Macro- and Micronutrients from Traditional Food Plants Could Improve Nutrition and Reduce Non-Communicable Diseases of Islanders on Atolls in the South Pacific
Abstract
:1. Introduction
1.1. Epidemic of Non-Communicable Diseases (NCDs)
1.2. The Special Case of Atolls
1.3. Why Leafy Plants?
1.4. Project Objective and Strategy
- A survey of mineral nutrients in local leafy food plants collected in Kiribati and Tuvalu.
- Assessment of plants for overall nutritional content, taste, and adaptation, in particular their tolerance of drought, soil salinity, and soil alkalinity, which characterize atolls, especially those of the Southern Gilbert Islands.
- Production of a factsheet series to promote the most suitable leafy food plants for atolls.
- Collaboration with the UN International Fund for Agricultural Development (IFAD)’s Outer Islands Food and Water Project, together with agriculture, health, and education officers in Kiribati and Tuvalu, to facilitate supply of planting material and participate in workshops and school talks.
2. Results and Discussion
2.1. G x E Study
2.2. Natural Biofortifiers with Variability in Micronutrient Efficiency
2.3. Factsheets
2.4. Medicinal Effects
2.5. Mineral Deficiencies of Atoll Food Plants
2.6. Giant Swamp Taro Food Garden
2.7. How to Eat these Nutritious Vegetables
2.8. Awareness Program and Planting Material Provision
3. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lyons, G.; Goebel, R.; Tikai, P.; Stanley, K.-J.; Taylor, M. Promoting nutritious leafy vegetables in the Pacific and northern Australia. Acta Hortic. 2015, 1102, 253–260. [Google Scholar] [CrossRef]
- Taylor, M.; Kambuou, R.; Lyons, G.; Hunter, D.; Morgan, E.; Quartermain, A.; Robert, N.; Paofa, J.; Lorens, A.; Tuia, V. Realizing the potential of indigenous vegetables through improved germplasm information and seed systems. Acta Hortic. 2015, 1102, 29–42. [Google Scholar] [CrossRef]
- Bakineti, T.; Kiata, R. Hunger Pangs Lead to Health Complaints. News-Outer Island Food and Water Project. 2017. Available online: www.oifwpkiribati.org.ki/news (accessed on 15 December 2019).
- SPC (The Pacific Community). NCD Statistics for the Pacific Islands Countries and Territories; SPC (The Pacific Community): Noumea, New Caledonia, 2010. [Google Scholar]
- World Bank. NCD Roadmap Report. In A Background Document on Preventing and Controlling NCDs in the Pacific. Circulated in June 2014 for Consideration by the Joint Forum Economic and Pacific Health Ministers’ Meeting, July 2014; World Bank: Washington DC, USA, 2014. [Google Scholar]
- WHO. Pacific Islanders pay heavy price for abandoning traditional diet. Bull. World Health Organ. 2004, 88, 484–485. [Google Scholar]
- Grieve, H.; Busch-Hallen, J.; Mellor, K. Undernutrition in Pacific Island Countries: An Issue Requiring Further Attention; Women’s and Children’s Health Knowledge Hub. Policy Brief; May 2013. Cited in Development Bulletin 78, August 2017. Urban Development in the Pacific; Thomas, P., Keen, M., Eds.; Australian National University: Canberra, Australia.
