Forecasting Wind–Photovoltaic Energy Production and Income with Traditional and ML Techniques
Abstract
:1. Introduction
2. Data and RES Production
2.1. Dataset Characteristics
2.2. RES Production
2.3. Expected Profit
3. Mathematical Models
4. Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2 (accessed on 1 September 2024). |
2 | https://www.mercatoelettrico.org/en-us/Home/Results/Electricity/MGP/Results/PUN (accessed on 5 September 2024). |
3 | Estimations performed with Matlab R2024b. |
References
- Benth, Fred Espen, and Jūratė Šaltytė Benth. 2011. Weather Derivatives and Stochastic Modelling of Temperature. International Journal of Stochastic Analysis 2011: 576791. [Google Scholar] [CrossRef]
- Benth, Fred Espen, and N. ‘A. Ibrahim. 2017. Stochastic modeling of photovoltaic power generation and electricity prices. Journal of Energy Markets 10: 1–33. [Google Scholar] [CrossRef]
- Benth, Fred Espen, Luca Di Persio, and Silvia Lavagnini. 2018. Stochastic Modeling of Wind Derivatives in Energy Markets. Risks 6: 56. [Google Scholar] [CrossRef]
- Caporin, Massimiliano, and Juliusz Preś. 2012. Modeling and forecasting wind speed intensity for weather risk management. Computational Statistics and Data Analysis 56: 3459–76. [Google Scholar] [CrossRef]
- Carpio, Lucio G. T. 2021. Efficient spatial allocation of solar photovoltaic electric energy generation in different regions of Brazil: A portfolio approach. Energy Sources, Part B: Economics, Planning, and Policy 16: 542–57. [Google Scholar] [CrossRef]
- Casula, Laura, Guglielmo D’Amico, Giovanni Masala, and Filippo Petroni. 2020. Performance estimation of a wind farm with a dependence structure between electricity price and wind speed. The World Economy 43: 2803–22. [Google Scholar] [CrossRef]
- Casula, Laura, Guglielmo D’Amico, Giovanni Masala, and Filippo Petroni. 2022. A multivariate model for hybrid wind–photovoltaic power production with energy portfolio optimization. Journal of Energy Markets 15: 1–29. [Google Scholar] [CrossRef]
- Chang, Tian Pau. 2011. Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy 88: 272–82. [Google Scholar] [CrossRef]
- Cucchiella, Federica, Massimo Gastaldi, and M. Trosini. 2017. Investments and cleaner energy production: A portfolio analysis in the Italian electricity market. Journal of Cleaner Production 142: 121–32. [Google Scholar] [CrossRef]
- D’Amico, Guglielmo, Filippo Petroni, and Flavio Prattico. 2015a. Economic performance indicators of wind energy based on wind speed stochastic modeling. Applied Energy 154: 290–97. [Google Scholar] [CrossRef]
- D’Amico, Guglielmo, Filippo Petroni, and Flavio Prattico. 2015b. Wind speed prediction for wind farm applications by Extreme Value Theory and Copulas. Journal of Wind Engineering and Industrial Aerodynamics 145: 229–36. [Google Scholar] [CrossRef]
- deLlano-Paz, Fernando, Anxo Calvo-Silvosa, Susana Iglesias Antelo, and Isabel Soares. 2017. Energy planning and modern portfolio theory: A review. Renewable and Sustainable Energy Reviews 77: 636–51. [Google Scholar] [CrossRef]
- Faiman, David. 2008. Assessing the outdoor operating temperature of photovoltaic modules. Progress in Photovoltaics: Research and Applications 16: 307–15. [Google Scholar] [CrossRef]
- Giordano, Luca, and Daniela Morale. 2021. A fractional Brownian–Hawkes model for the Italian electricity spot market: Estimation and forecasting. Journal of Energy Markets 14: 65–109. [Google Scholar] [CrossRef]
- Graditi, Giorgio, Sergio Ferlito, and Giovanna Adinolfi. 2016. Comparison of Photovoltaic plant power production prediction methods using a large measured dataset. Renewable Energy 90: 513–19. [Google Scholar] [CrossRef]
- Huang, Jr-Wei, Sharon. S. Yang, and Chuang-Chang Chang. 2018. Modeling temperature behaviors: Application to weather derivative valuation. Journal of Futures Markets 38: 1152–75. [Google Scholar] [CrossRef]
