adjacent nucleotides based on Morkov Model with better prediction than i6mA-Pred) [91].
- (10)
- DEEP6mA: A superior performance tool allowing identification of 6mA sites in plants with an overall prediction accuracy of 94% using convolutional neural network (CNN) to extract high-level features in the sequence and a bi-directional long short-term memory network (BLSTM) to learn dependence structure along the sequence [92].
- (11)
- FastFeatGen: This tool predicts the 6mA sites in the genome using machine learning approach with the motif features. The advantage of this tool is its speed due to the multi-threading and shared memory process [93].
7. Conclusions and Future Aspects
Author Contributions
Funding
Conflicts of Interest
References
- Feng, S.; Jacobsen, S.E. Epigenetic modifications in plants: An evolutionary perspective. Curr. Opin. Plant Biol. 2008, 23, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.L.; Kleckner, N. E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 1990, 62, 967–979. [Google Scholar] [CrossRef]
- Collier, J.; McAdams, H.H.; Shapiro, L. A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc. Natl. Acad. Sci. USA 2007, 104, 17111–17116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinus, M.G.; Casadesus, J. Roles of DNA adenine methylation in host-pathogen interactions: Mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 2009, 33, 488–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, K.; Cao, W.; Ellison, C.E. Adenine methylation in Drosophila is associated with the tissue-specific expression of developmental and regulatory genes. G3 Genes Genomes Genet. 2019, 9, 1893–1900. [Google Scholar] [CrossRef]
- Kandhalu sagadevan, D.B.; Ashirbad, G.; Jeyalakshmi, K.; Nagesh, S.; Kamlesh, K.; Priyanka, S.; Sam, A.C.; Anburaj, D.B.; Jebasingh, T.; Gopal, P. DNA Methylation Suppression by Bhendi Yellow Vein Mosaic Virus. Epigenomes 2018, 2, 1–23. [Google Scholar]
- Holliday, A.R.; Pugh, J.E. DNA Modification Mechanisms and Gene Activity during Development. Science 2019, 187, 226–232. [Google Scholar] [CrossRef]
- Ehrlich, M.; Gama-Sosa, M.A.; Carreira, L.H.; Ljungdahl, L.G.; Kuo, K.C.; Gehrke, C.W. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N5methyladenine. Nucleic Acids Res. 1985, 13, 1399–1412. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhao, B.S.; He, C. Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chem. Biol. 2016, 23, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Summerer, D. N6-Methyladenine: A Potential Epigenetic Mark in Eukaryotic Genomes. Angew. Chem. Int. Ed. 2015, 54, 10714–10716. [Google Scholar] [CrossRef]
- Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 2013, 14, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.Z.; Blanco, M.A.; Greer, E.L.; He, C.; Shi, Y. DNA N6-methyladenine: A new epigenetic mark in eukaryotes? Nat. Rev. Mol. Cell Biol. 2015, 16, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Dunn, D.B.; Smith, J.D. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature 1955, 175, 336–337. [Google Scholar] [CrossRef] [PubMed]
- DUNN, D.B.; SMITH, J.D. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem. J. 1958, 68, 627–636. [Google Scholar] [CrossRef]
- Arber, W.; Dussoix, D. Host specificity of DNA produced by Escherichia coli: I. Host controlled modification of bacteriophage λ. J. Mol. Biol. 1962, 5, 18–36. [Google Scholar] [CrossRef]
- Smith, J.D.; Arber, W.; Kühnlein, U. Host specificity of DNA produced by Escherichia coli. XIV. the role of nucleotide methylation in in vivo B-specific modification. J. Mol. Biol. 1972, 63, 1–8. [Google Scholar] [CrossRef]
- Pukkila, P.J.; Peterson, J.; Herman, G.; Modrich, P.; Meselson, M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics 1983, 104, 571–582. [Google Scholar]
