Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings
Abstract
:1. Introduction
2. Results
2.1. Genetic Structure and Linkage Disequilibrium
2.2. Variance Components, Heritabilities, and Responses to Water Withholding
2.3. Allelic Effects and Candidate Genes
2.4. Genomic Prediction Models
3. Discussion
3.1. Genetic Structure
3.2. Responses to Water Withholding
3.3. Allelic Effects and Candidate Genes
4. Conclusions
5. Materials and Methods
5.1. Plant Material and Experimental Design
5.2. Phenotypic Data Analysis
5.3. GBS Data and Filtering
5.4. Genetic Structure Analysis and Linkage Disequilibrium
5.5. GWAS and Genomic Predictions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HKW | hundred kernel weight |
C | control |
WWl | water withholding |
FW | fresh weight |
DW | dry weight |
DMC | dry matter content |
GWAS | genome wide association study |
BRR | Bayesian ridge regression |
rrBLUP | ridge regression best linear unbiased predictions |
MLM | mixed linear model |
K | kinship |
Q | population membership coefficient |
PC | principal component |
SS | Stiff Stalk |
NS | non-Stiff Stalk |
QTL | quantitative trait loci |
SNP | single nucleotide polymorphism |
GBS | genotyping by sequencing |
LD | linkage disequilibrium |
Q-Q | quantile-quantile |
References
- Schmidhalter, U.; Evéquoz, M.; Camp, K.H.; Studer, C. Sequence of drought response of maize seedlings in drying soil. Physiol. Plant. 1998, 104, 159–168. [Google Scholar] [CrossRef]
- Duarte, A.P.; de Abreu, M.F.; Francisco, E.A.B.; Gitti, D.D.C.; Barth, G.; Kappes, C. Reference values of grain nutrient content and removal for corn. Rev. Bras. Cienc. do Solo 2019, e0180102. [Google Scholar] [CrossRef] [Green Version]
- Revilla, P.; Butrón, A.; Malvar, R.A.; Ordás, A. Relationships among kernel weight, early vigor, and growth in maize. Crop Sci. 1999, 39, 654–658. [Google Scholar] [CrossRef]
- Sulewska, H.; Śmiatacz, K.; Szymańska, G.; Panasiewicz, K.; Bandurska, H.; Głowicka-Wołoszyn, R. Paprastojo kukurūzo (Zea mays L.) derliaus kokybiniu{ogonek} ir kiekybiniu{ogonek} rodikliu{ogonek} priklausomumas nuo sėjai naudotu{ogonek} sėklu{ogonek} dydžio Pietryčiu{ogonek} Baltijos regione. Zemdirbyste 2014, 101, 35–40. [Google Scholar] [CrossRef]
- Burghardt, L.T.; Young, N.D.; Tiffin, P. A guide to genome-wide association mapping in plants. Curr. Protoc. Plant Biol. 2017, 2, 22–38. [Google Scholar] [CrossRef]
- Bernardo, R.; Yu, J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 2007, 47, 1082–1090. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Hou, H.; Meng, A.; Meng, J.; Xie, L.; Zhang, C. Rapid evaluation of seed vigor by the absolute content of protein in seed within the same crop. Sci. Rep. 2018, 8, 5569. [Google Scholar] [CrossRef]
- Beckett, T.J.; Morales, A.J.; Koehler, K.L.; Rocheford, T.R. Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds. PLoS ONE 2017, 12, e0189277. [Google Scholar] [CrossRef]
- Romay, M.C.; Millard, M.J.; Glaubitz, J.C.; Peiffer, J.A.; Swarts, K.L.; Casstevens, T.M.; Elshire, R.J.; Acharya, C.B.; Mitchell, S.E.; Flint-garcia, S.A.; et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013, 14, R55. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Miedaner, T.; Utz, H.F.; Schipprack, W.; Schrag, T.A.; Melchinger, A.E. Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica 2018, 214, 1–20. [Google Scholar] [CrossRef]
- Sanchez, D.L.; Liu, S.; Ibrahim, R.; Blanco, M.; Lübberstedt, T. Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Sci. 2018, 268, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ersoz, E.S.; Yu, J.; Buckler, E.S. Applications of linkage disequilibrium and association mapping in maize. In Biotechnology in Agriculture and Forestry; Kriz, A.L., Larkins, B.A., Eds.; Springer: Berlin, Germany, 2009; Volume 63, pp. 173–195. [Google Scholar]
- Singh, N.; Mittal, S.; Thirunavukkarasu, N. Effect of Drought Stress and Utility of Transcriptomics in Identification of Drought Tolerance Mechanisms in Maize. In Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I; Springer International Publishing: Berlin, Germany, 2019; Volume 20, pp. 73–97. [Google Scholar]
