Wearable Sensors for Vital Signs Measurement: A Survey
Abstract
:1. Introduction
2. Classification of Wearable Medical Sensors
2.1. Classification Method of Wearable Medical Sensors
2.2. Classification and Application of Wearable Medical Sensors
2.2.1. Wearable Medical Sensors for Detecting Vascular Infarction
2.2.2. Wearable Medical Sensors for Detecting Breathing Intensity
2.2.3. Wearable Medical Sensors for Detecting Body Temperature
2.2.4. Wearable Medical Sensors for Detecting Blood Oxygen Saturation
2.2.5. Wearable Medical Sensors for Monitoring Sleep
3. Intelligent Prospect of Wearable Medical Sensors
3.1. Intelligent Prospect Method of Wearable Medical Sensors
3.2. Intelligent Prospective Applications of Wearable Medical Sensors
3.2.1. Prospects for Information Security of Wearable Medical Sensors
3.2.2. Prospects of Material Research for Wearable Medical Sensors
3.2.3. Prospects of Intelligence-Assisted Rehabilitation of Wearable Medical Sensors
3.2.4. Prospect of Intelligent Prediction Based on the Combination of Wearable Medical Sensors and Intelligent Algorithms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rehman, A.; Mustafa, M.; Javaid, N.; Qasim, U.; Khan, Z. Analytical Survey of Wearable Sensors. In Proceedings of the 2012 Seventh International Conference on Broadband, Wireless Computing, Communication and Applications, Victoria, BC, Canada, 12–14 November 2012; pp. 408–413. [Google Scholar]
- Pantelopoulos, A.; Bourbakis, N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Denasi, A.; Barrera, D.; Madrigal, J.; Sales, S.; Misra, S. Multi-Core Optical Fibers with Bragg Gratings as Shape Sensor for Flexible Medical Instruments. IEEE Sens. J. 2019, 19, 5878–5884. [Google Scholar] [CrossRef] [Green Version]
- Sana, F.; Isselbacher, E.M.; Singh, J.P.; Heist, E.K.; Pathik, B.; Armoundas, A.A. Wearable devices for ambulatory car-diac monitoring: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 75, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Pardoel, S.; Kofman, J.; Nantel, J.; Lemaire, E.D. Wearable-Sensor-based Detection and Prediction of Freezing of Gait in Parkinson’s Disease: A Review. Sensors 2019, 19, 5141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walch, O.; Huang, Y.; Forger, D.; Goldstein, C. Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device. Sleep 2019, 42, zsz180. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Lv, S.; Tang, W.; Zhao, L.; Wang, C.; Wang, J.; Wang, T.; Guo, X.; Liu, F.; Wang, C.; et al. YSZ-based acetone sensor using a Cd2SnO4 sensing electrode for exhaled breath detection in medical diagnosis. Sens. Actuators B Chem. 2021, 345, 130321. [Google Scholar] [CrossRef]
- Kumar, P.; Kumari, S.; Sharma, V.; Sangaiah, A.K.; Wei, J.; Li, X. A certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain. Comput. Inform. Syst. 2018, 18, 80–89. [Google Scholar] [CrossRef]
- Boudargham, N.; Abdo, J.B.; Demerjian, J.; Guyeux, C. Exhaustive study on medical sensors. In Proceedings of the International Conference on Sensor Technologies and Applications, Rome, Italy, 10–14 September 2017. [Google Scholar]
- Zhuo, K.; Gao, C.; Wang, X.; Zhang, C.; Wang, Z. Stress and sleep: A survey based on wearable sleep trackers among medical and nursing staff in Wuhan during the COVID-19 pandemic. Gen. Psychiatry 2020, 33, e100260. [Google Scholar] [CrossRef]
- Razjouyan, J.; Grewal, G.S.; Rishel, C.; Parthasarathy, S.; Mohler, J.; Najafi, B. Activity Monitoring and Heart Rate Variability as Indicators of Fall Risk: Proof-of-Concept for Application of Wearable Sensors in the Acute Care Setting. J. Gerontol. Nurs. 2017, 43, 53–62. [Google Scholar] [CrossRef]