- Vanyushin, B.F.; Tkacheva, S.G.; Belozersky, A.N. Rare bases in animal DNA. Nature 1970, 225, 948–949. [Google Scholar] [CrossRef]
- Adams, R.L.P.; McKay, E.L.; Craig, L.M.; Burdon, R.H. Methylation of mosquito DNA. BBA Sect. Nucleic Acids Protein Synth. 1979, 563, 72–81. [Google Scholar] [CrossRef]
- Proffitt, J.H.; Davie, J.R.; Swinton, D.; Hattman, S. 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 1984, 4, 985–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattman, S.; Kenny, C.; Berger, L.; Pratt, K. Comparative study of DNA methylation in three unicellular eucaryotes. J. Bacteriol. 1978, 135, 1156–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadesus, J.; Low, D. Epigenetic Gene Regulation in the Bacterial World. Microbiol. Mol. Biol. Rev. 2006, 70, 830–856. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Huang, H.; Liu, D.; Cheng, Y.; Liu, X.; Zhang, W.; Yin, R.; Zhang, D.; Zhang, P.; Liu, J.; et al. N6-methyladenine DNA modification in Drosophila. Cell 2015, 161, 893–906. [Google Scholar] [CrossRef]
- Greer, E.L.; Blanco, M.A.; Gu, L.; Sendinc, E.; Liu, J.; Aristizábal-Corrales, D.; Hsu, C.H.; Aravind, L.; He, C.; Shi, Y. DNA methylation on N6-adenine in C. elegans. Cell 2015, 161, 868–878. [Google Scholar] [CrossRef] [Green Version]
- Dunwell, T.L.; Pfeifer, G.P. Drosophila genomic methylation: New evidence and new questions. Epigenomics 2014, 6, 459–461. [Google Scholar] [CrossRef] [Green Version]
- Raddatz, G.; Guzzardo, P.M.; Olova, N.; Fantappié, M.R.; Rampp, M.; Schaefer, M.; Reik, W.; Hannon, G.J.; Lyko, F. Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc. Natl. Acad. Sci. USA 2013, 110, 8627–8631. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Shen, L.; Cui, X.; Bao, S.; Geng, Y.; Yu, G.; Liang, F.; Xie, S.; Lu, T.; Gu, X.; et al. DNA N6-Adenine Methylation in Arabidopsis thaliana. Dev. Cell 2018, 45, 406–416. [Google Scholar] [CrossRef] [Green Version]
- Fedoreyeva, L.I.; Vanyushin, B.F. N6-adenine DNA-methyltransferase in wheat seedlings. FEBS Lett. 2002, 514, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Iyer, L.M.; Abhiman, S.; Aravind, L. Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 2011, 101, 25–104. [Google Scholar] [PubMed]
- O’Brown, Z.K.; Greer, E.L. N6-methyladenine: A conserved and dynamic DNA mark. Adv. Exp. Med. Biol. 2016, 945, 213–246. [Google Scholar] [PubMed] [Green Version]
- Kornberg, S.R.; Zimmerman, S.B.; Kornberg, A. Glucosylation of deoxyribonucleic acid by enzymes from bacteriophage-infected Escherichia coli. J. Biol. Chem. 1961, 236, 1487–1493. [Google Scholar] [PubMed]
- Theil, E.C.; Zamenhof, S. Studies on 6-Methylaminopurine (6-Methyladenine) in Bacterial Deoxyribonucleic Acid. J. Biol. Chem. 1963, 238, 3058–30564. [Google Scholar]
- Bird, A.P. Use of restriction enzymes to study eukaryotic DNA methylation. II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol. 1978, 118, 49–60. [Google Scholar] [CrossRef]
- Smith, S.S.; Kaplan, B.E.; Sowers, L.C.; Newman, E.M. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc. Natl. Acad. Sci. USA 1992, 89, 4744–4748. [Google Scholar] [CrossRef] [Green Version]
- Hori, H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front. Genet. 2014, 5, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kweon, S.M.; Chen, Y.; Moon, E.; Kvederaviciutė, K.; Klimasauskas, S.; Feldman, D.E. An Adversarial DNA N6-Methyladenine-Sensor Network Preserves Polycomb Silencing. Mol. Cell. 2019, 74, 1138–1147. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Z.; Zhang, Q.; Li, B.; Lu, C.; Li, W.; Cheng, T.; Xia, Q.; Zhao, P. DNA methylation on N6-adenine in lepidopteran Bombyx mori. Biochim. Biophys. Acta Gene Regul. Mech. 2018, 1861, 815–825. [Google Scholar] [CrossRef]