- Goris, J.; Zomerdijk, N.; Temple, V. Nutritional status and dietary diversity of Kamea in the Gulf Province, Papua New Guinea. Asia Pac. J. Clin. Nutr. 2017, 26, 665–670. [Google Scholar] [PubMed]
- O’Meara, L.; Williams, S.; Hickes, D.; Brown, P. Predictors of dietary diversity of indigenous food-producing households in rural Fiji. Nutrients 2019, 11, 1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taki, B. Underutilized and wild indigenous food plants of Makira Ulawa Province. Record No. 51532; SPC (The Pacific Community): Noumea, New Caledonia, 2010. [Google Scholar]
- Ebert, A. Potential of underutilized traditional vegetables and legume crops to contribute to food and nutrition security, income and more sustainable production systems. Sustainability 2014, 6, 319–335. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.; Taylor, M. Building Climate-Resilient Food Systems for Pacific Islands; WorldFish Program Report; WorldFish: Penang, Malaysia, 2015; p. 15. [Google Scholar]
- Taylor, M.; Jaenicke, H.; Hunter, D.; McGregor, A.; Lyons, G. Diversity for sustaining livelihoods: Examples, constraints and lessons learnt. Acta Hortic. 2015, 1101, 16. [Google Scholar] [CrossRef]
- Bowden-Kerby, A. Agriculture and Marine Resources in a Changing Climate: Finding a Way Forward for the Line Islands, Kiribati. Technical Report. Corals for Conservation. 2017. Available online: https://www.researchgate.net/publication/318836638 (accessed on 17 December 2019).
- SPC (The Pacific Community). Towards a Food Secure Pacific. Framework for Action on Food Security in the Pacific 2011–2015; SPC Land Resources Division: Suva, Fiji, 2011. [Google Scholar]
- Halavatau, S. Growing Root Crops on Atolls; SPC: Suva, Fiji, 2018. [Google Scholar]
- O’Sullivan, J.; Asher, C.; Blamey, F. Nutritional Disorders of Sweet Potato. ACIAR Monograph No. 48; Australian Centre for International Research: Canberra, Australia, 1997.
- Duque, L.; Villordon, A. Root branching and nutrient efficiency: Status and way forward in root and tuber crops. Front. Plant Sci. 2019, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.M. The Leaves We Eat. SPC Handbook No. 31; South Pacific Commission: Noumea, New Caledonia, 1992. [Google Scholar]
- Thaman, R. Batiri Kei Baravi: The Ethnobotany of Pacific Island Coastal Plants. In Atoll Research Bulletin No. 361; National Museum of Natural History: Washington, DC, USA, 1992. [Google Scholar]
- Webb, A.P. Tree and Perennial Crop Introduction and Extension in Kiribati 1991–1994; Kiribati Ministry of the Environment and Natural Resources Development: Tarawa, Kiribati, 1994.
- French, B.R. Leafy Greens and Vegetables in Solomon Islands; Food Plants International: Devonport, Australia, 2010; Available online: www.b4fn.org/resources/publications/ (accessed on 8 April 2020).
- Goebel, R.; Taylor, M.; Lyons, G. Feasibility Study on Increasing the Consumption of Nutritionally-Rich Leafy Vegetables by Indigenous Communities in Samoa, Solomon Islands and Northern Australia; Factsheet Series; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2013. Available online: www.remoteindigenousgardens.net>2013/08>new-resources-fact-sheets (accessed on 10 January 2020).
- Oomen, H.; Grubben, G. Tropical Leaf Vegetables in Human Nutrition; Royal Tropical Institute: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Dignan, C.; Burlingame, B.; Kumar, S.; Aalbersberg, W. The Pacific Islands Food Composition Tables, 2nd ed.; Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2004. [Google Scholar]
- FAO. African Leafy Vegetables in Kenya: Local Biodiversity in Production, Marketing and Consumption; FAO: Rome, Italy, 2011. [Google Scholar]
- Keatinge, J.D.; Yang, R.-Y.; Hughes, J.; Easdown, W.; Holmer, R. The importance of vegetables in ensuring both food and nutritional security in attainment of the Millennium development Goals. Food Secur. 2011, 3, 491–501. [Google Scholar] [CrossRef]
- SPC (The Pacific Community). Green Leaves Leaflet No. 8; SPC: Noumea, New Caledonia, 2012. [Google Scholar]
- Lyons, G.; Dean, G.; Goebel, R.; Taylor, M.; Kiata, R.; Tongaiaba, R. Tackling NCDs from the Ground up: Nutritious Leafy Vegetables to Improve Nutrition Security on Pacific Atolls; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2018. Available online: www.researchgate.net>publication>327261351_Tackling_NCDs_from_the_ground_up_Nutritious_leafy_vegetables_to_improve_nutrition_security_on_atolls (accessed on 10 March 2020).