- Huld, Thomas, Gabi Friesen, Artur Skoczek, Robert P. Kenny, Tony Sample, Michael Field, and Ewan D. Dunlop. 2011. A power-rating model for crystalline silicon PV modules. Solar Energy Materials and Solar Cells 95: 3359–69. [Google Scholar] [CrossRef]
- Koehl, Michael, Markus Heck, Stefan Wiesmeier, and Jochen Wirth. 2011. Modeling of the nominal operating cell temperature based on outdoor weathering. Solar Energy Materials and Solar Cells 95: 1638–46. [Google Scholar] [CrossRef]
- Lee, Jeo, and Robert Craine. 2012. Temperature Modeling and Weather Derivative Pricing. American Journal of Scientific Research 77: 93–109. [Google Scholar]
- Li, Yanxia, Wenjia Cai, and Can Wang. 2017. Economic impacts of wind and solar photovoltaic power development in China. Energy Procedia 105: 3440–48. [Google Scholar] [CrossRef]
- Lingohr, Daniel, and Gernot Müller. 2019. Stochastic modeling of intraday photovoltaic power generation. Energy Economics 81: 175–86. [Google Scholar] [CrossRef]
- Lucheroni, Carlo, and Carlo Mari. 2017. CO2 volatility impact on energy portfolio choice: A fully stochastic LCOE theory analysis. Applied Energy 190: 278–90. [Google Scholar] [CrossRef]
- Lucheroni, Carlo, and Carlo Mari. 2018. Risk shaping of optimal electricity portfolios in the stochastic LCOE theory. Computers and Operations Research 96: 374–85. [Google Scholar] [CrossRef]
- Macedo, Daniela Pereira, Antònio Cardoso Marques, and Olivier Damette. 2020. The impact of the integration of renewable energy sources in the electricity price formation: Is the Merit-Order Effect occurring in Portugal? Utilities Policy 66: 101080. [Google Scholar] [CrossRef]
- Mahesh, Aeidapu, and Kanwarjit Singh Sandhu. 2015. Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renewable and Sustainable Energy Reviews 52: 1135–47. [Google Scholar] [CrossRef]
- Matsumoto, Takuji, and Misao Endo. 2021. One-week-ahead electricity price forecasting using weather forecasts, and its application to arbitrage in the forward market: An empirical study of the Japan Electric Power Exchange. Journal of Energy Markets 14: 1–26. [Google Scholar] [CrossRef]
- Monteiro, Raul Vitor Arantes, Geraldo Caixeta Guimarães, Fabricio Augusto Matheus Moura, Madeleine Rocio Medrano Castillo Albertini, and Marcelo Keese Albertini. 2017. Estimating photovoltaic power generation: Performance analysis of artificial neural networks, Support Vector Machine and Kalman filter. Electric Power Systems Research 143: 643–56. [Google Scholar] [CrossRef]
- Neto, Daywes Pinheiro, Elder Geraldo Domingues, Antònio. Paulo Coimbra, Anibal Traça de Almeida, Aylton José Alves, and Wesley Pacheco Calixto. 2017. Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil. Energy Economics 64: 238–50. [Google Scholar] [CrossRef]
- Nowotarski, Jakub, and Rafal Weron. 2018. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews 81: 1548–68. [Google Scholar] [CrossRef]
- Saoud, Lyes Saad, Fayçal Rahmoune, Victor Tourtchine, and Kamel Baddari. 2018. A novel method to forecast 24 h of global solar irradiation. Energy Systems 9: 171–93. [Google Scholar] [CrossRef]
- Sim, So-Kumnet, Philipp Maass, and Pedro G. Lind. 2019. Wind Speed Modeling by Nested ARIMA Processes. Energies 12: 69. [Google Scholar] [CrossRef]
- Singh, Dalwinder, and Birmohan Singh. 2020. Investigating the impact of data normalization on classification performance. Applied Soft Computing Journal 97: 105524. [Google Scholar] [CrossRef]
- Tselika, Kyriaki. 2022. Tselika, Kyriaki 2022. The impact of variable renewables on the distribution of hourly electricity prices and their variability: A panel approach. Energy Economics 113: 106194. [Google Scholar] [CrossRef]
- Türkvatan, Aysun, Hayfavi Azize, and Tolga Omay. 2020. A regime switching model for temperature modeling and applications to weather derivatives pricing. Mathematics and Financial Economics 14: 1–42. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. 2015. Available online: https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-d&chapter=27&clang=_en (accessed on 1 September 2024).
