Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality
Abstract
:1. Introduction
2. Literature Review
2.1. COVID-19 and Non-COVID-19 Mortality
2.2. Score-Driven Models
3. Material and Methods
3.1. Data
3.2. Methods
3.2.1. t-PQVAR(p)
3.2.2. Estimation of the t-PQVAR(p) Model
3.2.3. The Gaussian-PVARMA(p,p) Model
3.2.4. Model Specification and IRF Identification
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Alsmeyer, Gerold. 2003. On the Harris recurrence of iterated random Lipschitz functions and related convergence rate results. Journal of Theoretical Probability 16: 217–47. [Google Scholar] [CrossRef]
- Alvarez, Javier, and Manuel Arellano. 2003. The time series and cross-section asymptotics of dynamic panel data estimators. Econometrica 71: 1121–59. [Google Scholar] [CrossRef]
- Appleby, John. 2020. What is happening to non-COVID deaths? The BMJ 369: m1607. [Google Scholar] [CrossRef]
- Aquino-Matus, Jorge, Misael Uribe, and Norberto Chavez-Tapia. 2022. COVID-19: Current status in gastrointestinal, hepatic, and pancreatic diseases—A concise review. Tropical Medicine and Infectious Disease 7: 187. [Google Scholar] [CrossRef]
- Askin, Lutfu, Okan Tanrıverdi, and Husna Sengul Askin. 2020. The effect of coronavirus disease 2019 on cardiovascular diseases. Arquivos Brasileiros de Cardiologia 114: 817–22. [Google Scholar] [CrossRef] [PubMed]
- Barach, Paul, Stacy D. Fisher, M. Jacob Adams, Gale R. Burstein, Patrick D. Brophy, Dennis Z. Kuo, and Steven E. Lipshultz. 2020. Disruption of healthcare: Will the COVID pandemic worsen non-COVID outcomes and disease outbreaks? Progress in Pediatric Cardiology 59: 101254. [Google Scholar] [CrossRef]
- Barrett, Devlin. 2020. 2020 Saw an Unprecedented Spike in Homicides from Big Cities to Small Towns. The Washington Post. December 30. Available online: https://www.washingtonpost.com/national-security/reoord-spike-murders-2020/2020/12/30/1dcb057c-4ae5-11eb-839a-cf4ba7b7c48c_story.html (accessed on 1 August 2024).
- Bhaskaran, Krishnan, Sebastian Bacon, Stephen J. W. Evans, Chris J. Bates, Christopher T. Rentsch, Brian MacKenna, Laurie Tomlinson, Alex J. Walker, Anna Schultze, Caroline E. Morton, and et al. 2021. Factors associated with deaths due to COVID-19 versus other causes: Population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. The Lancet Regional Health Europe 6: 100109. [Google Scholar] [CrossRef]
- Binder, Michael, Cheng Hsiao, and M. Hashem Pesaran. 2005. Estimation and inference in short panel vector autoregressions with unit roots and cointegration. Econometric Theory 21: 795–837. [Google Scholar] [CrossRef]
- Blasques, Francisco, Janneke van Brummelen, Paolo Gorgi, and Siem Jan Koopman. 2024. Maximum likelihood estimation for non-stationary location models with mixture of normal distributions. Journal of Econometrics 238: 105575. [Google Scholar] [CrossRef]
- Blasques, Francisco, Janneke van Brummelen, Siem Jan Koopman, and Andre Lucas. 2022. Maximum likelihood estimation for score-driven models. Journal of Econometrics 227: 325–46. [Google Scholar] [CrossRef]
- Blasques, Francisco, Siem Jan Koopman, and Andre Lucas. 2015. Information-theoretic optimality of observation-driven time series models for continuous responses. Biometrika 102: 325–43. [Google Scholar] [CrossRef]
- Blazsek, Szabolcs, Alvaro Escribano, and Adrian Licht. 2021. Identification of seasonal effects in impulse responses using score-driven multivariate location models. Journal of Econometric Methods 10: 53–66. [Google Scholar] [CrossRef]