- Avramova, V.; Nagel, K.A.; Abdelgawad, H.; Bustos, D.; Duplessis, M.; Fiorani, F.; Beemster, G.T.S. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. J. Exp. Bot. 2016, 67, 2453–2466. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Holá, D.; Benešová, M.; Fischer, L.; Haisel, D.; Hnilicka, F.; Hnilicková, H.; Jedelský, P.L.; Kocová, M.; Procházková, D.; Rothová, O.; et al. The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize. PLoS ONE 2017, 12, e0176121. [Google Scholar] [CrossRef]
- Tůmová, L.; Tarkowská, D.; Řřová, K.; Marková, H.; Kočová, M.; Rothová, O.; čečetka, P.; Holá, D. Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes. PLoS ONE 2018, 13, e0197870. [Google Scholar] [CrossRef] [Green Version]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Van Eeuwijk, F.A.; Bustos-Korts, D.V.; Malosetti, M. What should students in plant breeding know about the statistical aspects of genotype × Environment interactions? Crop Sci. 2016, 56, 2119–2140. [Google Scholar] [CrossRef]
- Bustos-Korts, D.; Romagosa, I.; Borràs-Gelonch, G.; Casas, A.M.; Slafer, G.A.; Van Eeuwijk, F.A. Genotype by environment interaction and adaptation. In Encyclopedia of Sustainability Science and Technology; Savin, R., Slafer, G.A., Eds.; Springer Science + Business Media: Berlin, Germany, 2018; pp. 29–71. [Google Scholar]
- Chapuis, R.; Delluc, C.; Debeuf, R.; Tardieu, F.; Welcker, C. Resiliences to water deficit in a phenotyping platform and in the field: How related are they in maize? Eur. J. Agron. 2012, 42, 59–67. [Google Scholar] [CrossRef]
- Yan, J.; Wu, Y.; Li, W.; Qin, X.; Wang, Y.; Yue, B. Genetic mapping with testcrossing associations and F 2:3 populations reveals the importance of heterosis in chilling tolerance at maize seedling stage. Sci. Rep. 2017, 7, 3232. [Google Scholar] [CrossRef]
- Strigens, A.; Grieder, C.; Haussmann, B.I.G.; Melchinger, A.E. Genetic variation among inbred lines and testcrosses of maize for early growth parameters and their relationship to final dry matter yield. Crop Sci. 2012, 52, 1084–1092. [Google Scholar] [CrossRef] [Green Version]
- Kaydan, D.; Yagmur, M. Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCI. Afr. J. Biotechnol. 2008, 7, 2862–2868. [Google Scholar]
- Hendrix, S.D.; Nielsen, E.; Nielsen, T.; Schutt, M. Are seedlings from small seeds always inferior to seedlings from large seeds? Effects of seed biomass on seedling growth in Pastinaca sativa L. New Phytol. 1991, 119, 299–305. [Google Scholar] [CrossRef]
- Aschard, H.; Guillemot, V.; Vilhjalmsson, B.; Patel, C.J.; Skurnik, D.; Ye, C.J.; Wolpin, B.; Kraft, P.; Zaitlen, N. Covariate selection for association screening in multiphenotype genetic studies. Nat. Genet. 2017, 49, 1789–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziyomo, C.; Bernardo, R. Drought tolerance in maize: Indirect selection through secondary traits versus genomewide selection. Crop Sci. 2013, 53, 1269–1275. [Google Scholar] [CrossRef] [Green Version]
- Galic, V.; Franic, M.; Jambrovic, A.; Ledencan, T.; Brkic, A.; Zdunic, Z.; Simic, D. Genetic correlations between photosynthetic and yield performance in maize are different under two heat scenarios during flowering. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Tardieu, F.; Simonneau, T.; Muller, B. The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. Annu. Rev. Plant Biol. 2018, 69, 733–759. [Google Scholar] [CrossRef] [Green Version]
- Millet, E.; Welcker, C.; Kruijer, W.; Negro, S.; Nicolas, S.; Praud, S.; Ranc, N.; Presterl, T.; Tuberosa, R.; Bedo, Z.; et al. Genome-wide analysis of yield in Europe: allelic effects as functions of drought and heat scenarios. Plant Physiol. 2016, 172, 749–764. [Google Scholar] [CrossRef]
- Thoen, M.P.M.; Olivas, N.H.D.; Kloth, K.J.; Coolen, S.; Huang, P.P.; Aarts, M.G.M.; Bac-Molenaar, J.A.; Bakker, J.; Bouwmeester, H.J.; Broekgaarden, C.; et al. Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. New Phytol. 2017, 213, 1346–1362. [Google Scholar] [CrossRef] [Green Version]