- IFAD (United Nations International Fund for Agricultural Development). Outer Islands Food and Water Project. Kiribati IFAD Newsletter Q1. 2017. Available online: www.oifwpkiribati.org.ki (accessed on 15 March 2020).
- Islam, M.S.; Yoshimoto, M.; Yahara, S.; Okuno, S.; Ishiguro, K.; Yamakawa, O. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes. J. Agric. Food Chem. 2002, 50, 3718–3722. [Google Scholar] [CrossRef]
- Bertrand-Protat, S. Edible Leaves of the Pacific; The Pacific Community (SPC): Noumea, New Caledonia, 2019. [Google Scholar]
- Sogbohossou, E.; Achigan-Dako, E.; Maundu, P.; Solberg, S.; Deguenon, E.; Mumm, R.; Hale, I.; Van Deynze, A.; Schranz, M. A roadmap for breeding orphan leafy vegetable species: A case study of Gynandropsis gynandra (Cleomaceae). Hortic. Res. 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, M. The challenge to reach nutritional adequacy for vitamin A: B-carotene bioavailability and conversion—Evidence in humans. Am. J. Clin. Nutr. 2012, 96, 1193S–1203S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Aal, E.S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbikay, M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front. Pharm. 2012, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matic, I.; Guidi, A.; Keenzo, M.; Mattei, M.; Galgani, A. Investigation of medicinal plants traditionally used as dietary supplements: A review on Moringa oleifera. J. Public Health Afr. 2018, 9, 841. [Google Scholar] [CrossRef]
- Ahmad, J.; Khan, I.; Blundell, R. Moringa oleifera and glycemic control: A review of current evidence and possible mechanisms. Phytother. Res. 2019, 33, 2841–2848. [Google Scholar] [CrossRef]
- Oyagbemi, A.; Odetola, A.; Azeez, O. Antidiabetic properties of ethanolic extract of Cnidoscolus aconitifolius on alloxan induced diabetes mellitus in rats. Afr. J. Med. Sci. 2010, 39, S171–S178. [Google Scholar]
- Ajiboye, B.; Oyinloye, B.; Agboinghale, P.; Ojo, A. Cnidoscolus aconitifolius (Mill.) I.M. Johnst leaf extract prevents oxidative hepatic injury and improves muscle glucose uptake ex vivo. J. Food Biochem. 2019, 43, e13065. [Google Scholar] [CrossRef]
- Baxter, I.; Dilkes, B. Elemental profiles reflect plant adaptations to the environment. Science 2012, 336, 1661–1663. [Google Scholar] [CrossRef] [Green Version]
- Abilgos-Ramos, R.; Mamucod, H.; Corpuz, G. Chili pepper leaves as alternative source of micronutrients. Philipp. J. Crop Sci. 2012, 37 (Suppl. 1), 139. [Google Scholar]
- Sharma, D.; Rawat, I.; Goel, H. Anticancer and anti-inflammatory activity of some dietary cucurbits. Ind. J. Exp. Biol. 2015, 53, 216–221. [Google Scholar]
- Petropoulos, S.; Fernandes, A.; Dias, M.; Vasilakoglou, I.; Petrotos, K.; Barros, L.; Ferreira, I. Nutritional value, chemical composition and cytotoxic properties of common purslane (Portulaca oleracea L.) in relation to harvesting stage and plant part. Antiox 2019, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, D.; Robinson, J. Plant Analysis: An Interpretation Manual, 2nd ed.; CSIRO Publishing: Melbourne, Australia, 1997. [Google Scholar]
- Marschner, H. Mineral Nutrition of Plants, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Kuti, J.; Torres, E. Potential nutritional and health benefits of tree spinach. In Progress in New Crops; Janick, J., Ed.; ASHS Press: Arlington, WV, USA, 1996; pp. 516–520. [Google Scholar]
- Oyagbemi, A.; Odetola, A. Hepatoprotective and nephroprotective effects of Cnidoscolus aconitifolius in protein energy malnutrition induced liver and kidney damage. Pharmacogn. Res. 2013, 5, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Kou, X.; Li, B.; Olayanju, J.; Drake, J.; Chen, N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients 2018, 10, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puel, C.; Mathey, J.; Kati-Coulibaly, S.; Davicco, M.; Lebecque, P.; Chanteranne, B.; Horcajada, M.; Coxam, V. Preventive effect of Abelmoschus manihot (L.) Medik. On bone loss in the ovariectomised rats. J. Ethnopharmacol. 2005, 99, 55–60. [Google Scholar] [CrossRef]
- Walter, A.; Lebot, V. Garden of Oceania. Monograph No. 122; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2007; ISBN 1863204709.