- Jayarathna, T.; Gargiulo, G.D.; Breen, P.P. Continuous Vital Monitoring During Sleep and Light Activity Using Carbon-Black Elastomer Sensors. Sensors 2020, 20, 1583. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-W.; Lin, S.-F. Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement. Sensors 2020, 20, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, I.; Jeung, J.; Kim, M.; Kim, Y.-S.; Chung, Y. Ultra-Low Power Wearable Infant Sleep Position Sensor. Sensors 2019, 20, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbulut, F.P.; Ikitimur, B.; Akan, A. Wearable sensor-based evaluation of psychosocial stress in patients with metabolic syndrome. Artif. Intell. Med. 2020, 104, 101824. [Google Scholar] [CrossRef] [PubMed]
- Frerichs, I.; Vogt, B.; Wacker, J.; Paradiso, R.; Braun, F.; Rapin, M.; Caldani, L.; Chételat, O.; Weiler, N. Multimodal remote chest monitoring system with wearable sensors: A validation study in healthy subjects. Physiol. Meas. 2019, 41, 015006. [Google Scholar] [CrossRef]
- Izmailova, E.S.; McLean, I.L.; Hather, G.; Merberg, D.; Homsy, J.; Cantor, M.; Volfson, D.; Bhatia, G.; Perakslis, E.D.; Benko, C.; et al. Continuous Monitoring Using a Wearable Device Detects Activity-Induced Heart Rate Changes After Administration of Amphetamine. Clin. Transl. Sci. 2019, 12, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Haveman, M.E.; van Rossum, M.C.; Vaseur, R.M.; van der Riet, C.; Schuurmann, R.C.; Hermens, H.J.; Tabak, M. Continuous Monitoring of Vital Signs with Wearable Sensors During Daily Life Activities: Validation Study. JMIR Form. Res. 2022, 6, e30863. [Google Scholar] [CrossRef]
- Pantelopoulos, A.; Bourbakis, N. A survey on wearable biosensor systems for health monitoring. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2008, 2008, 4887–4890. [Google Scholar] [CrossRef]
- Lv, Z.; Tek, A.; Da Silva, F.; Empereur-Mot, C.; Chavent, M.; Baaden, M. Game On, Science-How Video Game Technology May Help Biologists Tackle Visualization Challenges. PLoS ONE 2013, 8, e57990. [Google Scholar] [CrossRef]
- Petani, L.; Koker, L.; Herrmann, J.; Hagenmeyer, V.; Gengenbach, U.; Pylatiuk, C. Recent Developments in Ozone Sensor Technology for Medical Applications. Micromachines 2020, 11, 624. [Google Scholar] [CrossRef]
- Fan, D.; Yang, J.; Zhang, J.; Lv, Z.; Huang, H.; Qi, J.; Yang, P. Effectively Measuring Respiratory Flow with Portable Pressure Data Using Back Propagation Neural Network. IEEE J. Transl. Eng. Healthy Med. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Presti, D.L.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.; Longo, U.G.; Formica, D.; Oddo, C.M.; Schena, E. Wearable System Based on Flexible FBG for Respiratory and Cardiac Monitoring. IEEE Sens. J. 2019, 19, 7391–7398. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Hee, H.I. Noninvasive Measurement of Heart Rate and Respiratory Rate for Perioperative Infants. J. Light. Technol. 2018, 37, 2807–2814. [Google Scholar] [CrossRef]
- Tao, X.; Jin, H.; Mintken, M.; Wolff, N.; Wang, Y.; Tao, R.; Li, Y.; Torun, H.; Xie, J.; Luo, J.; et al. Three-Dimensional Tetrapodal ZnO Microstructured Network Based Flexible Surface Acoustic Wave Device for Ultraviolet and Respiration Monitoring Applications. ACS Appl. Nano. Mater. 2020, 3, 1468–1478. [Google Scholar] [CrossRef]
- Miripour, Z.S.; Sarrami-Forooshani, R.; Sanati, H.; Makarem, J.; Taheri, M.S.; Shojaeian, F.; Eskafi, A.H.; Abbasvandi, F.; Namdar, N.; Ghafari, H.; et al. Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic. Biosens. Bioelectron. 2020, 165, 112435. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Peng, J.; Niu, J.; Wu, F.; Liao, J.; Choo, K.-K.R. A Robust and Energy Efficient Authentication Protocol for Industrial Internet of Things. IEEE Internet Things J. 2017, 5, 1606–1615. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Chang, V. A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT. IEEE Internet Things J. 2020, 7, 4160–4170. [Google Scholar] [CrossRef]