- Xiao, C.L.; Zhu, S.; He, M.; Chen, D.; Zhang, Q.; Chen, Y.; Yu, G.; Liu, J.; Xie, S.Q.; Luo, F.; et al. N 6—Methyladenine DNA Modification in the Human Genome. Mol. Cell. 2018, 71, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhao, P.; Xia, Q. Epigenetic methylations on N6-adenine and N6-adenosine with the same input but different output. Int. J. Mol. Sci. 2019, 20, 2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anantharaman, V.; Koonin, E.V.; Aravind, L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 2002, 30, 1427–1464. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-K. Active DNA Demethylation Mediated by DNA Glycosylases. Annu. Rev. Genet. 2009, 43, 143–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedeles, B.I.; Singh, V.; Delaney, J.C.; Li, D.; Essigmann, J.M. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J. Biol. Chem. 2015, 290, 20734–20742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, S.S.; Fan, H.; Sauder, J.M.; Burley, S.K.; Shoichet, B.K.; Sali, A.; Raushel, F.M. Enzymatic deamination of the epigenetic base N-6-methyladenine. J. Am. Chem. Soc. 2011, 133, 2080–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Wang, C.; Liu, H.; Zhou, Q.; Liu, Q.; Guo, Y.; Peng, T.; Song, J.; Zhang, J.; Chen, L.; et al. Identification and analysis of adenine N 6-methylation sites in the rice genome. Nat. Plants 2018, 4, 554–563. [Google Scholar] [CrossRef]
- Mielecki, D.; Zugaj, D.; Muszewska, A.; Piwowarski, J.; Chojnacka, A.; Mielecki, M.; Nieminuszczy, J.; Grynberg, M.; Grzesiuk, E. Novel AlkB dioxygenases-alternative models for in silico and in vivo studies. PLoS ONE 2012, 7(1), e30588. [Google Scholar] [CrossRef] [Green Version]
- Duncan, T.; Trewick, S.C.; Koivisto, P.; Bates, P.A.; Lindahl, T.; Sedgwick, B. Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl. Acad. Sci. USA 2002, 99, 16660–16665. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Huang, S.; Wang, X.; Zhu, Y.; Chen, Z.; Chen, D. N6-methyladenine functions as a potential epigenetic mark in eukaryotes. BioEssays 2015, 37, 1155–1162. [Google Scholar] [CrossRef]
- Brendler, T.; Abeles, A.; Austin, S. A protein that binds to the P1 origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene. EMBO J. 1995, 14, 4083–4089. [Google Scholar] [CrossRef]
- Slater, S.; Wold, S.; Lu, M.; Boye, E.; Skarstad, K.; Kleckner, N.E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 1995, 82, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Von Freiesleben, U.; Rasmussen, K.V.; Schaechter, M. SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol. Microbiol. 1994, 14, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Boye, E.; Slater, S.; Kleckner, N.; Skarstad, K. Effects of purified SeqA protein on oriC-dependent DNA replication in vitro. EMBO J. 1998, 17, 4158–4165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Zhang, G.; Wang, J.; Gao, Y.; Sun, R.; Cao, Z.; Chen, Z.; Zheng, X.; Yuan, J.; Luo, Y.; et al. 6mA-DNA-binding factor Jumu controls maternal-to-zygotic transition upstream of Zelda. Nat. Commun. 2019, 10, 2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.H.; Song, P.; Wang, Y.; Lu, Z.; Tang, Q.; Yu, Q.; Xiao, Y.; Zhang, X.; Duan, H.C.; Jia, G. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in arabidopsis. Plant Cell 2018, 30, 968–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Geng, Y.; Gu, X. Adenine Methylation: New Epigenetic Marker of DNA and mRNA. Mol. Plant. 2018, 11, 1219–1221. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Y.; Xing, J.F.; Chen, W.; Luan, M.W.; Xie, R.; Huang, J.; Xie, S.Q.; Xiao, C. Le MDR: An integrative DNA N6-methyladenine and N4-methylcytosine modification database for Rosaceae. Hortic. Res. 2019, 6, 0–6. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Luo, G.Z.; Chen, K.; Deng, X.; Yu, M.; Han, D.; Hao, Z.; Liu, J.; Lu, X.; Doré, L.C.; et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 2015, 161, 879–892. [Google Scholar] [CrossRef] [Green Version]