- Inu, M. Pharmacognostical profile of selected medicinal plants. In Handbook of African Medicinal Plants; CRC Press: London, UK, 2014. [Google Scholar]
- Sulistiawati, Y.; Suwondo, A.; Hardjanti, T.; Soejoenoes, A.; Anwar, M.C.; Susiloretni, K. Effect of Moringa oleifera on level of prolactin and breast milk production in postpartum mothers. Belitung Nurs. J. 2017, 3, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Kumssa, D.; Joy, E.; Young, S.; Odee, D.; Ander, E.; Broadley, M. Variation in the mineral element concentration of Moringa oleifera Lam. And M. stenopetala (Bak. F.) Cuf.: Role in human nutrition. PLoS ONE 2017, 12, e0175503. [Google Scholar] [CrossRef] [Green Version]
- Chilimba, A.; Young, S.; Black, C.; Rogerson, K.; Ander, E.; Watts, M. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci. Rep. 2011, 1. [Google Scholar] [CrossRef]
- Christophersen, O.A.; Lyons, G.; Haug, A.; Steinnes, E. Selenium (Ch 16). In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 429–463. [Google Scholar]
- Joy, E.; Broadley, M.; Young, S.; Black, C.; Chilimba, A.; Ander, E.; Barlow, T.; Watts, M. Soil type influences crop mineral composition in Malawi. Sci. Total Environ. 2015, 505, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Lyons, G.; Gondwe, C.; Banuelos, G.S.; Zambrano, M.C.; Haug, A.; Christophersen, O.A. Selenium in the Environment and Human Health; Banuelos, G., Lin, Z.-Y., Eds.; Taylor and Francis Group: London, UK, 2014; pp. 91–92. [Google Scholar]
- Leone, A.; Bertoli, S.; Di Lello, S.; Bassoli, A.; Ravasenghi, S.; Borgonovo, G.; Forlani, F.; Battezzati, A. Effect of Moringa oleifera leaf powder on postprandial blood glucose response: In vivo study on Saharawi people living in refugee camps. Nutrients 2018, 10, 1494. [Google Scholar] [CrossRef] [Green Version]
- Girija, K.; Lakshman, K.; Udaya, C.; Sabhya, S.; Divya, T. Anti-diabetic and anti-cholesterolemic activity of methanol extracts of three species of Amaranthus. Asian Pac. J. Trop. Biomed. 2011, 1, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Ashok Kumar, B.; Lakshman, K.; Jayaveea, K.; Shekar, D.; Khan, S.; Thippeswami, B.; Veerapur, V. Antidiabetic, antihyperlipidemic and antioxidant activities of methanolic extract of Amaranthus viridis Linn. In alloxan induced diabetic rats. Exp. Toxicol. Pathol. 2012, 64, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Nawale, R.; Mate, G.; Wakure, B. Ethanolic extract of Amaranthus paniculatus Linn. Ameliorates diabetes-associated complications in alloxan-induced diabetic rats. Integr. Med. Res. 2017, 6, 41–46. [Google Scholar] [CrossRef]
- Yu, J.; Xiong, N.; Guo, H. Clinical observation on diabetic nephropathy treated with alcohol of Abelmoschus manihot. Zhongguo Zhong Xi Yi Jie He Za Zhi 1995, 15, 263–265. [Google Scholar] [PubMed]
- Chen, Y.; Gong, Z.; Cai, G.; Gao, Q.; Chen, X.; Tang, L.; Wei, R.; Zhou, J. Efficacy and safety of Flos Abelmoschus manihot (malvaceae) on type 2 diabetic nephropathy: A systematic review. Clin. J. Integr. Med. 2015, 21, 464–472. [Google Scholar] [CrossRef]