- Urraca, Ruben, Thomas Huld, Anders. Vilhelm Lindfors, Aku Riihelä, Francisco Javier Martinez-de-Pison, and Andres Sanz-Garcia. 2018. Quantifying the amplified bias of PV system simulations due to uncertainties in solar radiation estimates. Solar Energy 176: 663–77. [Google Scholar] [CrossRef]
- Weron, Rafal. 2014. Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting 30: 1030–81. [Google Scholar] [CrossRef]
- Yang, Yingkui, Hans Stubbe Solgaard, and Wolfgang Haider. 2016. Wind, hydro or mixed renewable energy source: Preference for electricity products when the share of renewable energy increases. Energy Policy 97: 521–31. [Google Scholar] [CrossRef]
- Yousif, Jabar H., A. Kazem Hussein, and John Boland. 2017. Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions. Energies 10: 971. [Google Scholar] [CrossRef]
- Zapranis, Achilleas D., and Antonios Alexandridis. 2011. Modeling and forecasting cumulative average temperature and heating degree day indices for weather derivative pricing. Neural Computing and Applications 20: 787–801. [Google Scholar] [CrossRef]
(a) | |||||||||
W1 | W2 | W3 | T1 | T2 | T3 | R1 | R2 | R3 | |
Mean | 5.78 | 6.29 | 6.03 | 16.95 | 17.65 | 17.73 | 206.68 | 207.81 | 201.88 |
St. Dev. | 3.10 | 3.33 | 3.70 | 7.96 | 6.36 | 4.98 | 288.89 | 289.77 | 282.82 |
Variance | 9.63 | 11.10 | 13.71 | 63.32 | 40.43 | 24.79 | 83,454.59 | 83,968.91 | 79,988.20 |
Kurtosis | 0.67 | 0.44 | 0.67 | −0.34 | −0.63 | −1.06 | 0.20 | 0.17 | 0.22 |
Skew. | 0.79 | 0.69 | 0.94 | 0.45 | 0.33 | 0.16 | 1.22 | 1.21 | 1.23 |
Min | 0.01 | 0.02 | 0.01 | −3.30 | 1.82 | 4.89 | 0.00 | 0.00 | 0.00 |
Max | 23.38 | 23.48 | 24.60 | 43.31 | 38.33 | 32.74 | 1025.50 | 1028.00 | 1017.00 |
(b) | |||||||||
Variable | Mean | St. Dev. | Skewness | Kurtosis | Min. | Max. | |||
Electricity price | 62.98 | 25.32 | 1.32 | 6.58 | 0.00 | 378.47 |
Variable | RMSE | Adjusted R-Squared | F-Statistic | p-Value |
---|---|---|---|---|
PUN | 7.65 | 0.909 | 2.72 × 104 | 0 |
Wind | 0.502 | 0.974 | 1.75 × 105 | 0 |
Radiation | 34.9 | 0.985 | 1.84 × 105 | 0 |
Temp | 0.523 | 0.996 | 1.08 × 106 | 0 |
PUN | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) |
NN | ND | 7.3703 | 4.8800 | 6.9204 | 7.15% | 10.14% |
ensemble | ND | ND | 6.2179 | 8.9585 | 9.11% | 13.13% |
tree | ND | 10.2368 | 7.0059 | 10.3933 | 10.27% | 15.23% |
k-neigh | ND | 10.6641 | 7.0842 | 10.2674 | 10.38% | 15.05% |
Solar | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) |