- Selvendran, S.; AAvaninathan, S.R.; Kadarkarai, E.M.; SSrinivasan, Y. Surface plasmon based fiber optic refractive index sensor. Indian J. Eng. Mater. Sci. 2021, 28, 102–107. [Google Scholar]
- Kumar, R.; Goel, N.; Kumar, M. UV-Activated MoS2 Based Fast and Reversible NO2 Sensor at Room Temperature. ACS Sens. 2017, 2, 1744–1752. [Google Scholar] [CrossRef]
- Liu, C.; Tai, H.; Zhang, P.; Yuan, Z.; Du, X.; Xie, G.; Jiang, Y. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B Chem. 2018, 261, 587–597. [Google Scholar] [CrossRef]
- Ge, G.; Lu, Y.; Qu, X.; Zhao, W.; Ren, Y.; Wang, W.; Wang, Q.; Huang, W.; Dong, X. Muscle-Inspired Self-Healing Hydrogels for Strain and Temperature Sensor. ACS Nano. 2019, 14, 218–228. [Google Scholar] [CrossRef]
- Huang, J.; Yang, X.; Her, S.-C.; Liang, Y.-M. Carbon Nanotube/Graphene Nanoplatelet Hybrid Film as a Flexible Multifunctional Sensor. Sensors 2019, 19, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Jiang, J.; Sun, F.; Sun, L.; Wang, T.; Liu, Y.; Li, M. Flexible wearable graphene/alginate composite non-woven fabric temperature sensor with high sensitivity and anti-interference. Cellulose 2020, 27, 2369–2380. [Google Scholar] [CrossRef]
- Chen, S.; Qi, J.; Fan, S.; Qiao, Z.; Yeo, J.C.; Lim, C.T. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv. Healthy Mater. 2021, 10, 2100116. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.J.; Williams, I.; Peters, N.S.; Mandic, D.P. In-Ear SpO2: A Tool for Wearable, Unobtrusive Monitoring of Core Blood Oxygen Saturation. Sensors 2020, 20, 4879. [Google Scholar] [CrossRef]
- Pham, S.; Yeap, D.; Escalera, G.; Basu, R.; Wu, X.; Kenyon, N.J.; Hertz-Picciotto, I.; Ko, M.J.; Davis, C.E. Wearable Sensor System to Monitor Physical Activity and the Physiological Effects of Heat Exposure. Sensors 2020, 20, 855. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, E.; Lee, Y.; Kim, H.; Lee, J.; Kim, M.; Yoo, H.-J.; Yoo, S. Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 2018, 4, eaas9530. [Google Scholar] [CrossRef] [Green Version]
- Khan, Y.; Han, D.; Pierre, A.; Ting, J.; Wang, X.; Lochner, C.M.; Bovo, G.; Yaacobi-Gross, N.; Newsome, C.; Wilson, R.; et al. A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. USA 2018, 115, E11015–E11024. [Google Scholar] [CrossRef] [Green Version]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ Digit. Med. 2019, 2, 60. [Google Scholar] [CrossRef] [Green Version]
- Janani, K.; Palanivelu, A.; Sandhya, R. Diagnostic accuracy of dental pulse oximeter with customized sensor holder, thermal test and electric pulp test for the evaluation of pulp vitality: An in vivo study. Braz. Dent. Sci. 2020, 23, 8. [Google Scholar] [CrossRef] [Green Version]
- Pereira, T.; Tran, N.; Gadhoumi, K.; Pelter, M.M.; Do, D.H.; Lee, R.J.; Colorado, R.; Meisel, K.; Hu, X. Photoplethysmography based atrial fibrillation detection: A review. NPJ Digit. Med. 2020, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Alqurashi, Y.; Morrell, M.J.; Mandic, D.P. Hearables: Automatic Overnight Sleep Monitoring with Standardized In-Ear EEG Sensor. IEEE Trans. Biomed. Eng. 2019, 67, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Valero, M.; Clemente, J.; Tse, Z.; Song, W. Smart Sleep Monitoring System via Passively Sensing Human Vibration Signals. IEEE Sens. J. 2020, 21, 14466–14473. [Google Scholar] [CrossRef]
- Kim, S.-W.; Lee, K.; Yeom, J.; Lee, T.-H.; Kim, D.-H.; Kim, J.J. Wearable Multi-Biosignal Analysis Integrated Interface with Direct Sleep-Stage Classification. IEEE Access 2020, 8, 46131–46140. [Google Scholar] [CrossRef]
