Coordinated PSO-ANFIS-Based 2 MPPT Control of Microgrid with Solar Photovoltaic and Battery Energy Storage System
Abstract
:1. Introduction
2. Photovoltaic Systems with P-Q Control Method
2.1. Solar PV Modeling and System Configuration
2.2. PSO-ANFIS MPPT Control
2.3. Inverter Control
3. Battery Energy Storage System (BESS)
3.1. Unit of Resynchronization
3.2. Droop Controller
3.3. Power and Voltage Regulators
3.4. Current Regulators
4. Results and Discussion
4.1. Grid Connected Mode
4.2. Grid to Microgrid to Grid Mode
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vandoorn, T.L.; Vasquez, J.C.; De Kooning, J.; Guerrero, J.M.; Vandevelde, L. Microgrids: Hierarchical control and an overview of the control and reserve management strategies. IEEE Ind. Electron. Mag. 2013, 7, 42–55. [Google Scholar] [CrossRef]
- Chowdhury, S.; Chowdhury, S.P.; Crossley, P. Microgrids and Active Distribution Networks; Instutation of Engineering and Technology: London, UK, 2022. [Google Scholar] [CrossRef]
- Kim, J.S.; So, S.M.; Kim, J.T.; Cho, J.W.; Park, H.J.; Jufri, F.H.; Jung, J. Microgrids platform: A design and implementation of a common platform for seamless microgrids operation. Electr. Power Syst. Res. 2019, 167, 21–38. [Google Scholar] [CrossRef]
- Vasquez, J.C.; Guerrero, J.M.; Savaghebi, M.; Eloy-Garcia, J.; Teodorescu, R. Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters. IEEE Trans. Ind. Electron. 2012, 60, 1271–1280. [Google Scholar] [CrossRef]
- Vandoorn, T.L.; Meersman, B.; De Kooning, J.D.; Vandevelde, L. Analogy between conventional grid control and islanded microgrid control based on a global DC-link voltage droop. IEEE Trans. Power Deliv. 2012, 27, 1405–1414. [Google Scholar] [CrossRef]
- Li, H.; Li, F.; Xu, Y.; Rizy, D.T.; Adhikari, S. Autonomous and adaptive voltage control using multiple distributed energy resources. IEEE Trans. Power Syst. 2012, 28, 718–730. [Google Scholar] [CrossRef]
- Zadeh, M.J.Z.; Fathi, S.H. A new approach for photovoltaic arrays modeling and maximum power point estimation in real operating conditions. IEEE Trans. Ind. Electron. 2017, 64, 9334–9343. [Google Scholar] [CrossRef]
- El Aamri, F.; Maker, H.; Sera, D.; Spataru, S.V.; Guerrero, J.M.; Mouhsen, A. A direct maximum power point tracking method for single-phase grid-connected PV inverters. IEEE Trans. Power Electron. 2017, 33, 8961–8971. [Google Scholar] [CrossRef]
- Khan, O.; Acharya, S.; Al Hosani, M.; El Moursi, M.S. Hill climbing power flow algorithm for hybrid DC/AC microgrids. IEEE Trans. Power Electron. 2017, 33, 5532–5537. [Google Scholar] [CrossRef]
- Huynh, D.C.; Dunnigan, M.W. Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel. IEEE Trans. Sustain. Energy 2016, 7, 1421–1429. [Google Scholar] [CrossRef]
- Al-Gizi, A.G.; Craciunescu, A.; Al-Chlaihawi, S.J. The use of ANN to supervise the PV MPPT based on FLC. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 703–708. [Google Scholar]
- Mir, M.; Kamyab, M.; Lariche, M.J.; Bemani, A.; Baghban, A. Applying ANFIS-PSO algorithm as a novel accurate approach for prediction of gas density. Pet. Sci. Technol. 2018, 36, 820–826. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdelrahem, M.; Farhan, A.; Harbi, I.; Kennel, R. DC-link sensorless control strategy for grid-connected PV systems. Electr. Eng. 2021, 103, 2345–2355. [Google Scholar] [CrossRef]
- Sundareswaran, K.; Vigneshkumar, V.; Sankar, P.; Simon, S.P.; Nayak, P.S.R.; Palani, S. Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system. IEEE Trans. Ind. Inform. 2015, 12, 187–200. [Google Scholar]
- Lee, J.; Kim, Y. Comparative Estimation of Electrical Characteristics of a Photovoltaic Module Using Regression and Artificial Neural Network Models. Electronics 2022, 11, 4228. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R.; Ruppert Filho, E. Modeling and circuit-based simulation of photovoltaic arrays. In Proceedings of the 2009 Brazilian Power Electronics Conference, Bonito-Mato Grosso do Sul, Brazil, 27 September–1 October2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1244–1254. [Google Scholar]