NN | ND | ND | 12.8729 | 27.7394 | 6.17% | 13.29% |
ensemble | ND | ND | 17.8562 | 37.0016 | 8.55% | 17.73% |
tree | ND | ND | 15.9780 | 36.5979 | 7.65% | 17.53% |
k-neigh | ND | ND | 15.8276 | 36.6132 | 7.58% | 17.54% |
Wind | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) |
NN | 9.2830 | 8.0261 | 0.3269 | 0.4782 | 5.61% | 8.21% |
ensemble | 11.0619 | 9.9290 | 0.4133 | 0.5814 | 7.10% | 9.99% |
tree | 11.9324 | 10.6167 | 0.4461 | 0.6291 | 7.66% | 10.81% |
k-neigh | 16.7170 | 14.5373 | 0.6313 | 0.8514 | 10.84% | 14.62% |
(1) | ||||||||
L. | Income [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 3.3109 | 3.2497 | 71,069.82 | 101,686.89 | 2.83% | 4.05% | 2,512,285.78 |
1 | Regression | 3.9733 | 3.9090 | 86,121.34 | 119,288.85 | 3.43% | 4.75% | 2,514,355.22 |
1 | Empirical | 2,509,645.36 | ||||||
2 | ML | 3.1037 | 3.0511 | 75,596.56 | 108,280.89 | 2.76% | 3.95% | 2,748,182.78 |
2 | Regression | 3.7547 | 3.7063 | 93,082.66 | 130,889.12 | 3.39% | 4.77% | 2,752,205.15 |
2 | Empirical | 2,743,971.79 | ||||||
3 | ML | 2.8850 | 2.8477 | 68,325.38 | 98,127.25 | 2.69% | 3.87% | 2,541,424.27 |
3 | Regression | 3.5649 | 3.5268 | 81,420.64 | 111,648.13 | 3.21% | 4.40% | 2,548,533.23 |
3 | Empirical | 2,535,461.42 | ||||||
L. | Total energy [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 2.1197 | 2.0880 | 636.72 | 882.92 | 1.73% | 2.40% | 36,763.80 |
1 | Regression | 2.4244 | 2.3754 | 706.60 | 913.24 | 1.92% | 2.48% | 36,781.06 |
1 | Empirical | 36,806.92 | ||||||
2 | ML | 1.8803 | 1.8574 | 632.13 | 892.84 | 1.57% | 2.22% | 40,218.14 |
2 | Regression | 2.0953 | 2.0647 | 694.35 | 932.39 | 1.72% | 2.32% | 40,281.14 |
2 | Empirical | 40,257.27 | ||||||
3 | ML | 1.4923 | 1.4816 | 494.56 | 742.43 | 1.32% | 1.99% | 37,324.73 |
3 | Regression | 1.8609 | 1.8387 | 563.88 | 732.58 | 1.51% | 1.96% | 37,423.39 |
3 | Empirical | 37,377.69 | ||||||
(2) | ||||||||
L. | Income [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 2.7509 | 2.7184 | 131,586.18 | 187,493.84 | 2.46% | 3.51% | 5,340,661.02 |
1 | Regression | 3.2106 | 3.1597 | 152,019.89 | 213,138.78 | 2.84% | 3.99% | 5,366,347.48 |
1 | Empirical | 5,344,676.63 | ||||||
2 | ML | 2.6604 | 2.6384 | 143,986.17 | 204,564.73 | 2.47% | 3.51% | 5,826,446.71 |
2 | Regression | 3.1377 | 3.0934 | 165,670.00 | 231,909.08 | 2.84% | 3.98% | 5,856,686.19 |
2 | Empirical | 5,825,482.99 | ||||||
3 | ML | 2.5557 | 2.5381 | 128,250.22 | 181,422.73 | 2.40% | 3.39% | 5,350,202.03 |