- Canè, M.A.; Maccaferri, M.; Nazemi, G.; Salvi, S.; Francia, R.; Colalongo, C.; Tuberosa, R. Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol. Breed. 2014, 34, 1629–1645. [Google Scholar] [CrossRef] [Green Version]
- Sukumaran, S.; Dreisigacker, S.; Lopes, M.; Chavez, P.; Reynolds, M.P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2014, 128, 353–363. [Google Scholar] [CrossRef]
- Stelpflug, S.C.; Sekhon, R.S.; Vaillancourt, B.; Hirsch, C.N.; Buell, C.R.; de Leon, N.; Kaeppler, S.M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, G.M.; Hamilton, J.P.; Wood, J.C.; Esteban, E.; Pasha, A.; Vaillancourt, B.; Provart, N.J.; Buell, C.R. An updated gene atlas for maize reveals organ-specific and stress-induced genes. Plant J. 2019, 97, 1154–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Yang, Z.; Yao, J.; Li, J.; Song, W.; Yang, X. Cellulose synthase-like D1 controls organ size in maize. BMC Plant Biol. 2018, 18, 239. [Google Scholar] [CrossRef] [PubMed]
- Bürstenbinder, K.; Mitra, D.; Quegwer, J. Functions of IQD proteins as hubs in cellular calcium and auxin signaling: A toolbox for shape formation and tissue-specification in plants? Plant Signal. Behav. 2017, 12, e1331198. [Google Scholar] [CrossRef]
- Chang, Y.M.; Lin, H.H.; Liu, W.Y.; Yu, C.P.; Chen, H.J.; Wartini, P.P.; Kao, Y.Y.; Wu, Y.H.; Lin, J.J.; Lu, M.Y.J.; et al. Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. Proc. Natl. Acad. Sci. USA 2019, 116, 3091–3099. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Pei, Z.; Tian, Y.; He, C. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol. Plant-Microbe Interact. 2005, 18, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Broadley, M.R.; Hammond, J.P.; King, G.J.; Astley, D.; Bowen, H.C.; Meacham, M.C.; Mead, A.; Pink, D.A.C.; Teakle, G.R.; Hayden, R.M.; et al. Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol. 2008, 146, 1707–1720. [Google Scholar] [CrossRef] [Green Version]
- López-Paz, C.; Vilela, B.; Riera, M.; Pagès, M.; Lumbreras, V. Maize AKINβγ dimerizes through the KIS/CBM domain and assembles into SnRK1 complexes. FEBS Lett. 2009, 583, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, C.; Zhou, L.; Zhao, Z.; Li, Y.; Qu, M.; Huang, K.; Zhang, L.; Lu, Y.; Cao, M.; et al. Molecular and functional characterization of the magnesium transporter gene ZmMGT12 in maize. Gene 2018, 665, 167–173. [Google Scholar] [CrossRef]
- Conn, S.J.; Conn, V.; Tyerman, S.D.; Kaiser, B.N.; Leigh, R.A.; Gilliham, M. Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol. 2011, 190, 583–594. [Google Scholar] [CrossRef]
- Muchena, S.C.; Grogan, C.O. Effects of seed size on germination of corn (Zea mays) under simulated water stress conditions. Can. J. Plant Sci. 1977, 57, 921–923. [Google Scholar] [CrossRef]
- Steiner, F.; Zuffo, A.M.; Busch, A.; De Oliveira Sousa, T.; Zoz, T. Does seed size affect the germination rate and seedling growth of peanut under salinity and water stress? Pesqui. Agropecu. Trop. 2019, 49, e54353. [Google Scholar] [CrossRef] [Green Version]
- Pereira, W.A.; Pereira, S.M.A.; dos Santos Dias, D.C.F. Influence of seed size and water restriction on germination of soybean seeds and on early development of seedlings. J. Seed Sci. 2013, 35, 316–322. [Google Scholar] [CrossRef]
- Riedelsheimer, C.; Czedik-Eysenberg, A.; Grieder, C.; Lisec, J.; Technow, F.; Sulpice, R.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat. Genet. 2012, 44, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Brauner, P.C.; Müller, D.; Schopp, P.; Böhm, J.; Bauer, E.; Schön, C.C.; Melchinger, A.E. Genomic prediction within and among doubled-haploid libraries from maize landraces. Genetics 2018, 210, 1185–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covarrubias-Pazaran, G. Genome-Assisted prediction of quantitative traits using the r package sommer. PLoS ONE 2016, 11, e0156744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Development Core Team R: A Language and Environment for Statistical Computing. R Found. Stat. Comput 2019. Available online: https://www.r-project.org (accessed on 10 January 2020).
