In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase
Abstract
:1. Introduction
2. Materials and Methods
3. Data Analysis
4. Results and Discussion
5. Acclimatization
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Padulosi, S.; Hodgkin, T.; Williams, J.T.; Haq, N. Underutilised crops: Trends, challenges and opportunities in the 21st Century. In Managing Plant Genetic Diversity; Engels, J., Rao, V.R., Jackson, M., Eds.; CAB International: Wallingford, UK, 2002; pp. 323–338. [Google Scholar]
- Levizou, E.; Drilias, P.; Kyparissis, A. Exceptional photosynthetic performance of Capparis spinosa L. under adverse conditions of Mediterranean summer. Photosynthetica 2004, 42, 229–235. [Google Scholar] [CrossRef]
- Gruère, G.P.; Giuliani, A.; Smale, M. Marketing Underutilized Plant Species for the Benefit of the Poor: A Conceptual Frame Work. IFPRI Environmental and Protection Technology EPT 2006, Discussion Paper No. 154. Available online: http://ssrn.com/abstract=916572 (accessed on 9 October 2019).
- Sozzi, G.O. Caper bush: Botany and Horticulture. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons: Hoboken, New Jersey, USA, 2001; Volume 27, pp. 125–188. ISBN 9780471387909. [Google Scholar]
- Lozano Puche, J. El alcaparro. In Publicaciones de Extension Agraria; Ministerio de Agricultura: Madrid, Spain, 1977; HD 19. [Google Scholar]
- Neyisci, T. A study on the slow burning plant species suitable for controlling forest fires’ (summary in English). Turk. J. Agric. For. 1987, 11, 595–604. [Google Scholar]
- Barbera, G.; Di Lorenzo, R.; Barone, E. Observations on Capparis populations cultivated in Sicily and on their vegetative and productive behaviour. Agric. Mediterr. 1991, 121, 32–39. [Google Scholar]
- Ramezani-Gask, M.; Bahrani, M.; Shekafandeh, A. A comparison of different propagation methods of common Caper-bush (Capparis spinosa L.) as a new horticultural crop. Int. J. Plant Dev. 2008, 2, 106–110. [Google Scholar]
- Sozzi, G.O.; Peter, K.V.; Nirmal Babu, K.; Divakaran, M. Capers and caperberries. In Handbook of Herbs and Spices: Second Edition; Peter, K.V., Ed.; Woodhead: Abington Cambridge, UK, 2012; Volume 2, pp. 193–224. ISBN 9780857095688. [Google Scholar]
- Barbera, G. Le Caprier (Capparis spp.); EUR 13617; Commission des Communautés Européennes: Luxembourg, 1991; ISBN 92-826-2978-3. [Google Scholar]
- Barbera, G.; Di Lorenzo, R. The Caper culture in Italy. Acta Hortic. 1984, 144, 167–171. [Google Scholar] [CrossRef]
- Hare, K.; Mahdi, A.; Dhurendra, S.; Udayvir, S.; Nitesh, C.; Maliheh, E.; Radha, K.S. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech. 2016, 6, 54. [Google Scholar]
- Ancora, G.; Cuozzo, L. In vitro propagation of caper (Capparis spinosa L.). In Proceedings of the XXVIII Convegno della S.I.G. A, Bracciano, Italy, 3–5 October; 1984. [Google Scholar]