3 | Regression | 3.0248 | 2.9831 | 147,686.81 | 204,431.46 | 2.76% | 3.82% | 5,382,739.87 |
3 | Empirical | 5,347,656.44 | ||||||
L. | Total energy [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 1.5004 | 1.4854 | 942.91 | 1244.69 | 1.27% | 1.68% | 74,128.75 |
1 | Regression | 1.8691 | 1.8433 | 1142.45 | 1451.66 | 1.54% | 1.96% | 74,199.15 |
1 | Empirical | 74,234.88 | ||||||
2 | ML | 1.3576 | 1.3503 | 951.87 | 1298.07 | 1.17% | 1.60% | 81,199.48 |
2 | Regression | 1.7356 | 1.7163 | 1195.98 | 1523.54 | 1.47% | 1.87% | 81,350.57 |
2 | Empirical | 81,274.60 | ||||||
3 | ML | 1.1524 | 1.1475 | 770.09 | 1084.22 | 1.03% | 1.45% | 74,643.10 |
3 | Regression | 1.4607 | 1.4461 | 901.09 | 1180.19 | 1.21% | 1.58% | 74,845.80 |
3 | Empirical | 74,760.04 | ||||||
(3) | ||||||||
L. | Income [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 2.4325 | 2.4231 | 187,939.55 | 273,544.16 | 2.27% | 3.30% | 8,279,679.35 |
1 | Regression | 2.7973 | 2.7611 | 216,991.50 | 304,648.74 | 2.62% | 3.67% | 8,334,649.45 |
1 | Empirical | 8,293,667.33 | ||||||
2 | ML | 2.2879 | 2.2888 | 199,156.87 | 292,839.59 | 2.21% | 3.25% | 8,998,723.06 |
2 | Regression | 2.7017 | 2.6688 | 230,484.00 | 327,821.84 | 2.56% | 3.64% | 9,062,070.85 |
2 | Empirical | 9,008,161.78 | ||||||
3 | ML | 2.2864 | 2.2882 | 180,198.51 | 271,369.19 | 2.18% | 3.29% | 8,247,010.73 |
3 | Regression | 2.6742 | 2.6422 | 209,401.73 | 295,252.95 | 2.54% | 3.58% | 8,310,164.88 |
3 | Empirical | 8,252,275.36 | ||||||
L. | Total energy [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 1.2513 | 1.2369 | 1208.12 | 1556.88 | 1.07% | 1.38% | 112,483.61 |
1 | Regression | 1.5429 | 1.5273 | 1479.63 | 1868.63 | 1.31% | 1.66% | 112,613.72 |
1 | Empirical | 112,656.34 | ||||||
2 | ML | 1.1088 | 1.1060 | 1231.63 | 1655.96 | 1.00% | 1.35% | 122,826.47 |
2 | Regression | 1.4416 | 1.4295 | 1543.01 | 1941.96 | 1.25% | 1.58% | 123,078.14 |
2 | Empirical | 122,962.82 | ||||||
3 | ML | 0.9874 | 0.9841 | 1007.40 | 1411.65 | 0.89% | 1.25% | 112,564.05 |
3 | Regression | 1.2551 | 1.2465 | 1219.61 | 1584.34 | 1.08% | 1.41% | 112,849.13 |
3 | Empirical | 112,717.98 | ||||||
(4) | ||||||||
L. | Income [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 1.9483 | 1.9728 | 357,940.06 | 578,554.23 | 1.89% | 3.06% | 18,882,869.19 |
1 | Regression | 2.2189 | 2.2007 | 413,048.90 | 601,741.02 | 2.18% | 3.18% | 19,008,567.81 |
1 | Empirical | 18,931,019.95 | ||||||
