Robust ISAC Localization in Smart Cities: A Hybrid Network Approach for NLOS Challenges with Uncertain Parameters
Abstract
:1. Introduction
- First, we present a novel BN localization technique within ISAC systems. This innovative approach leverages cooperative RSS and TOA measurements to achieve accurate localization, particularly when confronting the challenges of an obscured NLOS propagation environment and uncertain transmission parameters.
- Then, we introduce an innovative approach that transforms the original location estimation problem into an equivalent one centered on worst-case estimation errors through parameter estimation, followed by applying convex relaxation techniques to obtain an accurate solution. Conventionally, tackling the joint estimation problem encompassing source location, NLOS biases, and unknown transmission parameters poses a complex and non-convex challenge that frequently surpasses the capabilities of conventional search algorithms.
- Lastly, through numerical simulations, we evaluated the superior performance of our proposed cooperative localization technique, which harnesses hybrid RSS-TOA measurements. This performance comparison is conducted against contemporary state-of-the-art techniques.
2. Related Work
3. Network Model and Problem Formulation
3.1. Hybrid Ranging Model
3.2. Problem Formulation
4. Proposed Localization Method
5. Numerical Results and Discussion
5.1. Simulation Setup
5.2. Results
5.2.1. Impact of Maximum NLOS Bias
5.2.2. Impact of Ranging Error
5.2.3. Impact of NLOS Links
5.2.4. Impact of Increasing BNs
5.2.5. Sensing Performance
5.3. Computational Complexity
5.4. Summary of the Results Obtained
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Santos, J.; Vanhove, T.; Sebrechts, M.; Dupont, T.; Kerckhove, W.; Braem, B.; Van Seghbroeck, G.; Wauters, T.; Leroux, P.; Latre, S.; et al. City of things: Enabling resource provisioning in smart cities. IEEE Commun. Mag. 2018, 56, 177–183. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for smarter cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar] [CrossRef]
- Khalil, R.A.; Saeed, N. Convex hull optimization for robust localization in ISAC systems. IEEE Sens. Lett. 2023, 7, 5504104. [Google Scholar] [CrossRef]
- Qu, K.; Guo, S.; Saeed, N.; Ye, J. Near-field integrated sensing and communications: Unlocking potentials and shaping the future. arXiv 2023, arXiv:2308.00252. [Google Scholar]
- Chehri, A.; Quadar, N.; Saadane, R. Survey on localization methods for autonomous vehicles in smart cities. In Proceedings of the 4th International Conference on Smart City Applications, New York, NY, USA, 2–4 October 2019; pp. 1–6. [Google Scholar]
- Liu, A.; Huang, Z.; Li, M.; Wan, Y.; Li, W.; Han, T.X.; Liu, C.; Du, R.; Tan, D.K.P.; Lu, J.; et al. A survey on fundamental limits of integrated sensing and communication. IEEE Commun. Surv. Tutor. 2022, 24, 994–1034. [Google Scholar] [CrossRef]
- Li, D.; Deng, L.; Gupta, B.B.; Wang, H.; Choi, C. A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf. Sci. 2019, 479, 432–447. [Google Scholar] [CrossRef]
- Guebli, W.; Belkhir, A. Inconsistency detection-based LOD in smart homes. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2021, 17, 56–75. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Jing, X.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Netw. 2021, 35, 158–167. [Google Scholar] [CrossRef]
- Guo, S.; Lu, B.; Wen, M.; Dang, S.; Saeed, N. Customized 5G and Beyond Private Networks with Integrated URLLC, eMBB, mMTC, and Positioning for Industrial Verticals. IEEE Commun. Stand. Mag. 2022, 6, 52–57. [Google Scholar] [CrossRef]
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- De Lima, C.; Belot, D.; Berkvens, R.; Bourdoux, A.; Dardari, D.; Guillaud, M.; Isomursu, M.; Lohan, E.S.; Miao, Y.; Barreto, A.N.; et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges. IEEE Access 2021, 9, 26902–26925. [Google Scholar] [CrossRef]
