Optimization of Pico-eNB Tx Power and the Effects of Picocell Range Expansion in Multiband HetNet
Abstract
:1. Introduction
2. System Overview
3. HetNet Model and Simulation Conditions
3.1. Multiband HetNet Model and Simulation Setup
3.2. MCS Indexes Incorporating 1024-QAM and Fading Channel Model
4. Optimization of Pico-eNB Tx Power
4.1. User Throughput Versus Pico-eNB Tx Power
4.2. Analysis of Use Rate of Modulation Methods
5. Effects of CRE
5.1. CRE in HetNet
5.2. User Throughput versus CSO
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 3GPP TR 38.801; Radio access architecture and /. ETSI: Sophia Antipolis, France, March 2016; Release 14.
- 3GPP TS 23.501; System architecture for the 5G system. ETSI: Sophia Antipolis, France, June 2018; Release 15.
- Soldani, D.; Manzalini, A. Horizon 2020 and beyond: On the 5G operating system for a truly digital society. IEEE Veh. Technol.Mag. 2015, 10, 32–42. [Google Scholar] [CrossRef]
- Nakamura, T.; Benjebbour, A.; Kishiyama, Y.; Suyama, S.; Imai, T. 5G radio access: Requirements, concept and experimental trials. IEICE Trans. Commun. 2015, 98, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Shafi, M.; Molish, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Okumura, Y.; Suyama, S.; Mashino, J.; Muraoka, K. Recent activities of 5G experimental trials on massive MIMO technologies and 5G system trials toward new service creation. IEICE Trans. Commun. 2019, 102, 1352–1362. [Google Scholar] [CrossRef] [Green Version]
- 3GPP TS 38.101-4; 5G NR User equipment radio transmission and reception; Performance requirements. iTeh, Inc.: San Francisco, CA, USA, September 2019; Release 15.
- Ghosh, A.; Ratasuk, R.; Mondai, B.; Mangalvedhe, N.; Thomas, T. LTE-advanced: Next-generation wireless broadband technology. IEEE Wirel. Commun. 2010, 17, 10–22. [Google Scholar] [CrossRef]
- Ishii, H.; Kishiyama, Y.; Takahashi, H. A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 624–630. [Google Scholar] [CrossRef]
- Kikuchi, K.; Otsuka, H. Proposal of adaptive control CRE in heterogeneous networks. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications—(PIMRC), Sydney, NSW, Australia, 9–12 September 2012; pp. 910–914. [Google Scholar] [CrossRef]
- Dahlman, E.; Dimou, K.; Parkvall, S.; Tullberg, H. Future wireless access small cells and heterogeneous deployments. In Proceedings of the ICT 2013, Casablanca, Morocco, 6–8 May 2013. [Google Scholar] [CrossRef]
- Kikuchi, K.; Otsuka, H. Parameter optimization for adaptive control CRE in HetNet. In Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013; pp. 3334–3338. [Google Scholar] [CrossRef]
- Maria, A.D.; Panno, D. A radio resource management scheme in future ultra-dense phantom networks. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chandra, K.; Marcano, A.S.; Mumtaz, S.; Prasad, R.V.; Christiansen, H.L. Unveiling capacity gains in ultradense networks. IEEE Veh. Tech.Mag. 2018, 13, 64–83. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H. Automatic Differentiation Based Resource Allocation Algorithm for Heterogeneous Networks. In Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Wang, S.; Yi, W. Proactive Resource Scheduling with Time and Frequency Domain Coordination in Heterogeneous Networks. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018. [Google Scholar] [CrossRef]
- Wang, L.; Yang, C.; Hu, R.Q. Autonomous Traffic Offloading in Heterogeneous Ultra-Dense Networks Using Machine Learning. IEEE Wirel. Commun. 2019, 26, 102–109. [Google Scholar] [CrossRef]
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101–107. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5g cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Baldemair, R.; Irnich, T.; Balachandran, K.; Dahlman, E.; Mildh, G.; Selen, Y.; Parkvall, S.; Meyer, M.; Osserian, A. Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 2015, 53, 202–208. [Google Scholar] [CrossRef]
- Bogale, T.E.; Le, L.B. Massive MIMO and mmWave for 5G Wireless HetNet: Potential Benefits and Challenges. IEEE Veh. Technol. Mag. 2016, 11, 64–75. [Google Scholar] [CrossRef]