2 | ML | 1.9112 | 1.9316 | 382,972.19 | 614,764.93 | 1.87% | 3.00% | 20,445,413.32 |
2 | Regression | 2.1912 | 2.1716 | 440,970.16 | 630,597.16 | 2.15% | 3.08% | 20,584,935.45 |
2 | Empirical | 20,475,215.83 | ||||||
3 | ML | 1.8820 | 1.9026 | 357,036.96 | 582,253.03 | 1.88% | 3.07% | 18,959,278.21 |
3 | Regression | 2.1574 | 2.1385 | 408,559.83 | 584,362.54 | 2.15% | 3.08% | 19,105,834.49 |
3 | Empirical | 18,985,906.24 | ||||||
L. | Total energy [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 0.8570 | 0.8559 | 2056.39 | 2603.03 | 0.78% | 0.99% | 262,743.75 |
1 | Regression | 1.1156 | 1.1105 | 2648.60 | 3261.37 | 1.01% | 1.24% | 263,012.48 |
1 | Empirical | 263,096.01 | ||||||
2 | ML | 0.8277 | 0.8266 | 2195.44 | 2908.64 | 0.77% | 1.02% | 285,680.44 |
2 | Regression | 1.0905 | 1.0846 | 2822.00 | 3448.84 | 0.99% | 1.21% | 286,173.30 |
2 | Empirical | 285,836.51 | ||||||
3 | ML | 0.6729 | 0.6722 | 1686.19 | 2357.08 | 0.64% | 0.89% | 264,648.54 |
3 | Regression | 0.9060 | 0.9015 | 2168.18 | 2747.58 | 0.82% | 1.04% | 265,319.11 |
3 | Empirical | 264,905.85 |
(1) | ||||||||
L. | Income [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 3.0625 | 3.0254 | 55,760.96 | 78,812.82 | 2.69% | 3.80% | 2,070,321.59 |
1 | Regression | 3.9522 | 3.8580 | 75,078.85 | 112,694.68 | 3.62% | 5.43% | 2,094,152.99 |
1 | Empirical | 2,074,539.68 | ||||||
2 | ML | 2.8399 | 2.8084 | 55,121.87 | 75,038.26 | 2.46% | 3.34% | 2,241,656.37 |
2 | Regression | 3.7752 | 3.6938 | 76,839.09 | 111,105.24 | 3.42% | 4.95% | 2,266,829.99 |
2 | Empirical | 2,244,770.36 | ||||||
3 | ML | 2.7634 | 2.7198 | 51,464.32 | 72,939.25 | 2.48% | 3.51% | 2,076,542.86 |
3 | Regression | 3.5620 | 3.4866 | 70,040.28 | 109,250.16 | 3.37% | 5.26% | 2,100,109.66 |
3 | Empirical | 2,075,465.30 | ||||||
L. | Total energy [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 2.1078 | 2.0709 | 681.81 | 1058.93 | 1.78% | 2.76% | 38,281.40 |
1 | Regression | 2.4797 | 2.4317 | 765.20 | 1145.92 | 1.99% | 2.99% | 38,330.61 |
1 | Empirical | 38,365.07 | ||||||
2 | ML | 1.8507 | 1.8202 | 611.27 | 831.17 | 1.48% | 2.01% | 41,287.43 |
2 | Regression | 2.2052 | 2.1665 | 703.72 | 938.77 | 1.70% | 2.27% | 41,334.16 |
2 | Empirical | 41,350.67 | ||||||
3 | ML | 1.6401 | 1.5933 | 508.71 | 781.57 | 1.33% | 2.04% | 38,266.17 |
3 | Regression | 2.0212 | 1.9871 | 604.26 | 822.36 | 1.58% | 2.15% | 38,341.19 |
3 | Empirical | 38,234.57 | ||||||
(2) | ||||||||