- Rodriguez, R.; Rey, M. In vitro propagation of caper (Capparis spinosa L.). In Vitro Cell. Dev. Biol. Plant 1990, 26, 531–536. [Google Scholar] [CrossRef]
- Deora, N.S.; Shekhawat, N.S. Micropropagation of Capparis decidua (Forsk.) Edgew—A tree of arid horticulture. Plant Cell Rep. 1995, 15, 278–281. [Google Scholar] [CrossRef]
- Tyagi, P.; Kothari, S.L. Micropropagation of Capparis decidua through in vitro shoot proliferation on nodal explants of mature tree and seedling explants. J. Plant Biochem. Biotechnol. 1997, 6, 19–23. [Google Scholar] [CrossRef]
- Ben Salem, A.; Zemni, H.; Ghorbel, A. Propagation of caper (Capparis spinosa L.) by herbaceous cuttings and in vitro culture. Agric. Mediterr. 2001, 131, 42–48. [Google Scholar]
- Chalak, L.; Elbitar, A. Micropropagation of Capparis spinosa L. subsp. Rupestris Sibth. & Sm. by nodal cuttings. Indian J. Biotechnol. 2006, 5, 555–558. [Google Scholar]
- Al-Safadi, B.; Elias, R. Improvement of caper (Capparis spinosa L.) propagation using in vitro culture and gamma irradiation. Sci. Hortic. 2011, 127, 290–297. [Google Scholar] [CrossRef]
- Hegazi, G.A.; Eid, S.R.; El, A.; Sharaf, M.M.; Unit, T.C. Micropropagation for conservation of two rare Capparis species from Egypt 1. Catrina 2011, 6, 29–39. [Google Scholar]
- Musallam, I.; Duwayri, M.; Shibli, R. Micropropagation of caper (Capparis spinosa L.) from wild plants. Funct. Plant Sci. Biotechnol. 2011, 5, 17–21. [Google Scholar]
- Al-Mahmood, H.J. Clonal propagation and medium-term conservation of Capparis spinosa: A medicinal plant. J. Med. Plants Res. 2012, 6, 3826–3836. [Google Scholar]
- Carra, A.; Del Signore, M.B.; Sottile, F.; Ricci, A.; Carimi, F. Potential use of new diphenylurea derivatives in micropropagation of Capparis spinosa L. Plant Growth Regul. 2012, 66, 229–237. [Google Scholar] [CrossRef]
- Carra, A.; Sajeva, M.; Abbate, L.; Siragusa, M.; Sottile, F.; Carimi, F. In vitro Plant regeneration of caper (Capparis spinosa) from floral explants and genetic stability of regenerants. Plant Cell Tissue Organ Cult. 2012, 109, 373–381. [Google Scholar] [CrossRef]
- Kereša, S.; Stanković, D.; Batelja Lodeta, K.; Habuš Jerčić, I.; Bolarić, S.; Barić, M.; Bošnjak Mihovilović, A. Efficient Protocol for the In Vitro Plantlet Production of Caper (Capparis orientalis Veill.) from the East Adriatic Coast. Agronomy 2019, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, L.; Bertell, G.; Bolander, E. Inhibitory Action of Auxin on Root Elongation Not Mediated by Ethylene. Plant Physiol. 1989, 91, 310–314. [Google Scholar] [CrossRef]
- Gianguzzi, V.; Inglese, P.; Barone, E.; Sottile, F. In Vitro Regeneration of Capparis spinosa L. by Using a Temporary Immersion System. Plants 2019, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Caglar, G.; Caglar, S.; Ergin, O.; Yarim, M. The influence of growth regulators on shoot proliferation and rooting of in vitro propagated caper. J. Environ. Biol. 2005, 26, 479–485. [Google Scholar] [PubMed]