- Xiao, M.; Mumtaz, S.; Huang, Y.; Dai, L.; Li, Y.; Matthaiou, M.; Karagiannidis, G.; Bjornson, E.; Yang, K.; Chih-Lin, I.; et al. Millimeter Wave Communications for Future Mobile Networks. IEEE J. Sel. Areas Commun. 2017, 35, 1909–1935. [Google Scholar] [CrossRef] [Green Version]
- Gopalam, S.; Hanly, S.V.; Whiting, P. Distributed User Association and Resource Allocation Algorithms for Three Tier HetNets. IEEE Trans. Wirel. Commun. 2020, 19, 7913–7926. [Google Scholar] [CrossRef]
- Makhanbet, M.; Lv, T.; Orynbet, M.; Suleimenov, B. A Fully Distributed and Clustered Learning of Power Control in User-Centric Ultra-Dense HetNets. IEEE Trans. Veh. Technol. 2020, 69, 11529–11543. [Google Scholar] [CrossRef]
- Kim, S. Heterogeneous Network Bandwidth Control Scheme for the Hybrid OMA-NOMA System Platform. IEEE Access 2020, 8, 83414–83424. [Google Scholar] [CrossRef]
- Qi, X.; Khattak, S.; Zaib, A.; Khan, I. Energy Efficient Resource Allocation for 5G Heterogeneous Networks Using Genetic Algorithm. IEEE Access 2021, 9, 160510–160520. [Google Scholar] [CrossRef]
- Khalid, M.; Naqvi, S.I.; Hussain, N.; Rahman, M.; Fawad; Mirjavadi, S.S.; Khan, M.J.; Amin, Y. 4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications. Electronics 2020, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, S.I.; Hussain, N.; Iqbal, A.; Rahman, M.; Forsat, M.; Mirjavadi, S.S.; Amin, Y. Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals. Sensors 2020, 20, 3926. [Google Scholar] [CrossRef]
- Kemmochi, F.; Omura, Y.; Otsuka, H. Throughput performance of multiband HetNets using sectorized picocells with 3D beamforming at 28 GHz band. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021. MACC-VIII. [Google Scholar] [CrossRef]
- Nishimura, S.; Suyama, S.; Asai, T.; Otsuka, H. Throughput performance of HetNets using sectorized picocells with 3D beamforming at 28 GHz band in multipath fading channels. In Proceedings of the 2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS), Osaka, Japan, 30–31 August 2021; pp. S3–S10. [Google Scholar] [CrossRef]
- 3GPP TSG RAN WG1; Potential performance of range expansion in macro-pico deployment (R1–104355). Kyocera: Osaka, Japan, August 2010.
- 3GPP TSG-RAN; Range expansion for efficient support of heterogeneous networks. Qualcomm Europe: San Diego, CA, USA, October 2010.
- 3GPP TR 36.783; Evolved Universal Terrestrial Radio Access (E-UTRA); Introduction of 1024 Quadrature Amplitude Modulation (QAM) in LTE downlink. 3GPP, April 2017; Release 15.
- Mu, Q.; Liu, L.; Chen, L.; Jiang, Y. CQI table design to support 256 QAM in small cell environment. In Proceedings of the 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 24–26 October 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Nakamura, M.; Otsuka, H. New Entry of OFDM using 256- and 1024-QAM in MCS Operation. In Proceedings of the APWCS, Singapore, 19–21 August 2015; pp. RS2–RS4. [Google Scholar]
- Abdullahi, J.M.M.A.; Cao, A. A low complexity 256QAM soft demapper for 5G mobile system. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Tian, R.; Senda, K.; Ota, T.; Otsuka, H. Transmission performance of OFDM-based 1024-QAM in multipath fading conditions. IEICE Commun. Express 2018, 7, 272–277. [Google Scholar] [CrossRef]
- Tian, R.; Senda, K.; Otsuka, H. BER Performance of OFDM-based 4096-QAM using soft decision Viterbi decoding in multipath fading. In Proceedings of the 2018 IEEE World Symposium on Communication Engineering (WSCE), Singapore, 28–30 December 2018. session 3. [Google Scholar] [CrossRef]
- Otsuka, H.; Tian, R.; Senda, K. Transmission Performance of an OFDM-Based Higher-Order Modulation Scheme in Multipath Fading Channels. J. Sens. Actuator Netw. 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, A.; Kemmochi, F.; Otsuka, H. Pico-eNB Tx power optimization for multiband HetNets with MCS Incorporating 1024-QAM. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea, 13–16 January 2021. O-8-5. [Google Scholar] [CrossRef]
- 3GPP TR 36.873; Study on 3D Channel Model for LTE. Release 12 3GPP RAN #63 March 2014; 3GPP: Provence, France, 2014.