- Blazsek, Szabolcs, Alvaro Escribano, and Adrian Licht. 2022. Multivariate Markov-switching score-driven models: An application to the global crude oil market. Studies in Nonlinear Dynamics & Econometrics 26: 313–35. [Google Scholar]
- Blazsek, Szabolcs, Alvaro Escribano, and Adrian Licht. 2023. Co-integration with score-driven models: An application to US real GDP growth, US inflation rate, and effective federal funds rate. Macroeconomic Dynamics 27: 203–23. [Google Scholar] [CrossRef]
- Blazsek, Szabolcs, Alvaro Escribano, and Adrian Licht. 2024a. Non-Gaussian score-driven conditionally heteroskedastic models with a macroeconomic application. Macroeconomic Dynamics 28: 32–50. [Google Scholar] [CrossRef]
- Blazsek, Szabolcs, Alvaro Escribano, and Erzsebet Kristof. 2024b. Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models. Energy Economics 134: 107591. [Google Scholar] [CrossRef]
- Blazsek, Szabolcs, and Alvaro Escribano. 2022. Robust estimation and forecasting of climate change using score-driven ice-age models. Econometrics (Special Issue: Econometric Analysis of Climate Change) 10: 9. [Google Scholar] [CrossRef]
- Blazsek, Szabolcs, and Alvaro Escribano. 2023. Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts. Energy Economics 118: 106522. [Google Scholar] [CrossRef]
- Brandt, Andreas. 1986. The stochastic equation Yn+1 = AnYn + Bn with stationary coefficients. Advances in Applied Probability 18: 211–20. [Google Scholar]
- Constable, Harriet, and Jacob Kushner. 2021. Stopping the next one: What could the next pandemic be? BBC. January 11. Available online: https://www.bbc.com/future/article/20210111-what-could-the-next-pandemic-be (accessed on 1 August 2024).
- Creal, Drew, Siem Jan Koopman, and Andre Lucas. 2011. A dynamic multivariate heavy-tailed model for time-varying volatility and correlations. Journal of Business & Economic Statistics 29: 552–63. [Google Scholar]
- Creal, Drew, Siem Jan Koopman, and Andre Lucas. 2013. Generalized autoregressive score models with applications. Journal of Applied Econometrics 28: 777–95. [Google Scholar] [CrossRef]
- Cronin, Christopher J., and William N. Evans. 2021. Excess mortality from COVID and non-COVID causes in minority populations. Proceedings of the National Academy of Sciences of the United States of America 118: e2101386118. [Google Scholar] [CrossRef] [PubMed]
- Delle Monache, Davide, Andrea De Polis, and Ivan Petrella. 2024. Modeling and forecasting macroeconomic downside risk. Journal of Business and Economic Statistics 42: 1010–25. [Google Scholar] [CrossRef]
- Elton, John H. 1990. A multiplicative ergodic theorem for Lipschitz maps. Stochastic Processes and Their Applications 34: 39–47. [Google Scholar] [CrossRef]
- Escanciano, J. Carlos, and Ignacio N. Lobato. 2009. An automatic Portmanteau test for serial correlation. Journal of Econometrics 151: 140–49. [Google Scholar] [CrossRef]
- Geenens, Gery. 2020. Copula modeling for discrete random vectors. Dependence Modeling 8: 417–40. [Google Scholar] [CrossRef]
- Gorgi, Paolo, Christopher S. A. Lauria, and Alessandra Luati. 2023. On the optimality of score-driven models. Biometrika, asad067. [Google Scholar] [CrossRef]
- Harvey, Andrew C. 1990. The Econometric Analysis of Time Series, 2nd ed. Cambridge: The MIT Press. [Google Scholar]
- Harvey, Andrew C. 2013. Dynamic Models for Volatility and Heavy Tails. Cambridge: Cambridge University Press. [Google Scholar]
- Harvey, Andrew C., and Tirthankar Chakravarty. 2008. Beta-t-(E)GARCH. Cambridge Working Papers in Economics 0840, Faculty of Economics, University of Cambridge. Available online: https://api.repository.cam.ac.uk/server/api/core/bitstreams/12affea4-025b-4031-b8b6-1cfd47e0aeab/content (accessed on 1 August 2024).