- Tian, X.-X.; Jiang, C.-Q.; Chen, X.-Y.; Qu, S.; Yang, W.-S. Studies on the tissue culture of axillary bud and rapid propagation in the Capparis spinosa (Abstract). For. Res. 2009, 22, 521–525. [Google Scholar]
- Attia, A.O.; Dessoky, E.D.S.; Al-Sodany, Y.M.; Ismail, I.A. Ex situ preservation for some endemic and rare medicinal plants in Taif, KSA. Biotechnol. Biotechnol. Equip. 2017, 31, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, P.; Khanduja, S.; Kothari, S.L. In vitro culture of Capparis decidua and assessment of clonal fidelity of the regenerated plants. Biol. Plant. 2010, 54, 126–130. [Google Scholar] [CrossRef]
- Ainsley, P.J.; Collins, G.G.; Sedgley, M. In vitro rooting of almond (Prunus dulcis Mill.). In Vitro Cell. Dev. Biol. Plant 2001, 37, 778–785. [Google Scholar] [CrossRef]
- Marín, J.A.; García, E.; Lorente, P.; Andreu, P.; Arbeloa, A. A novel approach for propagation of recalcitrant pistachio cultivars that sidesteps rooting by ex vitro grafting of tissue cultured shoot tips. Plant Cell Tissue Organ Cult. 2016, 124, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jiménez, M.; Carrillo-Navarro, A.; Cos-Terrer, J. Regeneration of peach (Prunus persica L. Batsch) cultivars and Prunus persica x Prunus dulcis rootstocks via organogenesis. Plant Cell Tissue Organ Cult. 2012, 108, 55–62. [Google Scholar] [CrossRef]
- Gentile, A.; Jàquez Gutiérrez, M.; Martinez, J.; Frattarelli, A.; Nota, P.; Caboni, E. Effect of meta-Topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell Tissue Organ Cult. 2014, 118, 373–381. [Google Scholar] [CrossRef]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Plant Propagation Principles and Practices, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Fici, S. A taxonomic revision of the Capparis spinosa group (Capparaceae) from eastern Africa to Oceania. Phytotaxa 2015, 203, 24–36. [Google Scholar] [CrossRef]
- Fici, S.; Gianguzzi, L. Diversity and conservation in wild and cultivated Capparis in Sicily. Bocconea 1997, 7, 437–443. [Google Scholar]
- Gristina, A.S.; Fici, S.; Siragusa, M.; Fontana, I.; Garfì, G.; Carimi, F. Hybridization in Capparis spinosa L.: Molecular and morphological evidence from a Mediterranean island complex. Flora Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 733–741. [Google Scholar] [CrossRef]
Medium | Auxin | Carbon Source | |||
---|---|---|---|---|---|
NAA mg L−1 | IAA mg L−1 | IBA mg L−1 | Sucrose g/L−1 | Fructose g/L−1 | |
MSuC | 0 | 0 | 0 | 30 | 0 |
MFrC | 0 | 0 | 0 | 0 | 30 |
MSuN1 | 1 | 0 | 0 | 30 | 0 |
MSuN2 | 2 | 0 | 0 | 30 | 0 |
MSuA1 | 0 | 1 | 0 | 30 | 0 |
MSuA2 | 0 | 2 | 0 | 30 | 0 |
MSuB1 | 0 | 0 | 1 | 30 | 0 |
MSuB2 | 0 | 0 | 2 | 30 | 0 |
MFrN1 | 1 | 0 | 0 | 0 | 30 |
MFrN2 | 2 | 0 | 0 | 0 | 30 |
MFrA1 | 0 | 1 | 0 | 0 | 30 |