- Alfarraj, O.; Tolba, A. Unsynchronized wearable sensor data analytics model for improving the performance of smart healthcare systems. J. Ambient Intell. Humaniz. Comput. 2021, 12, 3411–3422. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Latorre-Román, P.Á.; Soto-Hermoso, V.M.; Párraga-Montilla, J.A.; Pantoja-Vallejo, A.; Ramírez-Campillo, R.; Roche-Seruendo, L.E. Agreement between the spatiotemporal gait parameters from two different wearable devices and high-speed video analysis. PLoS ONE 2019, 14, e0222872. [Google Scholar] [CrossRef] [Green Version]
- Farooq, A.; Seyedmahmoudian, M.; Stojcevski, A. A Wearable Wireless Sensor System Using Machine Learning Classification to Detect Arrhythmia. IEEE Sens. J. 2021, 21, 11109–11116. [Google Scholar] [CrossRef]
- Mc Ardle, R.; Del Din, S.; Galna, B.; Thomas, A.; Rochester, L. Differentiating dementia disease subtypes with gait anal-ysis: Feasibility of wearable sensors? Gait Posture 2020, 76, 372–376. [Google Scholar] [CrossRef]
- Ding, A.; Wang, B.; Zheng, J.; Weng, B.; Li, C. Sensitive dopamine sensor based on three dimensional and macroporous carbon aerogel microelectrode. Int. J. Electrochem. Sci. 2018, 13, 4379–4389. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Alturjman, S. Context-Sensitive Access in Industrial Internet of Things (IIoT) Healthcare Applications. IEEE Trans. Ind. Inform. 2018, 14, 2736–2744. [Google Scholar] [CrossRef]
- Khattak, H.A.; Shah, M.A.; Khan, S.; Ali, I.; Imran, M. Perception layer security in Internet of Things. Futur. Gener. Comput. Syst. 2019, 100, 144–164. [Google Scholar] [CrossRef]
- Anand, A.; Singh, A.K.; Lv, Z.; Bhatnagar, G. Compression-Then-Encryption-Based Secure Watermarking Technique for Smart Healthcare System. IEEE MultiMedia 2020, 27, 133–143. [Google Scholar] [CrossRef]
- Muzammal, S.M.; Murugesan, R.K.; Jhanjhi, N.Z. A Comprehensive Review on Secure Routing in Internet of Things: Mitigation Methods and Trust-Based Approaches. IEEE Internet Things J. 2020, 8, 4186–4210. [Google Scholar] [CrossRef]
- Zhu, X. Complex event detection for commodity distribution Internet of Things model incorporating radio frequency identification and Wireless Sensor Network. Futur. Gener. Comput. Syst. 2021, 125, 100–111. [Google Scholar] [CrossRef]
- Singh, A.K.; Anand, A.; Lv, Z.; Ko, H.; Mohan, A. A Survey on Healthcare Data: A Security Perspective. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 17, 1–26. [Google Scholar] [CrossRef]
- Renggli, D.; Graf, C.; Tachatos, N.; Singh, N.; Meboldt, M.; Taylor, W.R.; Stieglitz, L.; Daners, M.S. Wearable Inertial Measurement Units for Assessing Gait in Real-World Environments. Front. Physiol. 2020, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Ray, T.R.; Choi, J.; Bandodkar, A.J.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J.A. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem. Rev. 2019, 119, 5461–5533. [Google Scholar] [CrossRef] [PubMed]
- Johansson, D.; Malmgren, K.; Alt Murphy, M. Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: A mixed-methods systematic review. J. Neurol. 2018, 265, 1740–1752. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Kumar, M.; Yu, J.; Yang, J. Medical long-distance monitoring system based on internet of things. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 176. [Google Scholar] [CrossRef] [Green Version]
- Mei, G.; Xu, N.; Qin, J.; Wang, B.; Qi, P. A Survey of Internet of Things (IoT) for Geohazard Prevention: Applications, Technologies, and Challenges. IEEE Internet Things J. 2020, 7, 4371–4386. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Alarifi, A.; Tolba, A. Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks. Comput. Ind. 2019, 106, 133–141. [Google Scholar] [CrossRef]