- Nardini, G.; Stea, G.; Sabella, D. Simu5G: A System-level Simulator for 5G Networks. Simultech 2020, 68–80. [Google Scholar] [CrossRef]
- Olaifa, J.O.; Arifler, D. Using system-level simulation to evaluate downlink throughput performance in LTE-A networks with clustered user deployments. In Proceedings of the 2016 1st International Workshop on Link- and System Level Simulations (IWSLS), Vienna, Austria, 1 July 2016. [Google Scholar] [CrossRef]
- ITU Report M.2135-1; Guidelines for evaluation of radio interface technologies for IMT-Advanced. ITU: Geneva, Switzerland, December 2009.
- 3GPP TR 38.901; Study on channel model for frequencies from 0.5 to 100 GHz. iTeh, Inc.: San Francisco, CA, USA, March 2017; Release 14.
Parameter | Value | |
---|---|---|
Macro-eNB | Pico-eNB | |
Cell layout | Hexagonal grid, 19 cell sites 3 sectors per site | 4 picos per sector |
Carrier frequency | 2.0 GHz | 4.5 GHz |
System bandwidth | 10 MHz | 100 MHz |
Cell radius (ISD) | 289 m (500 m) | – |
Tx antenna height | 32 m | 10 m |
Tx power | 46 dBm | from 28 to 45 dBm |
Tx antenna gain | 14 dBi | 5 dBi |
Tx antenna downtilt | 15 deg. | 10 deg. |
UE distribution | 30 UEs per sector, 2/3 clustered distribution | |
Scheduling algorithm | Proportional fairness | |
Link adaptation | QPSK to 1024-QAM (25 MCS indexes) | |
Traffic model | Full buffer | |
MIMO | 2 × 2 SU-MIMO |
MCS Index | Modulation | Coding Rate | Efficiency (bps/Hz) |
---|---|---|---|
1 | QPSK | 1/13 | 0.152 |
2 | 1/9 | 0.234 | |
3 | 1/5 | 0.377 | |
4 | 1/3 | 0.667 | |
5 | 2/5 | 0.800 | |
6 | 1/2 | 1.000 | |
7 | 3/5 | 1.200 | |
8 | 2/3 | 1.333 | |
9 | 3/4 | 1.500 | |
10 | 16-QAM | 1/2 | 2.000 |
11 | 3/5 | 2.400 | |
12 | 2/3 | 2.667 | |
13 | 3/4 | 3.000 | |
14 | 64-QAM | 9/16 | 3.375 |
15 | 2/3 | 4.000 | |
16 | 3/4 | 4.500 | |
17 | 5/6 | 5.000 | |
18 | 11/12 | 5.500 | |
19 | 256-QAM | 7/10 | 5.600 |
20 | 3/4 | 6.000 | |
21 | 5/6 | 6.667 | |
22 | 11/12 | 7.333 | |
23 | 1024-QAM | 3/4 | 7.500 |
24 | 5/6 | 8.333 | |
25 | 11/12 | 9.167 |
Gain (dB) | Delay (ns) |
---|---|
−15.5 | 0 |
0.0 | 10 |
−5.1 | 15 |
−5.1 | 20 |
−9.6 | 25 |
−8.2 | 50 |
−13.1 | 65 |
−11.5 | 75 |
−11.0 | 105 |
−16.2 | 135 |
−16.6 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasaka, T.; Yoda, K.; Otsuka, H. Optimization of Pico-eNB Tx Power and the Effects of Picocell Range Expansion in Multiband HetNet. J. Sens. Actuator Netw. 2022, 11, 27. https://doi.org/10.3390/jsan11020027
Yasaka T, Yoda K, Otsuka H. Optimization of Pico-eNB Tx Power and the Effects of Picocell Range Expansion in Multiband HetNet. Journal of Sensor and Actuator Networks. 2022; 11(2):27. https://doi.org/10.3390/jsan11020027
Chicago/Turabian StyleYasaka, Takumi, Kentaro Yoda, and Hiroyuki Otsuka. 2022. "Optimization of Pico-eNB Tx Power and the Effects of Picocell Range Expansion in Multiband HetNet" Journal of Sensor and Actuator Networks 11, no. 2: 27. https://doi.org/10.3390/jsan11020027
APA StyleYasaka, T., Yoda, K., & Otsuka, H. (2022). Optimization of Pico-eNB Tx Power and the Effects of Picocell Range Expansion in Multiband HetNet. Journal of Sensor and Actuator Networks, 11(2), 27. https://doi.org/10.3390/jsan11020027