- Islam, H.; Mekhilef, S.; Shah NB, M.; Soon, T.K.; Seyedmahmousian, M.; Horan, B.; Stojcevski, A. Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies 2018, 11, 365. [Google Scholar] [CrossRef]
- Priyadarshi, N.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F.; Bhaskar, M.S. An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Syst. J. 2019, 14, 1218–1229. [Google Scholar] [CrossRef]
- Priyadarshi, N.; Padmanaban, S.; Maroti, P.K.; Sharma, A. An extensive practical investigation of FPSO-based MPPT for grid integrated PV system under variable operating conditions with anti-islanding protection. IEEE Syst. J. 2018, 13, 1861–1871. [Google Scholar] [CrossRef]
- Darvish, H.; Rahmani, S.; Maleki Sadeghi, A.; Emami Baghdadi, M.H. The ANFIS-PSO strategy as a novel method to predict interfacial tension of hydrocarbons and brine. Pet. Sci. Technol. 2018, 36, 654–659. [Google Scholar] [CrossRef]
- Ramezani, M.; Li, S.; Golestan, S. Analysis and controller design for stand-alone VSIs in synchronous reference frame. IET Power Electron. 2017, 10, 1003–1012. [Google Scholar] [CrossRef]
- Gonzalez, I.; Calderón, A.J.; Folgado, F.J. IoT real time system for monitoring lithium-ion battery long-term operation in microgrids. J. Energy Storage 2022, 51, 104596. [Google Scholar] [CrossRef]
- Tremblay, O.; Dessaint, L.A. Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 2009, 3, 289–298. [Google Scholar] [CrossRef]
- Adhikari, S.; Xu, Y.; Li, F.; Li, H.; Kueck, J.D.; Snyder, I.B.; Barker, T.J.; Hite, R. Utility-side voltage and PQ control with inverter-based photovoltaic systems. IFAC Proc. Vol. 2011, 44, 6110–6116. [Google Scholar] [CrossRef]
- Naji Alhasnawi, B.; Jasim, B.H.; Esteban, M.D. A new robust energy management and control strategy for a hybrid microgrid system based on green energy. Sustainability 2020, 12, 5724. [Google Scholar] [CrossRef]
- Chau, T.K.; Yu, S.S.; Fernando, T.; Iu, H.H.C.; Small, M. An investigation of the impact of PV penetration and BESS capacity on islanded microgrids–a small-signal based analytical approach. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1679–1684. [Google Scholar]
- Kafle, L.; Ni, Z.; Tonkoski, R.; Qiao, Q. Frequency control of isolated micro-grid using a droop control approach. In Proceedings of the 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, USA, 19–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 0771–0775. [Google Scholar]
- Majumder, R.; Chaudhuri, B.; Ghosh, A.; Majumder, R.; Ledwich, G.; Zare, F. Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Trans. Power Syst. 2009, 25, 796–808. [Google Scholar] [CrossRef]
- Firdaus, A.; Mishra, S. A double derivative-based droop controller for improved power sharing in inverter based autonomous microgrid. In Proceedings of the 2018 IEEMA Engineer Infinite Conference (eTechNxT), New Delhi, India, 13–14 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- He, J.; Li, Y.W.; Blaabjerg, F. An enhanced islanding microgrid reactive power, imbalance power, and harmonic power sharing scheme. IEEE Trans. Power Electron. 2014, 30, 3389–3401. [Google Scholar] [CrossRef]
- Zhong, Q.-C.; Hornik, T. Cascaded current–voltage control to improve the power quality for a grid-connected inverter with a local load. IEEE Trans. Ind. Electron. 2012, 60, 1344–1355. [Google Scholar] [CrossRef]
- Marwali, M.N.; Keyhani, A. Control of distributed generation systems-Part I: Voltages and currents control. IEEE Trans. Power Electron. 2004, 19, 1541–1550. [Google Scholar] [CrossRef]
- Giroux, P.; Tremblay, O.; Sybille, G.; Brunelle, P. Microgrid Dynamic Operation. 2021. Available online: https://www.mathworks.com/matlabcentral/fileexchange/93235-microgrid-dynamic-operation (accessed on 4 May 2023).