MFrA2 | 0 | 2 | 0 | 0 | 30 |
MFrB1 | 0 | 0 | 1 | 0 | 30 |
MFrB2 | 0 | 0 | 2 | 0 | 30 |
MSuN-B | 0,75 | 0,25 | 0 | 30 | 0 |
MFrN-B | 0,75 | 0,25 | 0 | 0 | 30 |
Accession | Medium | Liquid | Solid | ||||
---|---|---|---|---|---|---|---|
Rooting (%) | Roots Per Shoot (n°) | Root Length (cm) | Rooting (%) | Roots Per Shoot (n°) | Root Length (cm) | ||
‘Sal 39’ | MSuC | 43 ± 0.5 b | 3.0 ± 0.3 ab | 0.8 ± 0.1 b | 24 ± 0.3 a | 1.7 ± 0.2 a | 0.64 ± 0.1 a |
MSuN1 | 36 ± 0.4 b | 2.5 ± 0.3 b | 0.7 ± 0.1 c | 19 ± 0.4 b | 1.3 ± 0.2 b | 0.58 ± 0.0 b | |
MSuN2 | 57± 0.3 a | 4.0 ± 0.2 a | 1.1 ± 0.1 a | 29 ± 0.2 a | 2.0 ± 0.1 a | 0.75 ± 0.1 a | |
MSuA1 | 24 ± 0.4 c | 1.7 ± 0.2 c | 0.6 ± 0.1 d | 12 ± 0.2 c | 0.8 ± 0.1 c | 0.50 ± 0.0 c | |
MSuA2 | 10 ± 0.4 e | 0.7 ± 0.1 e | 0.4 ± 0.1 e | 5 ± 0.5 d | 0.3 ± 0.1 c | 0.34 ± 0.0 e | |
MSuB1 | 14 ± 0.4 d | 1.0 ± 0.1 d | 0.6 ± 0.0 d | 7 ± 0.3 d | 0.5 ± 0.1 c | 0.45 ± 0.0 d | |
MSuB2 | 26 ± 0.7 c | 1.8 ± 0.3 c | 0.7 ± 0.1 c | 10 ± 0.2 c | 0.7 ± 0.1 c | 0.49 ± 0.0 c | |
‘Sal 37’ | MSuC | 12 ± 0.3 b | 0.8 ± 0.1 b | 0.6 ± 0.0 c | 7 ± 0.3 b | 0.5 ± 0.1 b | 0.37 ± 0.0 b |
MSuN1 | 10 ± 0.4 b | 0.7 ± 0.1 c | 0.7 ± 0.1 b | 0 | 0 | 0 | |
MSuN2 | 17 ± 0.4 a | 1.2 ± 0.2 a | 0.9 ± 0.1 a | 12 ± 0.3 a | 0.8 ± 0.1 a | 0.67 ± 0.05 a | |
MSuA1 | 0 | 0 | 0 | 0 | 0 | 0 | |
MSuA2 | 0 | 0 | 0 | 0 | 0 | 0 | |
MSuB1 | 0 | 0 | 0 | 0 | 0 | 0 | |
MSuB2 | 0 | 0 | 0 | 0 | 0 | 0 | |
‘Sal 35’ | MSuC | 5 ± 0.4 b | 0.3 ± 0.1 b | 0.1 ± 0.0 c | 2 ± 0.4 b | 0.17 ± 0.1 b | 0.24 ± 0.03 b |
MSuN1 | 2 ± 0.4 b | 0.2 ± 0.1 c | 0.4 ± 0.0 b | 0 | 0 | 0 | |
MSuN2 | 7 ± 0.5 a | 0.5 ± 0.1 a | 0.6 ± 0.1 a | 5 ± 0.4 a | 0.3 ± 0.1 a | 0.43 ± 0.05 a | |
MSuA1 | 0 | 0 | 0 | 0 | 0 | 0 | |
MSuA2 | 0 | 0 | 0 | 0 | 0 | 0 | |
MSuB1 | 0 | 0 | 0 | 0 | 0 | 0 | |
MSuB2 | 0 | 0 | 0 | 0 | 0 | 0 |
Accession | Medium | Liquid | Solid | ||||
---|---|---|---|---|---|---|---|
Rooting (%) | Rootsper Shoot (n°) | Rootlength (cm) | Rooting (%) | Roots Per Shoot (n°) | Root Length (cm) | ||
‘Sal 39’ | MFrC | 21 ± 0.6 b | 2.2 ± 0.2 b | 0.86 ± 0.07 a | 17 ± 0.3 b | 1.5 ± 0.2 a | 0.42 ± 0.05 a |
MFrN1 | 24 ± 0.7 b | 2.7 ± 0.4 a | 0.80 ± 0.05 b | 19 ± 0.3 b | 1.2 ± 0.1 b | 0.39 ± 0.05 b | |
MFrN2 | 38 ± 0.6 a | 3 ± 0.3 a | 0.87 ± 0.05 a | 29 ± 0.2 a | 1.8 ± 0.2 a | 0.44 ± 0.05 a | |
MFrA1 | 10 ± 0.8 d | 0.7 ± 0.3 d | 0.46 ± 0.06 d | 12 ± 0.3c | 0.5 ± 0.1 c | 0.24 ± 0.05 d | |
MFrA2 | 14 ± 0.5 c | 1 ± 0.2 c | 0.44 ± 0.05 d | 17 ± 0.3 b | 0.7 ± 0.1 c | 0.34 ± 0.06 c | |
MFrB1 | 2 ± 0.4 e | 0.2 ± 0.1 e | 0.40 ± 0.04 e | 5 ± 0.3 d | 0.2 ± 0.1 d | 0.11 ± 0.04 e | |
MFrB2 | 5 ± 0.4 e | 0.3 ± 0.1 e | 0.58 ± 0.08 c | 7 ± 0.3 d | 0.5 ± 0.1 c | 0.29 ± 0.04 d | |
‘Sal 37’ | MFrC | 2 ± 0.4 d | 1 ± 0.2 b | 0.52 ± 0.05 a | 14 ± 0.5 b | 0.8 ± 0.1 c | 0.35 ± 0.05 a |
MFrN1 | 10 ± 0.4 b | 0.7 ± 0.1 c | 0.40 ± 0.06 b | 7 ± 0.3 d | 0.3 ± 0.1 e | 0.28 ± 0.04 b | |