- Khalil, R.A.; Saeed, N.; Almutiry, M.; Alenezi, A.H. Energy-efficient anchor activation protocol for non-cooperative localization of Industrial Internet of Things (IIoT). ICT Express 2023, 9, 815–820. [Google Scholar] [CrossRef]
- Meng, K.; Wu, Q.; Xu, J.; Chen, W.; Feng, Z.; Schober, R.; Swindlehurst, A.L. UAV-enabled integrated sensing and communication: Opportunities and challenges. IEEE Wirel. Commun. 2023. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C. Integrated Sensing and Communications: Background and Applications. In Integrated Sensing and Communications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 3–21. [Google Scholar]
- Salem, H.; Quamar, M.; Mansoor, A.; Elrashidy, M.; Saeed, N.; Masood, M. Data-driven Integrated Sensing and Communication: Recent Advances, Challenges, and Future Prospects. arXiv 2023, arXiv:2308.09090. [Google Scholar]
- Meng, K.; Wu, Q.; Ma, S.; Chen, W.; Wang, K.; Li, J. Throughput maximization for UAV-enabled integrated periodic sensing and communication. IEEE Trans. Wirel. Commun. 2022, 22, 671–687. [Google Scholar] [CrossRef]
- Paszek, K.; Grzechca, D.; Becker, A. Design of the UWB positioning system simulator for LOS/NLOS environments. Sensors 2021, 21, 4757. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Diao, H.; Yang, L. Signal Detection Theory-Based Localization Method in Urban NLOS Environment. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; pp. 195–200. [Google Scholar]
- Liu, Q.; Gao, C.; Shang, R.; Peng, Z.; Zhang, R.; Gan, L.; Gao, W. NLOS signal detection and correction for smartphone using convolutional neural network and variational mode decomposition in urban environment. GPS Solut. 2023, 27, 31. [Google Scholar] [CrossRef]
- Khalil, R.A.; Saeed, N.; Almutiry, M. UAVs-assisted passive source localization using robust TDOA ranging for search and rescue. ICT Express 2022, 9, 677–682. [Google Scholar] [CrossRef]
- Huang, S.; Wang, B.; Zhao, Y.; Luan, M. Near-field RSS-based localization algorithms using reconfigurable intelligent surface. IEEE Sens. J. 2022, 22, 3493–3505. [Google Scholar] [CrossRef]
- Saeed, N.; Ahmad, W.; Bhatti, D.M.S. Localization of vehicular ad-hoc networks with RSS based distance estimation. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–6. [Google Scholar]
- Elnour, R.A.; Ali, E.S.; Yousif, I.; Saeed, R.A.; Mokhtar, R.A.; Hayder, G.; Khalifa, O.O. Social Internet of Things (SIoT) Localization for Smart Cities Traffic Applications. In Sustainability Challenges and Delivering Practical Engineering Solutions: Resources, Materials, Energy, and Buildings; Springer: Berlin/Heidelberg, Germany, 2023; pp. 159–166. [Google Scholar]
- Feng, Z.; Wei, Z.; Chen, X.; Yang, H.; Zhang, Q.; Zhang, P. Joint communication, sensing, and computation enabled 6G intelligent machine system. IEEE Netw. 2021, 35, 34–42. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H. Robust multidimensional scaling for cognitive radio network localization. IEEE Trans. Veh. Technol. 2014, 64, 4056–4062. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Wu, Z.; Hong, S.; Chang, S. A Semidefinite Relaxation Approach for Mobile Target Localization Based on TOA and Doppler Frequency Shift Measurements. IEEE Sens. J. 2023, 23, 16051–16057. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K. Communication, sensing, computing and energy harvesting in smart cities. IET Smart Cities 2022, 4, 265–274. [Google Scholar] [CrossRef]
- Coluccia, A.; Fascista, A. On the hybrid TOA/RSS range estimation in wireless sensor networks. IEEE Trans. Wirel. Commun. 2017, 17, 361–371. [Google Scholar] [CrossRef]
- Ingabire, W.; Larijani, H.; Gibson, R.M. LoRa RSSI based outdoor localization in an urban area using random neural networks. In Intelligent Computing, Proceedings of the 2021 Computing Conference, Virtual, 15–16 July 2021; Springer: Berlin/Heidelberg, Germany, 2021; Volume 2, pp. 1032–1043. [Google Scholar]