- Seidl, M.F. Adenine N6-methylation in diverse fungi. Nat. Genet. 2017, 49, 823–824. [Google Scholar] [CrossRef]
- Wu, T.P.; Wang, T.; Seetin, M.G.; Lai, Y.; Zhu, S.; Lin, K.; Liu, Y.; Byrum, S.D.; Mackintosh, S.G.; Zhong, M.; et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 2016, 532, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Gorovsky, M.A.; Hattman, S.; Pleger, G.L. [6N]methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena Pyriformis. J. Cell Biol. 1973, 56, 697–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babinger, P. A link between DNA methylation and epigenetic silencing in transgenic Volvox carteri. Nucleic Acids Res. 2001, 29, 1261–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondo, S.J.; Dannebaum, R.O.; Kuo, R.C.; Louie, K.B.; Bewick, A.J.; LaButti, K.; Haridas, S.; Kuo, A.; Salamov, A.; Ahrendt, S.R.; et al. Widespread adenine N6-methylation of active genes in fungi. Nat. Genet. 2017, 49, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Pintor-Toro, J.A. Adenine methylation in zein genes. Biochem. Biophys. Res. Commun. 1987, 147, 1082–1087. [Google Scholar] [CrossRef]
- Rogers, J.C.; Rogers, S.W. Comparison of the effects of N6-methyldeoxyadenosine and N5-methyldeoxycytosine on transcription from nuclear gene promoters in barley. Plant J. 1995, 7, 221–233. [Google Scholar] [CrossRef]
- Van Blokland, R.; Ross, S.; Corrado, G.; Scollan, C.; Meyer, P. Developmental abnormalities associated with deoxyadenosine methylation in transgenic tobacco. Plant J. 1998, 15, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Nakano’, Y.; Steward, N.; Masami Sekine, K.; Kusano’, T.; Sano, H. A Tobacco NtMETl cDNA Encoding a DNA Methyltransferase: Molecular Characterization and Abnormal Phenotypes of Transgenic Tobacco Plants. Plant and Cell Physiology 2000, 41, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tang, K.; Datsenka, T.U.; Liu, W.; Lv, S.; Lang, Z.; Wang, X.; Gao, J.; Wang, W.; Nie, W.; et al. Critical function of DNA methyltransferase 1 in tomato development and regulation of the DNA methylome and transcriptome. J. Integr. Plant Biol. 2019, 61, 1224–1242. [Google Scholar] [CrossRef]
- Flusberg, B.A.; Webster, D.R.; Lee, J.H.; Travers, K.J.; Olivares, E.C.; Clark, T.A.; Korlach, J.; Turner, S.W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods. 2010, 7, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Pomraning, K.R.; Smith, K.M.; Freitag, M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods 2009, 47, 142–150. [Google Scholar] [CrossRef]
- Germann, S.; Juul-Jensen, T.; Letarnec, B.; Gaudin, V. DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J. 2006, 48, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Roman-Sanchez, R.; Moore, D.D. DamIP: A novel method to identify DNA binding sites in vivo. Nucl. Recept. Signal. 2010, 8, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Yuki, H.; Kawasaki, H.; Imayuki, A.; Yajima, T. Determination of 6-methyladenine in DNA by high-performance liquid chromatography. J. Chromatogr. A 1979, 168, 489–494. [Google Scholar] [CrossRef]
- Ma, W.; Noble, W.S.; Bailey, T.L. Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat. Protoc. 2014, 9, 1428–1450. [Google Scholar] [CrossRef]
- Hong, T.; Yuan, Y.; Wang, T.; Ma, J.; Yao, Q.; Hua, X.; Xia, Y.; Zhou, X. Selective detection of N6-methyladenine in DNA via metal ion-mediated replication and rolling circle amplification. Chem. Sci. 2016, 8, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Achwal, C.W.; Iyer, C.A.; Chandra, H.S. Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS Lett. 1983, 158, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Marconi, G.; Capomaccio, S.; Comino, C.; Acquadro, A.; Portis, E.; Porceddu, A.; Albertini, E. Methylation content sensitive enzyme ddRAD (MCSeEd): A reference-free, whole genome profiling system to address cytosine/ adenine methylation changes. bioRxiv. 