- Kim, H.; Dusabimana, T.; Kim, S.; Je, J.; Jeong, K.; Kang, M.; Cho, K.; Kim, H.; Park, S. Supplementation of Abelmoschus manihot ameliorates diabetic nephropathy and hepatic steatosis by activating autophagy in mice. Nutrients 2018, 10, 1703. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Qin, Y.; Wang, L. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin. Nutr. 2016, 35, 388–393. [Google Scholar] [CrossRef]
- Sonati, S.; Razavi, B.; Hosseinzadeh, H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J. Basic Med. Sci. 2018, 21, 439–448. [Google Scholar]
- Ungurianu, A.; Seremet, O.; Gagniuc, E. Preclinical and clinical results regarding the effects of a plant-based antidiabetes formulation versus well established antidiabetic molecules. Pharmacol. Res. 2019, 150, 104522. [Google Scholar] [CrossRef]
- Wainstein, J.; Landau, Z.; Bar Dayan, Y.; Jakubowicz, D.; Grothe, T.; Perrinjaquet-Moccetti, T.; Boaz, M. Purslane extract and glucose homeostasis in adults with type 2 diabetes: A double blind, placebo-controlled clinical trial of efficacy and safety. J. Med. Food 2016, 19, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Mo, F.; Ling, C. Portulaca oleracea L. alleviates liver injury in streptozoticin-induced diabetic mice. Drug Des. Dev. Ther. 2017, 12, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.; Niu, Q.; Song, H.; Wei, S.; Wang, S.; Yao, L.; Li, Y.-P. Polysaccharides from Portulaca oleracea L. regulated insulin secretion in INS-1 cells through voltage-gated Na+ channel. Biomed. Pharmacother. 2019, 109, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Malalavidhane, S.; Wickramasinghe, S.; Jansz, E. An aqueous extract of the green leafy vegetable Ipomoea aquatic is as effective as the oral hypoglycaemic drug tolbutamide in reducing the blood sugar levels of Wistar rats. Phytother. Res. 2001, 15, 635–637. [Google Scholar] [CrossRef] [PubMed]
- Shivananjappa, M.M. Dietary supplementation with Ipomoea aquatica (whole leaf powder) attenuates maternal and fetal oxidative stress in streptozotocin-diabetic rats. J. Diabetes 2013, 5, 25–33. [Google Scholar] [CrossRef]
- Alam, F.; Shafique, Z.; Amjad, S.; Bin Asad, M. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother. Res. 2019, 33, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Padee, P.; Nualkaew, S.; Talubmook, C.; Sakuljaitrong, S. Hypoglycemic effect of a leaf extract of Pseuderanthemum palatiferum (Nees) Radlk. On normal and streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2010, 132, 491–496. [Google Scholar] [CrossRef]
- Chayarop, K.; Temsiririrkkul, R.; Peungvicha, P.; Wongkrajang, Y.; Chuakul, W.; Amnuoypol, S. Antidiabetic effects and in vitro antioxidant activity of Pseuderanthemum palatiferum (Nees) Radlk. Ex Lindau leaf aqueous extract. Pharm. Soc. Asia 2011, 38, 13–22. [Google Scholar]
- Nualkaew, S.; Padee, P.; Talukmoook, C. Hypoglycemic activity in diabetic rats of stigmasterol and sitosterol-3-0-B-D-glucopyranoside isolated from Pseuderanthemum palatiferum (Nees) Radlk. Leaf extract. J. Med. Plants Res. 2015, 9, 629–635. [Google Scholar]