- del Peral-Rosado, J.A.; Granados, G.; Raulefs, R.; Leitinger, E.; Grebien, S.; Wilding, T.; Dardari, D.; Lohan, E.; Wymeersch, H.; Floch, J.; et al. Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things; COST Action CA15104, IRACON, 2018; pp. 1–27. [Google Scholar]
- Saeed, N.; Stojkoska, B.R. Robust localisation algorithm for large scale 3D wireless sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 2016, 23, 82–91. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Cheng, L. Fusion Localization Algorithm Based on Robust IMM Model Combined with Semi-Definite Programming. Actuators 2022, 11, 146. [Google Scholar] [CrossRef]
- Tian, X.; Wei, G.; Song, Y.; Ding, D. Cooperative localization based on semidefinite relaxation in wireless sensor networks under non-line-of-sight propagation. Wirel. Netw. 2023, 29, 775–785. [Google Scholar] [CrossRef]
- Qiu, F.; Zhang, W. Position Error Bound of the AOA Based Cooperative Localization in 3D Space. In Proceedings of the International Conference on Guidance, Navigation and Control, Harbin, China, 5–7 August 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 5422–5431. [Google Scholar]
- Qiu, F.; Zhang, W. Efficient cooperative localization method with node selection based on position error bound. Signal Process. 2023, 209, 109037. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Zheng, S.; Zheng, P.; Liang, X.; Li, Y.; Bu, X.; Zou, X. Range-Aided Drift-Free Cooperative Localization and Consistent Reconstruction of Multi-Ground Robots. IEEE Robot. Autom. Lett. 2023, 8, 2094–2101. [Google Scholar] [CrossRef]
- Mei, X.; Han, D.; Saeed, N.; Wu, H.; Ma, T.; Xian, J. Range difference-based target localization under stratification effect and NLOS bias in UWSNs. IEEE Wirel. Commun. Lett. 2022, 11, 2080–2084. [Google Scholar] [CrossRef]
- Qiao, T.; Redfield, S.; Abbasi, A.; Su, Z.; Liu, H. Robust coarse position estimation for TDOA localization. IEEE Wirel. Commun. Lett. 2013, 2, 623–626. [Google Scholar] [CrossRef]
- Hammes, U.; Zoubir, A.M. Robust MT tracking based on M-estimation and interacting multiple model algorithm. IEEE Trans. Signal Process. 2011, 59, 3398–3409. [Google Scholar] [CrossRef]
- Horiba, M.; Okamoto, E.; Shinohara, T.; Matsumura, K. An improved NLOS detection scheme for hybrid-TOA/AOA-based localization in indoor environments. In Proceedings of the 2013 IEEE International Conference on Ultra-Wideband (ICUWB), Sydney, NSW, Australia, 5–18 September 2013; pp. 37–42. [Google Scholar]
- Liao, J.F.; Chen, B.S. Robust mobile location estimator with NLOS mitigation using interacting multiple model algorithm. IEEE Trans. Wirel. Commun. 2006, 5, 3002–3006. [Google Scholar] [CrossRef]
- Coluccia, A.; Fascista, A. Hybrid TOA/RSS range-based localization with self-calibration in asynchronous wireless networks. J. Sens. Actuator Netw. 2019, 8, 31. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M. Target localization via integrated and segregated ranging based on RSS and TOA measurements. Sensors 2019, 19, 230. [Google Scholar] [CrossRef]
- Panwar, K.; Katwe, M.; Babu, P.; Ghare, P.; Singh, K. A majorization-minimization algorithm for hybrid TOA-RSS based localization in NLOS environment. IEEE Commun. Lett. 2022, 26, 1017–1021. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M. A robust NLOS bias mitigation technique for RSS-TOA-based target localization. IEEE Signal Process. Lett. 2018, 26, 64–68. [Google Scholar] [CrossRef]
- Yang, X. NLOS mitigation for UWB localization based on sparse pseudo-input Gaussian process. IEEE Sens. J. 2018, 18, 4311–4316. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, Y.; Jia, Z. An indoor mobile localization strategy for robot in NLOS environment. Int. J. Distrib. Sens. Netw. 2013, 9, 758749. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H. MDS-LM for Wireless Sensor Networks Localization. In Proceedings of the IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Republic of Korea, 18–21 May 2014; pp. 1–6. [Google Scholar]