2019, 616532. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Fang, L.; Yu, G.; Wang, D.; Xiao, C.L.; Wang, K. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Ye, P.; Luan, Y.; Chen, K.; Liu, Y.; Xiao, C.; Xie, Z. MethSMRT: An integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing. Nucleic Acids Res. 2017, 45, D85–D89. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Jesudurai, C.; Staton, M.; Du, Z.; Ficklin, S.; Cho, I.; Abbott, A.; Tomkins, J.; Main, D. GDR (Genome Database for Rosaceae): Integrated web resources for Rosaceae genomics and genetics research. BMC Bioinform. 2004, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Degtyarenko, K.; De matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; Mcnaught, A.; Alcántara, R.; Darsow, M.; Guedj, M.; Ashburner, M. ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2008, 36, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.J.; Viner, C.; Hoffman, M.M. DNAmod: The DNA modification database. J. Cheminform. 2019, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. SDM6A: A Web-Based Integrative Machine-Learning Framework for Predicting 6mA Sites in the Rice Genome. Mol. Ther. Nucleic Acids. 2019, 18, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Dai, Z. SNNRice6mA: A Deep Learning Method for Predicting DNA N6-Methyladenine Sites in Rice Genome. Front. Genet. 2019, 10, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; Zhang, L. i6mA-DNCP: Computational Identification of DNA N6-Methyladenine Sites in the Rice Genome Using Optimized Dinucleotide-Based Features. Genes 2019, 10, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Dong, W.; Jiang, W.; He, Z. csDMA: An improved bioinformatics tool for identifying DNA 6 mA modifications via Chou’s 5-step rule. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Dao, F.Y.; Guan, Z.X.; Zhang, D.; Tan, J.X.; Zhang, Y.; Chen, W.; Lin, H. iDNA6mA-Rice: A Computational Tool for Detecting N6-Methyladenine Sites in Rice. Front. Genet. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iDNA6mA-PseKNC: Identifying DNA N 6 -methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics 2019, 111, 96–102. [Google Scholar] [CrossRef]
- Tahir, M.; Tayara, H.; Chong, K.T. iDNA6mA (5-step rule): Identification of DNA N6-methyladenine sites in the rice genome by intelligent computational model via Chou’s 5-step rule. Chemom. Intell. Lab. Syst. 2019, 189, 96–101. [Google Scholar] [CrossRef]
- Chen, W.; Lv, H.; Nie, F.; Lin, H. i6mA-Pred: Identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics. 2019, 35, 2796–2800. [Google Scholar] [CrossRef]
- Pian, C.; Zhang, G.; Li, F.; Fan, X. MM-6mAPred: Identifying DNA N6-methyladenine sites based on Markov model. Bioinformatics. 2019, 35, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, H.; Kong, L.; Chen, Y.; Zhang, L.; Pian, C. Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species. bioRxiv. 2019. [Google Scholar]
- Rahman, M.K. FastFeatGen: Faster parallel feature extraction from genome sequences and efficient prediction of DNA N6-methyladenine sites. bioRxiv. 2019, 846311. [Google Scholar]
Organism | Motif | Pattern of Distribution | Potential Role | Abundance% (6mA/A) |
---|---|---|---|---|
Escherichia coli [16] | GATC, TGAA | Complete genome | DNA repair, replication & defense | 1.7–2.4 |
Homo sapiens [40] | [G/C]AGG[C/T] | Complete genome | Gene transcriptional activation | 0.051 |
Chlamydomonas reinhardtii [58] | GATC, CATG | TSS | Gene expression | ~0.4 |
Volvox carteri [62] | GATC | TSS | Unknown | 0.3 |
Triticum aestivum [30] | TGATCA | Mitochondrial DNA | Mitochondrial DNA replication | - |
Zea mays [64] | GATC | Gene body | DNA repair | 0.0015 |
Arabidopsis thaliana [29] | ANYGA, GAGG, ACCT, AAAGAV | Exon, TSS | Stress response, gene activation | ~0.2 |