- Hanh, T.; Nguyen, H.; Nguyen, T. α-amylase and α-glucosidase inhibitory saponins from Polyscias fruticosa leaves. J. Chem. 2016, 4. [Google Scholar]
- Malini, D.; Madihah, M.; Kusmoro, J.; Kamilawati, F.; Iskandar, J. Ethnobotanical study of medicinal plants in Karangwangi, District of Cianjur, West Java. Biosaintifika J. Biol. Biol. Educ. 2017, 9, 345–356. [Google Scholar]
- Zhu, H.; Chen, G.; Meng, G.; Xu, J. Characterization of pumpkin polysaccharides and protective effects on streptozotocin-damaged islet cells. Chin. J. Nat. Med. 2015, 13, 199–207. [Google Scholar] [CrossRef]
- Mahmoodpoor, A.; Medghalchi, M.; Nazemiyeh, H.; Asgharian, P.; Shadvar, K.; Hamishehkar, H. Effect of Cucurbita maxima on control of blood glucose in diabetic critically ill patients. Adv. Pharm. Bull. 2018, 8, 347–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dire, G.; Rodrigues, J.; Oliviera, J.; Vasconcelos, S.; Siqueira, P.; Duarte, R. Biological effects of a chayote extract on Wistar rats with induced diabetes: A radiopharmaceutical analysis. Pak. J. Biol. Sci. 2007, 10, 568–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Ou, T.; Chang, C.; Chang, X.; Yang, M.; Wang, C. The polyphenol extract from Sechium edule shoots inhibits lipogenesis and stimulates lipolysis via activation of AMPK signals in HepG2 cells. J. Agric. Food Chem. 2014, 62, 750–759. [Google Scholar] [CrossRef]
- Genc, Y.; Oldach, K.; Taylor, J.; Lyons, G. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. New Phytol. 2016, 210, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Genc, Y.; Taylor, J.; Lyons, G.; Li, Y.; Cheong, J.; Appelbee, M.; Oldach, K.; Sutton, T. Bread wheat with high salinity and sodicity tolerance. Front. Plant Sci. 2019, 10, 1280. [Google Scholar] [CrossRef] [Green Version]
- Englberger, L.; Kuhnlein, H.V.; Lorens, A.; Pedrus, P.; Albert, K.; Currie, J.; Pretrick, M.; Jim, R.; Kaufer, L. Pohnpei, FSM case study in a global health project documents its local food resources and successfully promotes local food for health. Pac. Health Dial. 2010, 16, 25–36. [Google Scholar]
- Keatinge, J.D.; Chadha, J.; Hughes, J.; Easdown, W.; Holmes, R.; Tenkouano, A.; Yang, R.; Maulyanova, R.; Neave, S.; Afari-Sefa, V.; et al. Vegetable gardens and their impact on the attainment of the millennium development goals. Biol. Agric. Hortic. 2012, 28, 71–85. [Google Scholar] [CrossRef]
- Solberg, S.; Seta-Waken, P.; Paul, T.; Palaniappan, G.; Iramu, E. Patterns in the conservation and use of traditional vegetables from the New Guinea biodiversity hotspot. Agroecol. Sustain. Food Syst. 2018, 42, 1079–1091. [Google Scholar] [CrossRef]
- Francis, J.; Dietershagen, J. Promoting Nutritious Food Systems in the Pacific Islands: Protein Rich Atoll Vegetables and Bioactive Compounds. The Technical Centre for Agricultural and Rural Cooperation (CTA), Ede, Netherlands. 2019. Available online: www.cta.int (accessed on 16 March 2020).