L. | Income [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 2.6224 | 2.5775 | 97,231.98 | 142,213.57 | 2.35% | 3.44% | 4,150,449.52 |
1 | Regression | 3.1723 | 3.1105 | 119,417.33 | 166,145.76 | 2.89% | 4.01% | 4,175,415.98 |
1 | Empirical | 4,139,248.26 | ||||||
2 | ML | 2.4952 | 2.4567 | 100,774.21 | 143,816.28 | 2.24% | 3.20% | 4,511,966.74 |
2 | Regression | 3.0662 | 3.0084 | 125,162.22 | 170,032.42 | 2.78% | 3.78% | 4,537,742.89 |
2 | Empirical | 4,496,982.08 | ||||||
3 | ML | 2.3770 | 2.3330 | 89,503.02 | 136,595.59 | 2.16% | 3.30% | 4,165,383.87 |
3 | Regression | 3.0070 | 2.9507 | 115,949.98 | 163,313.90 | 2.80% | 3.94% | 4,190,133.79 |
3 | Empirical | 4,144,815.88 | ||||||
L. | Total energy [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 1.4328 | 1.4214 | 975.15 | 1415.75 | 1.26% | 1.84% | 77,018.92 |
1 | Regression | 1.8159 | 1.7969 | 1185.88 | 1645.39 | 1.54% | 2.13% | 77,122.66 |
1 | Empirical | 77,151.17 | ||||||
2 | ML | 1.3082 | 1.2979 | 934.40 | 1248.05 | 1.12% | 1.50% | 83,301.51 |
2 | Regression | 1.6614 | 1.6439 | 1140.21 | 1473.11 | 1.37% | 1.77% | 83,405.57 |
2 | Empirical | 83,369.13 | ||||||
3 | ML | 1.1162 | 1.1069 | 756.91 | 1058.52 | 0.98% | 1.38% | 76,926.69 |
3 | Regression | 1.4878 | 1.4730 | 945.36 | 1278.85 | 1.23% | 1.66% | 77,070.94 |
3 | Empirical | 76,879.79 | ||||||
(3) | ||||||||
L. | Income [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 2.0196 | 1.9975 | 120,184.52 | 175,930.85 | 1.89% | 2.77% | 6,368,058.64 |
1 | Regression | 2.6389 | 2.6030 | 156,777.74 | 212,127.78 | 2.47% | 3.34% | 6,395,295.76 |
1 | Empirical | 6,346,629.74 | ||||||
2 | ML | 1.9381 | 1.9176 | 124,171.38 | 179,420.86 | 1.80% | 2.60% | 6,924,823.12 |
2 | Regression | 2.5153 | 2.4797 | 161,734.31 | 219,243.11 | 2.35% | 3.18% | 6,955,129.45 |
2 | Empirical | 6,895,378.90 | ||||||
3 | ML | 1.9106 | 1.8873 | 113,812.15 | 172,416.70 | 1.79% | 2.71% | 6,394,809.44 |
3 | Regression | 2.5087 | 2.4715 | 150,574.78 | 208,634.78 | 2.37% | 3.28% | 6,426,759.92 |
3 | Empirical | 6,362,097.53 | ||||||
L. | Total energy [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 1.1826 | 1.1767 | 1228.21 | 1724.05 | 1.07% | 1.51% | 114,261.30 |
1 | Regression | 1.5378 | 1.5254 | 1520.43 | 2010.98 | 1.33% | 1.76% | 114,392.40 |
1 | Empirical | 114,459.96 | ||||||
2 | ML | 1.0450 | 1.0396 | 1138.12 | 1524.20 | 0.92% | 1.23% | 123,691.17 |
2 | Regression | 1.3711 | 1.3594 | 1435.77 | 1837.55 | 1.16% | 1.48% | 123,879.07 |
2 | Empirical | 123,772.33 | ||||||