Parameters | Nominal Value |
---|---|
PMPP | 355.012 |
VMPP | 43.4 |
IMPP | 8.18 |
VOC | 51.9 |
ISC | 8.68 |
Parameters | Nominal Value |
---|---|
No. of operation | 25 |
No. of iteration | 100 |
Weight of inertia | 1 |
Symbol | Description | Nominal Value |
---|---|---|
Kppv | Power regulator Proportional gain | 0.05 |
Kipv | Power regulator Integral gain | 2 |
Kpvpv | Current regulator Proportional gain | 6 |
Kivpv | Current regulator Integral gain | 30 |
Kpipv | Voltage regulator Proportional gain | 0.2 |
Kiipv | Voltage regulator Integral gain | 15 |
Fsw | PWM switching freq. Hz | 2700 |
Kpsvn | Sync. Proportional gain (Kpsyn) | 0.075 |
Kisvn | Sync. Integral gain | 0.03 |
Symbol | Description | Nominal Value |
---|---|---|
Kpf | Frequency droop | 0.5 |
KQV | Voltage droop | 3 |
Kppb | Power regulator Proportional gain | 1.5 |
Kipb | Power regulator Integral gain | 15 |
Kpib | Current regulator Proportional gain | 0.2 |
Kiib | Current regulator Integral gain | 15 |
Kpvb | Voltage regulator Proportional gain | 2 |
Kivb | Voltage regulator Integral gain | 25 |
Fsw | PWM switching freq. Hz | 2700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
SIddaraj, S.; Yaragatti, U.R.; Harischandrappa, N. Coordinated PSO-ANFIS-Based 2 MPPT Control of Microgrid with Solar Photovoltaic and Battery Energy Storage System. J. Sens. Actuator Netw. 2023, 12, 45. https://doi.org/10.3390/jsan12030045
SIddaraj S, Yaragatti UR, Harischandrappa N. Coordinated PSO-ANFIS-Based 2 MPPT Control of Microgrid with Solar Photovoltaic and Battery Energy Storage System. Journal of Sensor and Actuator Networks. 2023; 12(3):45. https://doi.org/10.3390/jsan12030045
Chicago/Turabian StyleSIddaraj, Siddaraj, Udaykumar R. Yaragatti, and Nagendrappa Harischandrappa. 2023. "Coordinated PSO-ANFIS-Based 2 MPPT Control of Microgrid with Solar Photovoltaic and Battery Energy Storage System" Journal of Sensor and Actuator Networks 12, no. 3: 45. https://doi.org/10.3390/jsan12030045
APA StyleSIddaraj, S., Yaragatti, U. R., & Harischandrappa, N. (2023). Coordinated PSO-ANFIS-Based 2 MPPT Control of Microgrid with Solar Photovoltaic and Battery Energy Storage System. Journal of Sensor and Actuator Networks, 12(3), 45. https://doi.org/10.3390/jsan12030045