- Hertz-Palmor, Nimrod, Tyler M. Moore, Doron Gothelf, Grace E. DiDomenico, Idit Dekel, David M. Greenberg, Lily A. Brown, Noam Matalon, Elina Visoki, Lauren K. White, and et al. 2021. Association among income Loss, financial strain and depressive symptoms during COVID-19: Evidence from two longitudinal studies. Journal of Affective Disorders 291: 1–8. [Google Scholar] [CrossRef]
- Herwartz, Helmut, and Helmut Lütkepohl. 2000. Multivariate volatility analysis of VW stock prices. International Journal of Intelligent Systems in Accounting, Finance & Management 9: 35–54. [Google Scholar]
- Holtz-Eakin, Douglas, Whitney Newey, and Harvey S. Rosen. 1988. Estimating vector autoregressions with panel data. Econometrica 56: 1371–95. [Google Scholar] [CrossRef]
- Ionides, Edward L., Zhen Wang, and Jose A. Tapia Granados. 2013. Macroeconomic effects on mortality revealed by panel analysis with nonlinear trends. Annals of Applied Statistics 7: 1362–85. [Google Scholar] [CrossRef]
- Jacobson, Sheldon J., and Janet A. Jokela. 2020. Non-COVID-19 excess deaths by age and gender in the United States during the first three months of the COVID-19 pandemic. Public Health 189: 101–3. [Google Scholar] [CrossRef] [PubMed]
- Kilian, Lutz, and Helmut Lütkepohl. 2017. Structural Vector Autoregressive Analysis. Cambridge: Cambridge University Press. [Google Scholar]
- Ljung, Greta M., and George E. P. Box. 1978. On a measure of a lack of fit in time series models. Biometrika 65: 297–303. [Google Scholar] [CrossRef]
- Lütkepohl, Helmut. 2005. New Introduction to Multivariate Time Series Analysis. Berlin: Springer. [Google Scholar]
- Marani, Marco, Gabriel G. Katul, William K. Pan, and Anthony J. Parolari. 2021. Intensity and frequency of extreme novel epidemics. Proceedings of the National Academy of Sciences of the United States of America 118: e2105482118. [Google Scholar] [CrossRef] [PubMed]
- Marshall, Albert W., and Ingram Olkin. 1985. A family of bivariate distributions generated by the bivariate Bernoulli distribution. Journal of the American Statistical Association 80: 332–38. [Google Scholar] [CrossRef]
- Newey, Whitney K., and Kenneth D. West. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55: 703–8. [Google Scholar] [CrossRef]
- Peel, Michael. 2024. The next pandemic is coming. Will we be ready? Financial Times. April 4. Available online: https://www.ft.com/content/d40a3add-8151-4910-aabd-3f1dafabcc35 (accessed on 1 August 2024).
- Rosenfeld, Richard, Bobby Boxerman, and Ernesto Lopez. 2023. Pandemic, Social Unrest, and Crime in U.S. Cities: Year-End 2022 Update. Council on Criminal Justice, Washington, DC. Available online: https://counciloncj.org/pandemic-social-unrest-and-crime-in-u-s-cities-mid-year-2022-update/ (accessed on 1 August 2024).