- Wang, X.-F.; Ma, W.; Jiang, F.; Cao, E.; Sun, K.-M.; Cheng, L.; Song, X.-Z. Prussian Blue analogue derived porous NiFe2O4 nanocubes for low-concentration acetone sensing at low working temperature. Chem. Eng. J. 2018, 338, 504–512. [Google Scholar] [CrossRef]
- Zhou, Q.; Zeng, W.; Chen, W.; Xu, L.; Kumar, R.; Umar, A. High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens. Actuators B Chem. 2019, 298, 126870. [Google Scholar] [CrossRef]
- Yin, R.; Yang, S.; Li, Q.; Zhang, S.; Liu, H.; Han, J.; Liu, C.; Shen, C. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 2020, 65, 899–908. [Google Scholar] [CrossRef]
- Punetha, D.; Kar, M.; Pandey, S.K. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 2020, 10, 2151. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Dang, F.; Wang, Y.; Gao, J.; Xu, L.; Wang, C.; Lv, L.; Li, X.; Zhang, B.; Liu, B. Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis. Sens. Actuators B Chem. 2021, 328, 129028. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Leonardi, A.A.; Faro, M.J.L.; Irrera, A. Biosensing platforms based on silicon nanostructures: A critical review. Anal. Chim. Acta. 2021, 1160, 338393. [Google Scholar] [CrossRef]
- Leonardi, A.; Faro, M.; Irrera, A. Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review. Nanomaterials 2021, 11, 383. [Google Scholar] [CrossRef]
- Deif, D.S.; Gadallah, Y. A comprehensive wireless sensor network reliability metric for critical Internet of Things applications. EURASIP J. Wirel. Commun. Netw. 2017, 2017, 145. [Google Scholar] [CrossRef]
- Lv, Z.; Chirivella, J.; Gagliardo, P. Bigdata Oriented Multimedia Mobile Health Applications. J. Med. Syst. 2016, 40, 120. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Esteve, C.; Chirivella, J.; Gagliardo, P. Serious game based personalized healthcare system for dysphonia rehabilitation. Pervasive Mob. Comput. 2017, 41, 504–519. [Google Scholar] [CrossRef]
- Herrera-Luna, I.; Rechy-Ramirez, E.J.; Rios-Figueroa, H.V.; Marin-Hernandez, A. Sensor Fusion Used in Applications for Hand Rehabilitation: A Systematic Review. IEEE Sens. J. 2019, 19, 3581–3592. [Google Scholar] [CrossRef]
- Nascimento, L.M.S.D.; Bonfati, L.V.; Freitas, M.L.B.; Junior, J.J.A.M.; Siqueira, H.V.; Stevan, J.S.L. Sensors and Systems for Physical Rehabilitation and Health Monitoring—A Review. Sensors 2020, 20, 4063. [Google Scholar] [CrossRef]
- Xiang, X.-N.; Ding, M.-F.; Zong, H.-Y.; Liu, Y.; Cheng, H.; He, C.-Q.; He, H.-C. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): An observational study. Spinal Cord 2020, 58, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Shen, C.; Feng, X.; Zhu, Q.; Shorfuzzaman, M.; Lv, Z. Upper Limb Rehabilitation System for Stroke Survivors Based on Multi-Modal Sensors and Machine Learning. IEEE Access 2021, 9, 30283–30291. [Google Scholar] [CrossRef]
- Mazzetta, I.; Zampogna, A.; Suppa, A.; Gumiero, A.; Pessione, M.; Irrera, F. Wearable Sensors System for an Improved Analysis of Freezing of Gait in Parkinson’s Disease Using Electromyography and Inertial Signals. Sensors 2019, 19, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danzig, R.; Wang, M.; Shah, A.; Trotti, L.M. The wrist is not the brain: Estimation of sleep by clinical and consumer wearable actigraphy devices is impacted by multiple patient- and device-specific factors. J. Sleep Res. 2019, 29, e12926. [Google Scholar] [CrossRef]
- Sen-Gupta, E.; Wright, D.E.; Caccese, J.W.; Wright, J.A., Jr.; Jortberg, E.; Bhatkar, V.; Combs, A.H. A pivotal study to validate the performance of a novel wearable sensor and system for biometric monitoring in clinical and remote environments. Digit. Biomark. 2019, 3, 1–13. [Google Scholar] [CrossRef]