- Makkar, H.; Becker, K. Nutritional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim. Feed Sci. Technol. 1996, 65, 211–228. [Google Scholar] [CrossRef]
- Aberoumand, A.; Deokule, S. Screening of some nutrients and anti-nutrients components in some plant foods of Iran and India. J. Agric. Technol. 2010, 6, 777–781. [Google Scholar]
- Fan, D.; Zhou, C. Chaya (Cnidoscolus spp.) leaves: Antinutritional factor analysis and effect of treatment processing on cyanogenic glycosides content. Food Sci. 2010, 3, S636.9. [Google Scholar]
- Babalola, J.; Alabi, O. Effect of processing methods on nutritional composition, phytochemicals, and anti-nutrient properties of Chaya leaf (Cnidoscolus aconitifolius). Afr. J. Food Sci. 2015, 9, 560–565. [Google Scholar]
- FAO. Research Report: Knowledge, Attitudes, Beliefs and Practices Related to the Consumption of Fruits and Vegetables in Samoa; FAO: Apia, Samoa, November 2004; Available online: www.fao.org/docrep/015/an432e/an432e00.pdf (accessed on 8 April 2020).
- Bollars, C.; Sorensen, K.; de Vries, N.; Meertens, R. Exploring health literacy in relation to noncommunicable diseases in Samoa: A qualitative study. BMC Public Health 2019, 19, 1151. [Google Scholar] [CrossRef] [Green Version]
Species | Nutrient | |||||||
---|---|---|---|---|---|---|---|---|
Fe | Mn | B | Cu | Zn | Mg | K | N | |
mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | % | % | % | |
Brazil spinach (Alternanthera sissoo) | 30 | 9 | 33 | 11 | 97 | 1.48 | 3.6 | 3.5 |
Chaya (Cnidoscolus aconitifolius) | 76 | 19 | 19 | 9 | 42 | 0.55 | 1.64 | 5.1 |
Drumstick tree (Moringa oleifera) | 52 | 12 | 21 | 7 | 39 | 0.61 | 1.09 | 5.2 |
Hedge panax (Polyscias scutellaria) | 47 | 29 | 26 | 7 | 71 | 0.58 | 3.2 | 2.9 |
Lettuce tree (Pisonia grandis) | 50 | 29 | 43 | 21 | 20 | 0.61 | 2.1 | 4.2 |
Ofenga (Pseuderanthemum whartonianum) | 45 | 21 | 25 | 28 | 62 | 1.72 | 3.4 | 3.0 |
Purslane (Portulaca oleracea) | 68 | 5 | 50 | 14 | 103 | 2.2 | 3.1 | 3.3 |
Variation (-fold) | 2.5 | 5.8 | 2.8 | 5.6 | 5.2 | 4.0 | 3.3 | 1.8 |
Species | Nutrient | |||||||
---|---|---|---|---|---|---|---|---|
Fe | Mn | Cu | Zn | Ca | Mg | S | N | |
mg/kg | mg/kg | mg/kg | mg/kg | % | % | % | % | |
Cassava (Manihot esculenta) | 35 | 37 | 10 | 88 | 1.30 | 0.67 | 0.34 | 5.0 |
Chilli (Capsicum frutescens) | 32 | 25 | 8 | 63 | 3.89 | 1.80 | 0.65 | 3.3 |
Drumstick tree (Moringa oleifera) | 65 | 20 | 5 | 32 | 1.58 | 0.74 | 1.16 | 5.4 |
Lettuce tree (Pisonia grandis) | 42 | 31 | 17 | 16 | 2.34 | 1.00 | 0.32 | 3.3 |
Ofenga (green) (Pseuderanthemum whartonianum) | 26 | 24 | 7 | 33 | 2.20 | 2.70 | 0.31 | 2.1 |
Ofenga (red) | 30 | 22 | 10 | 25 | 1.72 | 1.30 | 0.24 | 3.2 |
Taro (Colocasia esculenta) | 34 | 35 | 12 | 29 | 3.30 | 0.63 | 0.21 | 3.8 |