- Rubio-Ramírez, Juan F., Daniel F. Waggoner, and Tao Zha. 2010. Structural vector autoregressions: Theory for identification and algorithms for inference. Review of Economic Studies 77: 665–96. [Google Scholar] [CrossRef]
- Ruhm, Christopher J. 2000. Are recessions good for your health? The Quarterly Journal of Economics 115: 617–50. [Google Scholar] [CrossRef]
- Shiels, Meredith S., Jonas S. Almeida, Montserrat García-Closas, Paul S. Albert, Neal D. Freedman, and Amy Berrington de González. 2021a. Impact of population growth and aging on estimates of excess U.S. deaths during the COVID-19 pandemic, March to August 2020. Annals of Internal Medicine 174: 437–43. [Google Scholar] [CrossRef]
- Shiels, Meredith S., Anika T. Haque, Emily A. Haozous, Paul S. Albert, Jonas S. Almeida, Montserrat García-Closas, Anna M. Nápoles, Eliseo J. Pérez-Stable, Neal D. Freedman, and Amy Berrington de González. 2021b. Racial and ethnic disparities in excess deaths during the COVID-19 pandemic, March to December 2020. Annals of Internal Medicine 174: 1693–99. [Google Scholar] [CrossRef]
- Straumann, Daniel, and Thomas Mikosch. 2006. Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach. The Annals of Statistics 34: 2449–95. [Google Scholar] [CrossRef]
- Tomaszewska, Agata, Agnieszka Rustecka, Agnieszka Lipinska-Opalka, Rafal P. Piprek, Malgorzata Kloc, Boleslaw Kalicki, and Jacek Z. Kubiak. 2022. The role of vitamin D in COVID-19 and the impact of pandemic restrictions on vitamin D blood content. Frontiers in Pharmacology 13: 836738. [Google Scholar] [CrossRef] [PubMed]
- Wan, W. 2020. Panic isolation has killed thousands of Alzheimer’s patients while families watch from afar. Washington Post. September 1. Available online: https://www.washingtonpost. com/health/2020/09/16/coronavirus-dementia-alzheimers-deaths/?arc404=true (accessed on 1 August 2024).
- White, Halbert. 1984. Asymptotic Theory for Econometricians. San Diego: Academic Press. [Google Scholar]
- Woolf, Steven H., Derek A. Chapman, and Jong Hyung Lee. 2021. COVID-19 as the leading cause of death in the United States. JAMA 325: 123–24. [Google Scholar] [CrossRef] [PubMed]
- Woolf, Steven H., Derek A. Chapman, Roy T. Sabo, Daniel M. Weinberger, Latoya Hill, and DaShaunda D. H. Taylor. 2020. Excess deaths from COVID-19 and other causes, March-July 2020. JAMA 324: 1562–64. [Google Scholar] [CrossRef]
- Yenerall, Jackie, and Kimberly Jensen. 2022. Food security, financial resources, and mental health: Evidence during the COVID-19 pandemic. Nutrients 14: 161. [Google Scholar] [CrossRef]
Minimum | Maximum | Mean | Standard Deviation | Skewness | Excess Kurtosis | |
---|---|---|---|---|---|---|
Alabama | 0 | 4584 | ||||
Alaska | 0 | 408 | ||||
Arizona | 0 | 7516 | ||||
Arkansas | 0 | 2122 | ||||
California | 0 | 37742 | ||||
Colorado | 0 | 2864 | ||||
Connecticut | 0 | 4720 | ||||
Delaware | 0 | 588 | ||||
