Timing Foreign Exchange Markets
Abstract
:1. Introduction
2. Related Literature
3. Description of the Data
4. The Forecasting Models
4.1. Ex Post Forecasting versus Ex Ante Forecasting
4.2. The Bayesian Treed Gaussian Process Model
5. The Trading Strategy and Measures of Forecasting Performance
6. Empirical Results
6.1. Ex Post Forecasting Results
6.1.1. Macroeconomic Determinants: The Dornbusch–Frankel Model
6.1.2. Global Foreign Exchange Market Fundamentals: Carry and Dollar Factors
The Economic Value of Perfect Foresight of Dollar and Carry Fundamentals
The Source of Ex Post Forecasting Superiority: The Forward Premium, the Carry Factor, and the Dollar Factor
6.2. Ex Ante Forecasting Results
6.2.1. Forecasting the Carry and Dollar Factors
6.2.2. Ex Ante Exchange Rate Return Forecasts: Decomposing the Performance of the Bayesian Treed Gaussian Process
6.3. GW Tests of Unconditional and Conditional out-of-Sample Predictive Ability
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix: Robustness Checks
Model | RW | RWWD | LM | BTGP | |
---|---|---|---|---|---|
All Countries | |||||
Cum. APR (post-TC) | Mean | 0.0101 | −0.0076 | 0.2074 | 0.2079 |
Median | 0.0166 | −0.0026 | 0.2244 | 0.2192 | |
Min | −0.1189 | −0.1826 | −0.0027 | −0.0018 | |
Max | 0.0986 | 0.1097 | 0.4802 | 0.5077 | |
Sharpe ratio (post-TC) | Mean | 0.1643 | −0.0044 | 1.877 | 1.896 |
Median | 0.2284 | 0.0217 | 1.445 | 1.5026 | |
Min | −0.6559 | −1.8427 | −0.3023 | −0.2542 | |
Max | 0.7252 | 1.1974 | 4.3518 | 4.4182 | |
Developed Countries | |||||
Cum. APR (post-TC) | Mean | 0.0313 | −0.0026 | 0.237 | 0.2361 |
Median | 0.0283 | 0.0084 | 0.2829 | 0.2755 | |
Min | −0.0095 | −0.0521 | 0.0793 | 0.08 | |
Max | 0.0836 | 0.0174 | 0.3646 | 0.353 | |
Sharpe ratio (post-TC) | Mean | 0.3239 | 0.0392 | 2.2891 | 2.2497 |
Median | 0.3243 | 0.1392 | 2.3287 | 2.3807 | |
Min | −0.0334 | −0.4391 | 0.7119 | 0.8279 | |
Max | 0.653 | 0.2524 | 3.9934 | 3.674 | |
Emerging Market Countries | |||||
Cum. APR (post-TC) | Mean | −0.0012 | −0.0103 | 0.1915 | 0.1927 |
Median | 0.0017 | −0.0077 | 0.1804 | 0.1757 | |
Min | −0.1189 | −0.1826 | −0.0027 | −0.0018 | |
Max | 0.0986 | 0.1097 | 0.4802 | 0.5077 | |
Sharpe ratio (post-TC) | Mean | 0.0788 | −0.0277 | 1.6562 | 1.7064 |
Median | 0.1041 | −0.0401 | 1.3278 | 1.2661 | |
Min | −0.6559 | −1.8427 | −0.3023 | −0.2542 | |
Max | 0.7252 | 1.1974 | 4.3518 | 4.4182 |
Model | RW | RWWD | LM | BTGP | |
---|---|---|---|---|---|
All Countries | |||||
Cum. APR (post-TC) | Mean | 0.0108 | −0.0087 | −0.003 | 0.0153 |
Median | 0.0166 | −0.0026 | 0.015 | 0.0245 | |
Min | −0.1189 | −0.1826 | −0.228 | −0.1618 | |
Max | 0.0986 | 0.1097 | 0.2432 | 0.2271 | |
Sharpe ratio (post-TC) | Mean | 0.1681 | −0.0133 | 0.0638 | 0.237 |
Median | 0.2365 | 0.0217 | 0.2136 | 0.2919 | |
Min | −0.6559 | −1.8427 | −1.6912 | −0.963 | |
Max | 0.7252 | 1.1974 | 2.0263 | 2.0458 | |
Developed Countries | |||||
Cum. APR (post-TC) | Mean | 0.033 | −0.0048 | 0.033 | 0.0364 |
Median | 0.0323 | 0.0053 | 0.0366 | 0.0417 | |
Min | −0.0132 | −0.0559 | −0.0426 | −0.0389 | |
Max | 0.0957 | 0.0178 | 0.0906 | 0.0906 | |
Sharpe ratio (post-TC) | Mean | 0.3333 | 0.0196 | 0.3316 | 0.3631 |
Median | 0.3258 | 0.1042 | 0.375 | 0.3865 | |
Min | −0.0687 | −0.4656 | −0.238 | −0.2345 | |
Max | 0.6569 | 0.2561 | 0.5525 | 0.6695 | |
Emerging Market Countries | |||||
Cum. APR (post-TC) | Mean | −0.0011 | −0.0108 | −0.0223 | 0.004 |