- Li, S.; Hedley, M.; Collings, I.B.; Humphrey, D. Joint trajectory and ranging offset estimation for accurate tracking in NLOS environments. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 3–14. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, T.; Li, Z.; Sun, D.; Sun, X.; Zhao, X.; Hu, F. NLOS identification and correction based on multidimensional scaling and quasi-accurate detection. IEEE Access 2019, 7, 53977–53987. [Google Scholar] [CrossRef]
- Cheng, L.; Xue, M.; Wang, Y.; Wang, Y.; Bi, Y. A robust tracking algorithm based on modified generalized probability data association for wireless sensor network. IEEE Trans. Ind. Electron. 2021, 69, 2136–2146. [Google Scholar] [CrossRef]
- Cheng, L.; Li, Y.; Xue, M.; Wang, Y. An indoor localization algorithm based on modified joint probabilistic data association for wireless sensor network. IEEE Trans. Ind. Inform. 2020, 17, 63–72. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, S.; Wang, G.; Chen, H. Robust RSS-based source localization with unknown model parameters in mixed LOS/NLOS environments. IEEE Trans. Veh. Technol. 2021, 70, 3926–3931. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, S.; Wang, L. Nlos identification for uwb based on channel impulse response. In Proceedings of the 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, QLD, Australia, 17–19 December 2018; pp. 1–6. [Google Scholar]
- Li, S.; Hedley, M.; Collings, I.B.; Humphrey, D. TDOA-based localization for semi-static targets in NLOS environments. IEEE Wirel. Commun. Lett. 2015, 4, 513–516. [Google Scholar] [CrossRef]
- Su, Z.; Shao, G.; Liu, H. A soft-minimum method for NLOS error mitigation in TOA systems. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–4. [Google Scholar]
- Wang, G.; So, A.M.C.; Li, Y. Robust convex approximation methods for TDOA-based localization under NLOS conditions. IEEE Trans. Signal Process. 2016, 64, 3281–3296. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, S.; Wang, G.; Li, Y. Robust NLOS error mitigation method for TOA-based localization via second-order cone relaxation. IEEE Commun. Lett. 2015, 19, 2210–2213. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Hao, B.; Shi, J. Sensor selection for TDOA-based localization in wireless sensor networks with non-line-of-sight condition. IEEE Trans. Veh. Technol. 2019, 68, 9935–9950. [Google Scholar] [CrossRef]
- Chen, H.; Wang, G.; Ansari, N. Improved robust TOA-based localization via NLOS balancing parameter estimation. IEEE Trans. Veh. Technol. 2019, 68, 6177–6181. [Google Scholar] [CrossRef]
- Jin, D.; Yin, F.; Zoubir, A.M.; So, H.C. Exploiting sparsity of ranging biases for NLOS mitigation. IEEE Trans. Signal Process. 2021, 69, 3782–3795. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H. Energy efficient localization algorithm with improved accuracy in cognitive radio networks. IEEE Commun. Lett. 2017, 21, 2017–2020. [Google Scholar] [CrossRef]
- Macii, D.; Colombo, A.; Pivato, P.; Fontanelli, D. A data fusion technique for wireless ranging performance improvement. IEEE Trans. Instrum. Meas. 2012, 62, 27–37. [Google Scholar] [CrossRef]
- Khalil, R.A.; Saeed, N.; Babar, M.I.; Jan, T.; Din, S. Bayesian multidimensional scaling for location awareness in hybrid-Internet of Underwater Things. IEEE/CAA J. Autom. Sin. 2021, 9, 496–509. [Google Scholar] [CrossRef]
- Achroufene, A. RSSI-based Hybrid Centroid-K-Nearest Neighbors localization method. Telecommun. Syst. 2023, 82, 101–114. [Google Scholar] [CrossRef]
- Muth, C.; Schmalen, L. Autoencoder-based Joint Communication and Sensing of Multiple Targets. In Proceedings of the WSA & SCC 2023, 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding, Braunschweig, Germany, 27–27 February 2023; pp. 1–6. [Google Scholar]
Ref. | Proposed Method | Ranging Technique Used | Optimization Technique Used | LOS/NLOS |
---|---|---|---|---|
[41] | Scaling by MAjorizing a Complicated Function (SMACOF) | TDOA | Non-linear least squares (NLS) algorithm | NLOS |