District of Columbia | 0 | 524 | ||||
Florida | 0 | 19400 | ||||
Georgia | 0 | 7378 | ||||
Hawaii | 0 | 468 | ||||
Idaho | 0 | 1202 | ||||
Illinois | 0 | 7448 | ||||
Indiana | 0 | 5456 | ||||
Iowa | 0 | 2788 | ||||
Kansas | 0 | 2460 | ||||
Kentucky | 0 | 3348 | ||||
Louisiana | 0 | 3360 | ||||
Maine | 0 | 622 | ||||
Maryland | 0 | 3026 | ||||
Massachusetts | 0 | 7613 | ||||
Michigan | 0 | 6939 | ||||
Minnesota | 0 | 3040 | ||||
Mississippi | 0 | 2314 | ||||
Missouri | 0 | 4301 | ||||
Montana | 0 | 828 | ||||
Nebraska | 0 | 1428 | ||||
Nevada | 0 | 2328 | ||||
New Hampshire | 0 | 542 | ||||
New Jersey | 0 | 17245 | ||||
New Mexico | 0 | 1964 | ||||
New York | 0 | 42119 | ||||
North Carolina | 0 | 6722 | ||||
North Dakota | 0 | 1014 | ||||
Ohio | 0 | 11064 | ||||
Oklahoma | 0 | 3582 | ||||
Oregon | 0 | 1700 | ||||
Pennsylvania | 0 | 11891 | ||||
Rhode Island | 0 | 856 | ||||
South Carolina | 0 | 3950 | ||||
South Dakota | 0 | 1322 | ||||
Tennessee | 0 | 5794 | ||||
Texas | 0 | 20078 | ||||
Utah | 0 | 916 | ||||
Vermont | 0 | 118 | ||||
Virginia | 0 | 4276 | ||||
Washington | 0 | 2216 | ||||
West Virginia | 0 | 1424 | ||||
Wisconsin | 0 | 3692 | ||||
Wyoming | 0 | 382 |
Minimum | Maximum | Mean | Standard Deviation | Skewness | Excess Kurtosis | |
---|---|---|---|---|---|---|
Alabama | 6813 | 13365 | ||||
Alaska | 156 | 682 | ||||
Arizona | 7339 | 16971 | ||||
Arkansas | 3727 | 6590 | ||||
California | 35190 | 86199 | ||||
Colorado | 3889 | 7262 | ||||
Connecticut | 2870 | 8766 | ||||
Delaware | 673 | 1746 | ||||
District of Columbia | 350 | 1073 | ||||
Florida | 29435 | 51950 | ||||
Georgia | 10524 | 21311 | ||||
Hawaii | 698 | 1723 | ||||
Idaho | 1068 | 2621 | ||||
Illinois | 13268 | 24308 | ||||
Indiana | 7680 | 14732 | ||||
Iowa | 3316 | 6311 | ||||
Kansas | 2593 | 5775 | ||||
Kentucky | 5676 | 9639 | ||||
Louisiana | 5388 | 9992 | ||||
Maine | 1035 | 2323 | ||||
Maryland | 5550 | 10608 | ||||
Massachusetts | 5879 | 15198 | ||||
Michigan | 13328 | 23583 | ||||
Minnesota | 4405 | 7996 | ||||
Mississippi | 3817 | 7429 | ||||
Missouri | 8090 | 14043 | ||||
Montana | 763 | 1917 | ||||
Nebraska | 1209 | 2934 | ||||
Nevada | 3078 | 6406 | ||||
New Hampshire | 959 | 1821 | ||||
New Jersey | 8912 | 32665 | ||||
New Mexico | 1668 | 4169 | ||||
New York | 20603 | 88497 | ||||
North Carolina | 11511 | 20744 | ||||
North Dakota | 406 | 1495 | ||||
Ohio | 15732 | 30833 | ||||
Oklahoma | 4846 | 9631 | ||||
Oregon | 3676 | 5864 | ||||
Pennsylvania | 16728 | 33050 | ||||
Rhode Island | 748 | 1811 | ||||
South Carolina | 5704 | 11172 | ||||
South Dakota | 472 | 1946 | ||||
Tennessee | 9320 | 16491 | ||||
Texas | 27085 | 52118 | ||||
Utah | 1748 | 3032 | ||||
Vermont | 394 | 742 | ||||
Virginia | 8315 | 15027 | ||||
Washington | 6005 | 10031 | ||||
West Virginia | 2218 | 4285 | ||||
Wisconsin | 6010 | 11132 | ||||
Wyoming | 214 | 718 |
Minimum | Maximum | Mean | Standard Deviation | Skewness | Excess Kurtosis | |