Median | 0.0017 | −0.0085 | 0.0008 | 0.0058 | |
Min | −0.1189 | −0.1826 | −0.228 | −0.1618 | |
Max | 0.0986 | 0.1097 | 0.2432 | 0.2271 | |
Sharpe ratio (post-TC) | Mean | 0.0796 | −0.0309 | −0.0796 | 0.1694 |
Median | 0.1212 | −0.0419 | 0.0648 | 0.2131 | |
Min | −0.6559 | −1.8427 | −1.6912 | −0.963 | |
Max | 0.7252 | 1.1974 | 2.0263 | 2.0458 |
- 1.On a computational note, all code for this paper was written using the R language, with the BTGP model implemented using the tgp package [9]. To speed up back-testing exercises, we made use of the snow (now called parallel) and snowfall libraries in R. In our simple experimental setup, forecast generation for different currencies, as well as different time periods for a given currency, are independent. We experimented with parallelizing forecast generation over time periods, and found modest speed up gains on the order of 3.2 times using the socket method with four cores on a Lenovo laptop.
- 2.We also study the non-traded volatility risk factor proposed by [35], but find that the carry factor slightly dominates this factor. These results are available upon request.
- 3.The BTGP has been applied successfully in areas such as computational fluid dynamics, genetics, climatology and political science.
- 4.Our results indicate that the carry factor slightly but unambiguously dominates the nontraded volatility factor in [35] in achieving lower RMSEs and performance statistics. These results are available upon request.
References
- H. Lustig, N. Roussanov, and A. Verdelhan. “Common risk factors in currency markets.” Rev. Financ. Stud. 24 (2011): 3731–3777. [Google Scholar] [CrossRef]
- A. Verdelhan. “The Share of Systematic Variation in Bilateral Exchange Rates.” J. Finance. forthcoming. [CrossRef]
- R.A. Meese, and K. Rogoff. “Empirical exchange rate models of the seventies: Do they fit out of sample? ” J. Int. Econ. 14 (1983): 3–24. [Google Scholar] [CrossRef]
- S. Anatolyev, and A. Gerko. “A trading approach to testing for predictability.” J. Bus. Econ. Stat. 23 (2005): 455–461. [Google Scholar] [CrossRef]
- C. Burnside, M. Eichenbaum, and S. Rebelo. “Carry Trade: The Gains of Diversification.” J. Eur. Econ. Assoc. 6 (2008): 581–588. [Google Scholar] [CrossRef]
- R. Gramacy, S.W. Malone, and E.T. Horst. “Exchange Rate Fundamentals, Forecasting, and Speculation: Bayesian Models in Black Markets.” J. Appl. Econom. 29 (2014): 22–41. [Google Scholar] [CrossRef]
- L. Sarno, and G. Valente. “Exchange rates and fundamentals: Footloose or evolving relationship? ” J. Eur. Econ. Assoc. 7 (2009): 786–830. [Google Scholar] [CrossRef]
- R.B. Gramacy, and H.K. Lee. “Bayesian treed Gaussian process models with an application to computer modeling.” J. Am. Stat. Assoc. 103 (2008): 1119–1130. [Google Scholar] [CrossRef]
- R.B. Gramacy. “tgp: An R package for Bayesian Nonstationary, Semiparametric nonlinear Regression and Design by treed Gaussian process models.” J. Stat. Softw. 19 (2007): 6. [Google Scholar] [CrossRef]
- H. Lustig, N. Roussanov, and A. Verdelhan. “Countercyclical currency risk premia.” J. Financ. Econ. 111 (2014): 527–553. [Google Scholar] [CrossRef]
- R. Greenaway-McGrevy, N.C. Mark, D. Sul, and J.L. Wu. “Exchange Rates as Exchange Rate Common Factors.” Technical Report. 2012. Available online: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2138713 (accessed on 2 July 2015).