3 | ML | 0.9682 | 0.9641 | 1004.31 | 1357.56 | 0.88% | 1.19% | 114,403.78 |
3 | Regression | 1.2768 | 1.2660 | 1233.14 | 1615.75 | 1.08% | 1.41% | 114,653.30 |
3 | Empirical | 114,404.57 | ||||||
(4) | ||||||||
L. | Income [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 1.3830 | 1.3784 | 209,606.65 | 288,837.38 | 1.37% | 1.88% | 15,366,617.29 |
1 | Regression | 2.1157 | 2.0893 | 319,380.22 | 439,922.77 | 2.08% | 2.87% | 15,533,379.76 |
1 | Empirical | 15,345,187.95 | ||||||
2 | ML | 1.3291 | 1.3236 | 218,349.90 | 306,154.94 | 1.31% | 1.83% | 16,762,819.14 |
2 | Regression | 2.0642 | 2.0384 | 341,080.65 | 467,218.89 | 2.04% | 2.79% | 16,935,591.00 |
2 | Empirical | 16,725,320.45 | ||||||
3 | ML | 1.3356 | 1.3302 | 204,598.50 | 286,718.67 | 1.32% | 1.86% | 15,488,348.00 |
3 | Regression | 2.1047 | 2.0772 | 320,221.14 | 437,506.62 | 2.07% | 2.83% | 15,655,172.88 |
3 | Empirical | 15,442,105.88 | ||||||
L. | Total energy [0,T] | MAPE | SMAPE | MAE | RMSE | MAE (%) | RMSE (%) | Mean |
1 | ML | 0.7604 | 0.7599 | 1908.44 | 2520.27 | 0.73% | 0.96% | 261,238.45 |
1 | Regression | 1.1228 | 1.1178 | 2667.80 | 3344.85 | 1.02% | 1.28% | 261,655.00 |
1 | Empirical | 261,726.66 | ||||||
2 | ML | 0.6685 | 0.6680 | 1788.09 | 2266.63 | 0.63% | 0.80% | 283,967.78 |
2 | Regression | 1.0531 | 1.0478 | 2680.69 | 3304.99 | 0.94% | 1.16% | 284,452.01 |
2 | Empirical | 284,180.11 | ||||||
3 | ML | 0.6265 | 0.6260 | 1597.69 | 2086.60 | 0.61% | 0.79% | 263,106.60 |
3 | Regression | 0.9584 | 0.9542 | 2262.80 | 2777.54 | 0.86% | 1.06% | 263,605.40 |
3 | Empirical | 263,226.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masala, G.; Schischke, A. Forecasting Wind–Photovoltaic Energy Production and Income with Traditional and ML Techniques. Econometrics 2024, 12, 34. https://doi.org/10.3390/econometrics12040034
Masala G, Schischke A. Forecasting Wind–Photovoltaic Energy Production and Income with Traditional and ML Techniques. Econometrics. 2024; 12(4):34. https://doi.org/10.3390/econometrics12040034
Chicago/Turabian StyleMasala, Giovanni, and Amelie Schischke. 2024. "Forecasting Wind–Photovoltaic Energy Production and Income with Traditional and ML Techniques" Econometrics 12, no. 4: 34. https://doi.org/10.3390/econometrics12040034
APA StyleMasala, G., & Schischke, A. (2024). Forecasting Wind–Photovoltaic Energy Production and Income with Traditional and ML Techniques. Econometrics, 12(4), 34. https://doi.org/10.3390/econometrics12040034