[42] | Robust extended Kalman filter (REKF) | TOA | M-estimation algorithm | Both LOS and NLOS |
[43] | Iterative minimum residual | TOA/AOA | iterative minimization | Both LOS and NLOS |
[44] | Kalman-based interacting multiple model | TOA | Kalman estimation | Both LOS and NLOS |
[45] | Range-Based Localization with Self-Calibration | Hybrid TOA and RSS | Joint maximum likelihood (ML) estimation | LOS |
[46] | Integrated and Segregated Ranging Based model | Hybrid TOA and RSS | Weighted least squares (WLS) | NLOS |
[47] | Majorization-minimization (MM) algorithm | Hybrid TOA and RSS | Joint ad-hoc (JAH) estimator | NLOS |
[48] | Generalized trust region sub-problem (GTRS) | RSS-TOA | Bias mitigation algorithm | NLOS |
[49] | Sparse Pseudo-input Gaussian Process | TOA | Bias mitigation algorithm | NLOS |
[50] | Prior knowledge-based correction strategy (PKCS) | RSS | Residual weighting algorithm | Both LOS and NLOS |
[52] | Joint Trajectory and Ranging Offset Estimation | TOA | Gaussian process regression | NLOS |
[55] | Probabilistic data association localization | TOA | EKF | Both LOS and NLOS |
[56] | Robust weighted least squares (RWLS) | RSS | Semidefinite relaxation | NLOS |
[53] | NIMQ-based multidimensional scaling | RSS | Quasi-Accurate detection (QUAD) | NLOS |
[54] | Fusion-based NLOS model | TDOA | Modified probabilistic data association algorithm | NLOS |
[57] | Soft-minimum method for NLOS | TOA | Semidefinite programming | NLOS |
[53] | Adaptive boosting (AdaBoost) | residual TOA | Mean excess delay | NLOS |
[58] | Statustics of ranging techniques | TDOA | Iterative positioning | NLOS |
[59] | Soft-minimum Method | TOA | Semidefinite programming algorithm | NLOS |
[60] | Robust least squares algorithm | TDOA | Convex relaxation | NLOS |
[61] | Robust second-order cone relaxation | TOA | Second-order cone relaxation | NLOS |
[62] | Best option filling algorithm | TDOA | second-order cone relaxation | LOS |
[63] | Robust weighted least squares | TOA | Semidefinite relaxation | NLOS |
[64] | Sparse algorithm | TOA | Residual error function | Both LOS and NLOS |
This work | Robust ISAC-based localization | Hybrid RSS and TOA | Convex optimization | Both LOS and NLOS |
Variable | Description |
---|---|
N | Total number of blind nodes (BNs) |
M | Total number of anchor nodes (ANs) |
n | Number of dimensions n = 2 or 3 |
Unknown position of BN | |
Unknown position of AN | |
Total number of nodes (ANs + BNs) | |
Links between BN and AN | |
Links between BN and BN | |
Transmit time | |
Signal power | |
and | Non-negative NLOS biases |
Noise in RSS | |
Noise in TOA | |
Parameters of interest | |
Maximum-likelihood estimation | |
Explicit function of | |
c | Speed of light |
Bias parameter | |
Balancing parameter | |
Transmission parameter | |
and | Auxiliary variables |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althobaiti, T.; Khalil, R.A.; Saeed, N. Robust ISAC Localization in Smart Cities: A Hybrid Network Approach for NLOS Challenges with Uncertain Parameters. J. Sens. Actuator Netw. 2024, 13, 2. https://doi.org/10.3390/jsan13010002
Althobaiti T, Khalil RA, Saeed N. Robust ISAC Localization in Smart Cities: A Hybrid Network Approach for NLOS Challenges with Uncertain Parameters. Journal of Sensor and Actuator Networks. 2024; 13(1):2. https://doi.org/10.3390/jsan13010002
Chicago/Turabian StyleAlthobaiti, Turke, Ruhul Amin Khalil, and Nasir Saeed. 2024. "Robust ISAC Localization in Smart Cities: A Hybrid Network Approach for NLOS Challenges with Uncertain Parameters" Journal of Sensor and Actuator Networks 13, no. 1: 2. https://doi.org/10.3390/jsan13010002
APA StyleAlthobaiti, T., Khalil, R. A., & Saeed, N. (2024). Robust ISAC Localization in Smart Cities: A Hybrid Network Approach for NLOS Challenges with Uncertain Parameters. Journal of Sensor and Actuator Networks, 13(1), 2. https://doi.org/10.3390/jsan13010002