Oryza sativa [46] | GAGG, AGG | Promoter and Intergenic region | Gene repression | 0.2 |
Rosaceae [57] | ADSYA, ADGYA | Gene body | Photosynthesis | - |
Transgenic Nicotiana tabacum [67] | GATC | - | Gene regulation | - |
Transgenic Solanum lycopersicum [68] | GATC | - | Tissue differentiation | - |
Method | Significance |
---|---|
SMRT—A Third Generation Sequencing Method | Based on enzyme kinetics, 6mA bases are identified by highly sensitive inter-pulse duration ratios in the sequencing data [69]. |
MeDIP-seq(Methylated DNA immunoprecipitation sequencing) | The 6mAin DNA is discovered by using specific antibody by applying high throughput DNA sequencing [70]. |
Dam ID (DNA adenine methyltransferase Identification) | Proteins of interests are fused with Dam and the binding sites are identified by restriction digestion and mapping [71]. |
Dam IP (DNA adenine methyltransferase Immunoprecipitation) | Combination of a mutant form of DAMT with 6mA antibody to recognize N-6-methylated DNA followed by IP based enrichment and detection by qRT-PCR with sequence specific primers [72]. |
UHPLC-TQMS (Ultra High-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry) | Sensitive detection and quantification of 6mA by high performance liquid chromatography coupled with mass spectrometry [73] |
MEME-ChIP (Multiple EM for motif elicitation-Chromatin immunoprecipitation) | Identification and analysis of 6mA motif from the large set of sequence, which were obtained from ChIP [74]. |
6mA CLIP Exo (Immunoprecipitation, Photo Crosslinking-Exonuclease Digestion). | Detection of 6mA motifs in genomic DNA fragments incubated with 6mA antibodies followed by UV cross-linking, immunoprecipitation and exonuclease digestion [58]. |
6mA-RE(Restriction Endonuclease). | Restriction digestion of unmethylated 6mA motif with CviAII (CATG) or DpnII (GATC) leaves methylated fragments which can be amplified by PCR [58]. |
Metal ion mediated replication and Rolling Circle Amplification. | This method is able to differentiate the methylated and non-methylated sequences. The non-methylated sequences are ligated and circularized with Ag2+ padlock probes where mismatches are stabilized by metal ions and primer extension processed by polymerases [75]. |
Dot blot | Detection of 6mA abundance using specific antibodies and distinction of changes in 6mA level in different tissue or same tissue at different time point [46,76]. |
MCSeEd (Methylation content sensitive enzyme double-digest restriction-site-associated DNA (ddRAD) technique) | Identification of 6mA motif using parallel restrictions carried out by combinations of methylation insensitive and sensitive endonucleases, followed by next-generation sequencing [77]. |
Nanopore | Identification of DNA methylation at specific genomic position by Nanopore signals where it shows the electric spikes [78]. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karanthamalai, J.; Chodon, A.; Chauhan, S.; Pandi, G. DNA N6-Methyladenine Modification in Plant Genomes—A Glimpse into Emerging Epigenetic Code. Plants 2020, 9, 247. https://doi.org/10.3390/plants9020247
Karanthamalai J, Chodon A, Chauhan S, Pandi G. DNA N6-Methyladenine Modification in Plant Genomes—A Glimpse into Emerging Epigenetic Code. Plants. 2020; 9(2):247. https://doi.org/10.3390/plants9020247
Chicago/Turabian StyleKaranthamalai, Jeyalakshmi, Aparna Chodon, Shailja Chauhan, and Gopal Pandi. 2020. "DNA N6-Methyladenine Modification in Plant Genomes—A Glimpse into Emerging Epigenetic Code" Plants 9, no. 2: 247. https://doi.org/10.3390/plants9020247
APA StyleKaranthamalai, J., Chodon, A., Chauhan, S., & Pandi, G. (2020). DNA N6-Methyladenine Modification in Plant Genomes—A Glimpse into Emerging Epigenetic Code. Plants, 9(2), 247. https://doi.org/10.3390/plants9020247