MFrN2 | 26 ± 0.8 a | 1.8 ± 0.3 a | 0.54 ± 0.04 a | 19 ± 0.5 a | 1.5 ± 0.2 a | 0.38 ± 0.04 a | |
MFrA1 | 12 ± 0.5 b | 0.8 ± 0.1 c | 0.39 ± 0.03 c | 5 ± 0.4 d | 0.5 ± 0.2 d | 0.29 ± 0.03 b | |
MFrA2 | 7 ± 0.5 c | 1.5 ± 0.2 a | 0.43 ± 0.05 b | 12 ± 0.4 c | 1 ± 0.2 b | 0.20 ± 0.04 c | |
MFrB1 | 2 ± 0.4 d | 0.3 ± 0.1 d | 0.36 ± 0.03 c | 0 | 0 | 0 | |
MFrB2 | 0 | 0 | 0 | 0 | 0 | 0 | |
‘Sal 35’ | MFrC | 0 | 0 | 0 | 0 | 0 | 0 |
MFrN1 | 0 | 0 | 0 | 0 | 0 | 0 | |
MFrN2 | 0 | 0 | 0 | 0 | 0 | 0 | |
MFrA1 | 0 | 0 | 0 | 0 | 0 | 0 | |
MFrA2 | 0 | 0 | 0 | 0 | 0 | 0 | |
MFrB1 | 0 | 0 | 0 | 0 | 0 | 0 | |
MFrB2 | 0 | 0 | 0 | 0 | 0 | 0 |
Accession | Medium | Liquid | Solid | ||||
---|---|---|---|---|---|---|---|
Rooting (%) | Roots Per Shoot (n°) | Root Length (cm) | Rooting (%) | Roots Per Shoot (n°) | Root Length (cm) | ||
‘Sal 39’ | MSuC | 36 ± 0.3 ns | 2.3 ± 0.2 ns | 0.5 ± 0.06 ns | 12 ± 0.1 ns | 1.4 ± 0.4 ns | 0.30 ± 0.1 ns |
MSuN-B | 67 ± 0.3 * | 4.1 ± 0.2 * | 0.9 ± 0.07* | 17 ± 0.2 * | 2.7 ± 0.2 * | 0.70 ± 0.08 * | |
‘Sal 37’ | MSuC | 14 ± 0.1 ns | 1 ± 0.3 ns | 0.4 ± 0.07 ns | 7 ± 0.1 ns | 0.6 ± 0.2 ns | 0.40 ± 0.07 ns |
MSuN-B | 19 ± 0.2 * | 1.9 ± 0.3 * | 0.8 ± 0.08* | 10 ± 0.1 * | 1.1 ± 0.3 * | 0.60 ± 0.08 * | |
‘Sal 35’ | MSuC | 10 ± 0.1 ns | 0.1 ± 0.05 ns | 0.1 ± 0.04 ns | 5 ± 0.1 ns | 0.20 ± 0.1 ns | 0.10 ± 0.04 ns |
MSuN-B | 14 ± 0.2 * | 0.3 ± 0.2 * | 0.4 ± 0.08 * | 12 ± 0.2 * | 0.20 ± 0.1 ns | 0.20 ± 0.05* |
Accession | Medium | Liquid | Solid | ||||
---|---|---|---|---|---|---|---|
Rooting (%) | Roots Per Shoot (no.) | Root Length (cm) | Rooting (%) | Roots Per Shoot (no.) | Root Length (cm) | ||
‘Sal 39’ | MFrC | 33 ± 0.5 * | 2.6 ± 0.6 ns | 0.68 ± 0.05 ns | 7 ± 0.5 ns | 0.9 ± 0.2 ns | 0.24 ± 0.03ns |
MFrN-B | 21 ± 0.5 ns | 3.2 ± 0.5 * | 0.77 ± 0.06 * | 14 ± 0.4 * | 1.4 ± 0.3 * | 0.35 ± 0.06 * | |
‘Sal 37’ | MFrC | 7 ± 0.5 * | 1.3 ± 0.3 ns | 0.57 ± 0.02 * | 2 ± 0.4 ns | 0.5 ± 0.3 ns | 0.21 ± 0.04ns |
MFrN-B | 5 ± 0.4 ns | 1.5 ± 0.3 * | 0.47 ± 0.06 ns | 10 ± 0.4 * | 0.7 ± 0.2 * | 0.27 ± 0.04 * | |
‘Sal 35’ | MFrC | 5 ± 0.4 ns | 0.7 ± 0.2 ns | 0.21 ± 0.04 ns | 0 | 0 | 0 |
MFrN-B | 0 | 0 | 0 | 0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gianguzzi, V.; Barone, E.; Sottile, F. In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase. Plants 2020, 9, 398. https://doi.org/10.3390/plants9030398
Gianguzzi V, Barone E, Sottile F. In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase. Plants. 2020; 9(3):398. https://doi.org/10.3390/plants9030398
Chicago/Turabian StyleGianguzzi, Valeria, Ettore Barone, and Francesco Sottile. 2020. "In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase" Plants 9, no. 3: 398. https://doi.org/10.3390/plants9030398
APA StyleGianguzzi, V., Barone, E., & Sottile, F. (2020). In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase. Plants, 9(3), 398. https://doi.org/10.3390/plants9030398