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. 2020. R Package Version 1.3-2. Available online: https://cran.r-project.org/package=agricolae (accessed on 10 January 2020).
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Canaran, P.; Buckler, E.S.; Glaubitz, J.C.; Stein, L.; Sun, Q.; Zhao, W.; Ware, D. Panzea: An update on new content and features. Nucleic Acids Res. 2008, 36, 2007–2009. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multiocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Starmer, J.; Martin, E.R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 2008, 32, 361–369. [Google Scholar] [CrossRef]
- Gao, X.; Becker, L.C.; Becker, D.M.; Starmer, J.D.; Province, M.A. Avoiding the high bonferroni penalty in genome-wide association studies. Genet. Epidemiol. 2010, 34, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Holland, J.B. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations. Heredity (Edinb) 2017, 118, 585–593. [Google Scholar] [CrossRef]
- Andorf, C.M.; Cannon, E.K.; Portwood, J.L.; Gardiner, J.M.; Harper, L.C.; Schaeffer, M.L.; Braun, B.L.; Campbell, D.A.; Vinnakota, A.G.; Sribalusu, V.V.; et al. MaizeGDB update: New tools, data and interface for the maize model organism database. Nucleic Acids Res. 2016, 44, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Pérez, P.; De Los Campos, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014, 198, 483–495. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, P.; Gianola, D.; González-Camacho, J.M.; Crossa, J.; Manès, Y.; Dreisigacker, S. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3 Genes Genomes Genet. 2012, 2, 1595–1605. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
Trait | Treatment | Mean ± SD a | Range | σ2G | σ2GxT | σ2e | H2 |
---|---|---|---|---|---|---|---|
HKW (g) | – | 24.91 ± 4.07 | 14.68–38.40 | 14.79 | – | 1.90 | 0.96 |
FW (g) | C | 925.8 ± 267.7 a | 314.4–1492.2 | 49868 | – | 19741 | 0.88 |
WW | 540.6 ± 181.8 b | 114.1–1002.2 | 21542 | – | 10630 | 0.86 | |
DW (mg) | C | 60.29 ± 19.71 a | 13.78–106.07 | 265.00 | – | 124.10 | 0.86 |
WW | 48.57 ± 17.45 b | 11.10–87.62 | 199.00 | – | 107.40 | 0.85 | |
DMC (%) | C | 6.51 ± 1.05 b | 3.99–10.26 | 0.55 | – | 0.50 | 0.77 |
WW | 9.10 ± 1.86 a | 3.96–13.16 | 2.43 | – | 1.05 | 0.87 | |
FW (g) | Combined | 733.2 ± 297.4 | 114.1–1492.2 | 27431 | 8295 | 15135 | 0.80 |
DW (mg) | Combined | 54.44 ± 19.51 | 11.10–106.07 | 210.72 | 21.11 | 116.16 | 0.88 |
DMC (%) | Combined | 7.80 ± 1.98 | 3.96–13.16 | 0.86 | 0.63 | 0.78 | 0.66 |
FW | FWww | DW | DWww | DMC | DMCww | HKW | |
---|---|---|---|---|---|---|---|
FW | – | 0.729 *** | 0.921 *** | 0.749 *** | 0.126 | 0.117 | 0.405 *** |
FWww | 0.792 | – | 0.632 *** | 0.827 *** | −0.001 | −0.175 | 0.309 ** |
DW | 0.918 | 0.681 | – | 0.786 *** | 0.471 *** | 0.336 *** | 0.420 *** |
DWww | 0.825 | 0.827 | 0.856 | – | 0.325 *** | 0.381 *** | 0.287 ** |
DMC | 0.125 | 0.053 | 0.469 | 0.375 | – | 0.610 *** | 0.102 |
DMCww | 0.252 | −0.044 | 0.479 | 0.493 | 0.634 | – | 0.015 |
HKW | 0.399 | 0.351 | 0.367 | 0.249 | −0.043 | −0.067 | – |