Variation (-fold) | 2.5 | 1.9 | 3.4 | 5.5 | 3.0 | 4.3 | 5.5 | 2.6 |
Site | Nutrient | |||
---|---|---|---|---|
Mn | Zn | Mg | N | |
mg/kg | mg/kg | % | % | |
1 | 17 | 50 | 0.50 | 5.0 |
2 | 4 | 43 | 0.90 | 4.9 |
3 | 12 | 35 | 0.56 | 5.2 |
4 | 19 | 42 | 0.55 | 5.1 |
5 | 10 | 27 | 0.71 | 4.7 |
6 | 4 | 50 | 0.56 | 5.9 |
7 | 32 | 79 | 1.11 | 4.2 |
Mean | 14 | 47 | 0.70 | 5.0 |
Variation (-fold) | 8.0 | 2.9 | 2.2 | 1.4 |
Nutrient (Units) | Best Accumulators (Concentration in Leaf) |
---|---|
Iron (mg/kg) | Purslane (79), yellow beach pea (72), pumpkin (69), kangkong (68), chaya (65) |
Manganese (mg/kg) | Giant swamp taro (94), cassava (34), taro (34), chilli (27) |
Boron (mg/kg) | Chilli (60), drumstick (48), birdsnest fern (41), sweet potato (41) |
Copper (mg/kg) | Tree lettuce (21), pumpkin (13), chilli (12), ofenga (11) |
Zinc (mg/kg) | Purslane (119), cassava (107), pumpkin (97), hedge panax (81) |
Calcium (%) | Chilli (3.8), bele (3.4), ofenga (2.7), hedge panax (2.5) |
Magnesium | Purslane (2.5), ofenga (2.0) |
Potassium (%) | Pumpkin (4.3), birdsnest fern (4.1), taro (3.0), kangkong (2.9) |
Phosphorus (%) | Pumpkin (0.74), cassava (0.54), sweet potato (0.52) |
Sulphur (%) | Drumstick (1.1), chilli (0.6), sweet potato (0.55) |
Nitrogen (%) | Pumpkin (5.1), cassava (5.0), chaya (5.0), drumstick (4.7) |
Selenium (µg/kg) | Drumstick (400) |
Multiple nutrients | Pumpkin, purslane, chilli |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyons, G.; Dean, G.; Tongaiaba, R.; Halavatau, S.; Nakabuta, K.; Lonalona, M.; Susumu, G. Macro- and Micronutrients from Traditional Food Plants Could Improve Nutrition and Reduce Non-Communicable Diseases of Islanders on Atolls in the South Pacific. Plants 2020, 9, 942. https://doi.org/10.3390/plants9080942
Lyons G, Dean G, Tongaiaba R, Halavatau S, Nakabuta K, Lonalona M, Susumu G. Macro- and Micronutrients from Traditional Food Plants Could Improve Nutrition and Reduce Non-Communicable Diseases of Islanders on Atolls in the South Pacific. Plants. 2020; 9(8):942. https://doi.org/10.3390/plants9080942
Chicago/Turabian StyleLyons, Graham, Geoff Dean, Routan Tongaiaba, Siosiua Halavatau, Kabuati Nakabuta, Matio Lonalona, and Gibson Susumu. 2020. "Macro- and Micronutrients from Traditional Food Plants Could Improve Nutrition and Reduce Non-Communicable Diseases of Islanders on Atolls in the South Pacific" Plants 9, no. 8: 942. https://doi.org/10.3390/plants9080942
APA StyleLyons, G., Dean, G., Tongaiaba, R., Halavatau, S., Nakabuta, K., Lonalona, M., & Susumu, G. (2020). Macro- and Micronutrients from Traditional Food Plants Could Improve Nutrition and Reduce Non-Communicable Diseases of Islanders on Atolls in the South Pacific. Plants, 9(8), 942. https://doi.org/10.3390/plants9080942