---|---|---|---|---|---|---|
Alabama | 1342 | 2355 | ||||
Alaska | 10 | 102 | ||||
Arizona | 1929 | 4082 | ||||
Arkansas | 759 | 1188 | ||||
California | 9494 | 16663 | ||||
Colorado | 1212 | 2439 | ||||
Connecticut | 869 | 1447 | ||||
Delaware | 133 | 313 | ||||
District of Columbia | 36 | 252 | ||||
Florida | 6331 | 11686 | ||||
Georgia | 2670 | 4861 | ||||
Hawaii | 195 | 376 | ||||
Idaho | 292 | 548 | ||||
Illinois | 3297 | 5617 | ||||
Indiana | 1801 | 3257 | ||||
Iowa | 658 | 1105 | ||||
Kansas | 577 | 1195 | ||||
Kentucky | 1275 | 2474 | ||||
Louisiana | 1182 | 2478 | ||||
Maine | 315 | 633 | ||||
Maryland | 1319 | 2519 | ||||
Massachusetts | 1671 | 3086 | ||||
Michigan | 2648 | 4611 | ||||
Minnesota | 1317 | 2259 | ||||
Mississippi | 680 | 1263 | ||||
Missouri | 1787 | 3297 | ||||
Montana | 141 | 367 | ||||
Nebraska | 274 | 546 | ||||
Nevada | 636 | 1416 | ||||
New Hampshire | 237 | 450 | ||||
New Jersey | 2190 | 4084 | ||||
New Mexico | 437 | 1090 | ||||
New York | 4451 | 7516 | ||||
North Carolina | 2837 | 5231 | ||||
North Dakota | 26 | 144 | ||||
Ohio | 3457 | 6415 | ||||
Oklahoma | 946 | 1914 | ||||
Oregon | 1122 | 1890 | ||||
Pennsylvania | 4001 | 7087 | ||||
Rhode Island | 118 | 414 | ||||
South Carolina | 1428 | 2864 | ||||
South Dakota | 30 | 211 | ||||
Tennessee | 1962 | 3979 | ||||
Texas | 7085 | 12089 | ||||
Utah | 449 | 896 | ||||
Vermont | 32 | 174 | ||||
Virginia | 2115 | 3787 | ||||
Washington | 1799 | 3204 | ||||
West Virginia | 352 | 1073 | ||||
Wisconsin | 1536 | 2825 | ||||
Wyoming | 14 | 78 |
t-PQVAR(1) | Gaussian-PVARMA(1,1) | Gaussian-PVAR(1) | |
---|---|---|---|
NA | |||
NA | |||
NA | |||
NA | |||
NA | |||
NA | |||
NA | |||
NA | |||
NA | |||
NA | NA | ||
LL | |||
AIC | |||
BIC | |||
HQC | |||
Mean | NA | NA | NA |
Mean | NA | NA | |
Mean | NA | NA | |
Mean | NA | ||
Mean p-value, Escanciano–Lobato test | |||
Mean p-value, Escanciano–Lobato test | |||
Mean p-value, Escanciano–Lobato test | |||
Mean p-value, Ljung–Box test | |||
Mean p-value, Ljung–Box test | |||
Mean p-value, Ljung–Box test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blazsek, S.; Dos Santos, W.M.; Edwards, A.S. Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality. Econometrics 2024, 12, 25. https://doi.org/10.3390/econometrics12030025
Blazsek S, Dos Santos WM, Edwards AS. Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality. Econometrics. 2024; 12(3):25. https://doi.org/10.3390/econometrics12030025
Chicago/Turabian StyleBlazsek, Szabolcs, William M. Dos Santos, and Andreco S. Edwards. 2024. "Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality" Econometrics 12, no. 3: 25. https://doi.org/10.3390/econometrics12030025
APA StyleBlazsek, S., Dos Santos, W. M., & Edwards, A. S. (2024). Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality. Econometrics, 12(3), 25. https://doi.org/10.3390/econometrics12030025