- Simonetti, E.; Bergamini, E.; Vannozzi, G.; Bascou, J.; Pillet, H. Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study. Sensors 2021, 21, 3129. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Gazit, E.; Buchman, A.S.; Dawe, R.; Curran, T.A.; Mirelman, A.; Giladi, N.; Hausdorff, J.M. What happens before the first step? A New Approach to Quantifying Gait Initiation Using a Wearable Sensor. Gait Posture 2020, 76, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Yu, Z.; Lv, Z. Multi-Disease Prediction Based on Deep Learning: A Survey. Comput. Model. Eng. Sci. 2021, 128, 489–522. [Google Scholar] [CrossRef]
- Mosenia, A.; Sur-Kolay, S.; Raghunathan, A.; Jha, N.K. Wearable Medical Sensor-Based System Design: A Survey. IEEE Trans. Multi-Scale Comput. Syst. 2017, 3, 124–138. [Google Scholar] [CrossRef]
- Misra, S.; Roy, A.; Roy, C.; Mukherjee, A. DROPS: Dynamic Radio Protocol Selection for Energy-Constrained Wearable IoT Healthcare. IEEE J. Sel. Areas Commun. 2021, 39, 338–345. [Google Scholar] [CrossRef]
- Qiao, S.; Pang, S.; Luo, G.; Pan, S.; Chen, T.; Lv, Z. FLDS: An Intelligent Feature Learning Detection System for Visualizing Medical Images Supporting Fetal Four-chamber Views. IEEE J. Biomed. Heal. Inform. 2021, PP, 1. [Google Scholar] [CrossRef]
- Yu, Z.; Amin, S.U.; Alhussein, M.; Lv, Z. Research on Disease Prediction Based on Improved DeepFM and IoMT. IEEE Access 2021, 9, 39043–39054. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Lv, Z.; Li, J. Medical image fusion method by deep learning. Int. J. Cogn. Comput. Eng. 2021, 2, 21–29. [Google Scholar] [CrossRef]
- Hu, M.; Zhong, Y.; Xie, S.; Lv, H.; Lv, Z. Fuzzy System Based Medical Image Processing for Brain Disease Prediction. Front. Neurosci. 2021, 15, 714318. [Google Scholar] [CrossRef]
- Wan, Z.; Dong, Y.; Yu, Z.; Lv, H.; Lv, Z. Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion. Front. Neurosci. 2021, 15, 705323. [Google Scholar] [CrossRef]
Scholars | Monitoring Signal | Channels | Signal Frequency/Hz | Acquisition Frequency/Hz | Signal Amplitude/mV | Record Duration | Clinical Application |
---|---|---|---|---|---|---|---|
Zhuo et al. [10] | ECG | 1–12 | 0.05–150 | 250–1000 | 0.1–5 | 10 s–24 h | Heart disease monitoring, heartbeat classification, emotion recognition, sleep staging |
Razjouyan et al. [11] | EEG | 1–256 | 0.1–100 | 0.3–3000 | 0.1–100 | 0.5–24 h | Brain disease monitoring, emotion recognition, sleep staging, motion recognition, brain function detection |
Jayarathna et al. [12] | EMG | 1–32 | 25–5000 | 512–10,000 | 0.1–100 | 30 s–24 h | State recognition |
Wang and Lin [13] | EOG | 1–4 | 0.1–20 | 200 | 0.05–3.5 | 0.5–24 h | Sleep staging |
Yun et al. [14] | PCG | 1 | 10–400 | 1–2000 | −2–2 | 0.5 s–24 h | Heart disease monitoring, heartbeat classification, emotion recognition, sleep staging. |
Akbulut et al. [15] | PPG | 1 | 0.25–40 | 5–500 | −10–10 | 100 s–24 h | Heartbeat classification and sleep staging |
Frerichs et al. [16] | BCG | 3 | 1–20 | 1–20 | −0.05–0.05 | 5 s–24 h | Heart disease monitoring, heartbeat classification, emotion recognition, sleep staging |
Izmailova et al. [17] | EDA | 1 | 0.1–16 | 16–128 | 110 s–24 h | Emotion recognition |
Scholars | Sensor Types | Wearable Medical Sensor Model | Effect |
---|---|---|---|
Fan et al. (2018) [22] | Pressure sensor | BPNN-based respiratory measurement device | It effectively improved the reliability of the newly designed respiratory device. |
Presti et al. (2019) [23] | Flexible sensor | Wearable respiratory and HR monitoring system | It is suitable for matching chest wall displacement and can be used to monitor FR and HR. |
Zhang et al. (2019) [24] | Optical fiber sensor | HR detection model of perioperative infants based on new optical fiber sensor | It was consistent with the standard physiological monitoring results. |