Trait | Treatment | Marker | Chr. | Pos.(Mbp) | -log(p) | R2,a | SNP | -HKW b |
---|---|---|---|---|---|---|---|---|
FW | c | S2_212536183 | 2 | 219.349 | 4.003 | 4.35 | C/T | No |
FW | c | S9_108404061 | 9 | 110.992 | 4.728 | 5.32 | A/G | No |
FW | ww | S1_12465724 | 1 | 12.660 | 4.011 | 4.61 | C/T | No |
FW | ww | S10_139734834 | 2 | 17.341 | 4.938 | 5.67 | C/A | Yes |
FW | ww | S2_207355968 | 2 | 214.210 | 4.187 | 5.03 | T/C | No |
DW | c | S10_139734834 | 2 | 17.341 | 4.643 | 5.29 | C/A | No |
DW | c | S2_212536183 | 2 | 219.349 | 4.289 | 4.75 | C/T | No |
DW | c | S8_171512464 | 8 | 176.755 | 4.044 | 4.51 | C/T | No |
DW | c | S9_108404061 | 9 | 110.992 | 4.906 | 5.61 | A/G | No |
DW | c | S9_149744969 | 9 | 152.879 | 4.029 | 4.92 | G/C | No |
DW | ww | S10_139734834 | 2 | 17.341 | 5.886 | 7.01 | C/A | Yes |
DW | ww | S2_21818202 | 2 | 23.110 | 4.449 | 5.31 | G/A | No |
DW | ww | S9_14021178 | 9 | 13.709 | 4.210 | 5.14 | T/C | Yes |
DMC | c | S1_8741690 | 1 | 8.775 | 6.584 | 9.33 | C/G | – |
DMC | c | S1_34204183 | 1 | 34.541 | 4.516 | 5.93 | C/T | – |
DMC | c | S1_37203165 | 1 | 37.582 | 4.232 | 5.11 | A/G | – |
DMC | c | S1_37207054 | 1 | 37.586 | 4.518 | 5.55 | A/G | – |
DMC | c | S1_37215825 | 1 | 37.594 | 4.284 | 5.13 | A/T | – |
DMC | c | S1_101643332 | 1 | 103.985 | 4.208 | 5.17 | C/T | – |
DMC | c | S1_173422581 | 1 | 175.378 | 4.03 | 4.91 | T/C | – |
DMC | c | S1_295988910 | 1 | 301.48 | 4.401 | 5.31 | G/A | – |
DMC | c | S2_2805417 | 2 | 2.802 | 4.068 | 4.78 | T/C | – |
DMC | c | S2_6191374 | 2 | 6.146 | 4.456 | 5.35 | C/T | – |
DMC | c | S2_7183324 | 2 | 7.092 | 4.207 | 5.11 | G/A | – |
DMC | c | S3_189463222 | 3 | 192.36 | 4.461 | 5.35 | C/G | – |
DMC | c | S6_127195 | 6 | 0.177 | 4.165 | 5.18 | C/T | – |
DMC | c | S6_370986 | 6 | 0.392 | 4.096 | 4.83 | C/T | – |
DMC | c | S6_8833007 | 6 | 9.248 | 6.596 | 9.07 | G/C | – |
DMC | c | S6_95602988 | 6 | 98.45 | 6.342 | 8.41 | G/C | – |
DMC | c | S6_99136681 | 6 | 101.971 | 4.948 | 6.36 | G/A | – |
DMC | c | S7_176216182 | 7 | 181.799 | 4.097 | 4.82 | C/A | – |
DMC | ww | S1_168415551 | 1 | 170.174 | 4.081 | 4.89 | A/G | – |
DMC | ww | S6_99127885 | 6 | 101.962 | 4.403 | 5.66 | A/C | – |
DMC | ww | S6_130004982 | 6 | 134.089 | 4.300 | 5.24 | C/T | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galic, V.; Mazur, M.; Brkic, A.; Brkic, J.; Jambrovic, A.; Zdunic, Z.; Simic, D. Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings. Plants 2020, 9, 275. https://doi.org/10.3390/plants9020275
Galic V, Mazur M, Brkic A, Brkic J, Jambrovic A, Zdunic Z, Simic D. Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings. Plants. 2020; 9(2):275. https://doi.org/10.3390/plants9020275
Chicago/Turabian StyleGalic, Vlatko, Maja Mazur, Andrija Brkic, Josip Brkic, Antun Jambrovic, Zvonimir Zdunic, and Domagoj Simic. 2020. "Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings" Plants 9, no. 2: 275. https://doi.org/10.3390/plants9020275
APA StyleGalic, V., Mazur, M., Brkic, A., Brkic, J., Jambrovic, A., Zdunic, Z., & Simic, D. (2020). Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings. Plants, 9(2), 275. https://doi.org/10.3390/plants9020275