Tao et al. (2020) [25] | Piezoelectric film sensor | Respiratory monitor based on piezoelectric thin-film sensor | The sensitivity of respiratory characteristics was improved by nearly 1.7 times. |
Miripour et al. (2020) [26] | Electrochemical sensor | The strength of ROS (reactive oxygen species) was used to detect sputum samples selectively (volume less than 500 μL) during COVID-19 | The accuracy and sensitivity of response calibration was 97%. |
Scholar | Type of Sensors | Component of Sensors | Effects |
---|---|---|---|
Kumar et al. [30] | Gas sensor | MoS2 | Enhanced sensitivity, ultrafast response time (about 29 s), and excellent recovery of NO2 (100 ppm) at room temperature. |
Liu et al. [31] | Resistance sensors | Flexible ammonia (NH3) | Perfect response concentration linearity, good reproducibility, excellent selectivity, significant long-term stability, ultra-low detection concentration (16 ppb) and theoretical detection limit (0.274 ppb) and excellent flexibility, no significant response after 500 bending/extension cycles. |
Ge et al. [32] | Hydrogel sensor | Hydrogel | With superior mechanical feeling and thermal sensitivity, it can realize a flexible touch keyboard for feature recognition and a “heating indicator” for human forehead temperature detection. |
Huang et al. [33] | Piezoresistive effect sensor | Graphene nanosheets and multi-walled carbon nanotubes | With the increase in GNP content, the hardness and Young’s modulus of the hybrid films decreased, while the thermal conductivity showed the opposite trend. With the increase in solvent adsorption amount, the change of resistance increases linearly. It can be potentially applied to the detection of temperature and liquid leakage. |
Wang et al. [34] | Thermoelectric effect sensor | Hydrophobic Films and Graphene/Polydimethylsiloxane | Excellent performance in low cost and material identification provides a design concept to meet the challenges of functional electronics. |
Scholars | Sleep Monitoring by Wearable Medical Sensors | Achievements |
---|---|---|
Nakamura et al. (2019) [43] | Wearable in ear electroencephalogram (ear EEG) was used for night sleep monitoring | It was feasible for in-ear sensor to monitor night sleep outside the sleep laboratory, which reduced the technical difficulty related to PSG. |
Li et al. (2020) [44] | A system based on bed vibration sensor was proposed | Accurately monitored physiological parameters during sleep, such as HR, RR, body movement, and sleep posture. |
Kim et al. (2020) [45] | A wearable multi-biological signal wireless interface for sleep analysis was designed | The correlation of four sleep stages was 74%. |
Alfarraj et al. (2021) [46] | A non-synchronous sensor data analysis (USDA) model was introduced | Responsive healthcare solutions using asynchronous WS-data helped achieve greater efficiency and reduce the Complexity, when evaluating healthcare system performance. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Li, Y. Wearable Sensors for Vital Signs Measurement: A Survey. J. Sens. Actuator Netw. 2022, 11, 19. https://doi.org/10.3390/jsan11010019
Lv Z, Li Y. Wearable Sensors for Vital Signs Measurement: A Survey. Journal of Sensor and Actuator Networks. 2022; 11(1):19. https://doi.org/10.3390/jsan11010019
Chicago/Turabian StyleLv, Zhihan, and Yuxi Li. 2022. "Wearable Sensors for Vital Signs Measurement: A Survey" Journal of Sensor and Actuator Networks 11, no. 1: 19. https://doi.org/10.3390/jsan11010019
APA StyleLv, Z., & Li, Y. (2022). Wearable Sensors for Vital Signs Measurement: A Survey. Journal of Sensor and Actuator Networks, 11(1), 19. https://doi.org/10.3390/jsan11010019