- G. Bakshi, and G. Panayotov. “Predictability of currency carry trades and asset pricing implications.” J. Financ. Econ. 110 (2013): 139–163. [Google Scholar] [CrossRef]
- M. Johannes, A. Korteweg, and N. Polson. “Sequential learning, predictability, and optimal portfolio returns.” J. Financ. 69 (2014): 611–644. [Google Scholar] [CrossRef]
- R. Giacomini, and H. White. “Tests of Conditional Predictive Ability.” Econometrica 74 (2006): 1545–1578. [Google Scholar] [CrossRef]
- A.K. Nag, and A. Mitra. “Forecasting daily foreign exchange rates using genetically optimized neural networks.” J. Forecast. 21 (2002): 501–511. [Google Scholar] [CrossRef]
- A. Preminger, and R. Franck. “Forecasting exchange rates: A robust regression approach.” Int. J. Forecast. 23 (2007): 71–84. [Google Scholar] [CrossRef]
- T.R. Liu, M.E. Gerlow, and S.H. Irwin. “The performance of alternative VAR models in forecasting exchange rates.” Int. J. Forecast. 10 (1994): 419–433. [Google Scholar] [CrossRef]
- J. Yang, X. Su, and J.W. Kolari. “Do Euro exchange rates follow a martingale? Some out-of-sample evidence.” J. Bank. Financ. 32 (2008): 729–740. [Google Scholar] [CrossRef]
- V. Cerra, and S.C. Saxena. “The monetary model strikes back: Evidence from the world.” J. Int. Econ. 81 (2010): 184–196. [Google Scholar] [CrossRef]
- D. Alexander, and L.R. Thomas III. “Monetary/Asset models of Exchange Rate Determination: How well have they Performed in the 1980’s? ” Int. J. Forecast. 3 (1987): 53–64. [Google Scholar] [CrossRef]
- C.C. Wolff. “Time-varying parameters and the out-of-sample forecasting performance of structural exchange rate models.” J. Bus. Econ. Stat. 5 (1987): 87–97. [Google Scholar] [CrossRef]
- C.C. Wolff. “Models of exchange rates: A comparison of forecasting results.” Int. J. Forecast. 4 (1988): 605–607. [Google Scholar] [CrossRef]
- F.X. Diebold, and J.A. Nason. “Nonparametric exchange rate prediction? ” J. Int. Econ. 28 (1990): 315–332. [Google Scholar] [CrossRef]
- R.A. Meese, and A.K. Rose. “Nonlinear, nonparametric, nonessential exchange rate estimation.” Am. Econ. Rev. 80 (1990): 192–196. [Google Scholar]
- C. Engel, and J.D. Hamilton. “Long Swings in the Dollar: Are They in the Data and Do Markets Know It? ” Am. Econ. Rev. 80 (1990): 689–713. [Google Scholar]
- C. Engel. “Can the Markov Switching Model forecast exchange rates? ” J. Int. Econ. 36 (1994): 151–165. [Google Scholar] [CrossRef]
- C.M. Kuan, and T. Liu. “Forecasting exchange rates using feedforward and recurrent neural networks.” J. Appl. Econom. 10 (1995): 347–364. [Google Scholar] [CrossRef]
- C. Brooks. “Linear and Non-linear (Non-) Forecastability of High-frequency Exchange Rates.” J. Forecast. 16 (1997): 125–145. [Google Scholar] [CrossRef]
- R. Gencay. “Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules.” J. Int. Econ. 47 (1999): 91–107. [Google Scholar] [CrossRef]
- M. Qi, and Y. Wu. “Nonlinear prediction of exchange rates with monetary fundamentals.” J. Empir. Financ. 10 (2003): 623–640. [Google Scholar] [CrossRef]
- K. Rogoff. “The Failure of Empirical Exchange Rate Models: No Longer New but Still True.” Econ. Policy Web Essay 1, 1 (2001). [Google Scholar]
- C. Engel, N.C. Mark, and K.D. West. “Factor Model Forecasts of Exchange Rates.” Technical Report. 2012. Available online: http://www.nber.org/papers/w18382 (accessed on 2 July 2015).
- B. Rossi. “Exchange Rate Predictability.” J. Econ. Lit. 51 (2013): 1063–1119. [Google Scholar] [CrossRef]
- G. Leitch, and J.E. Tanner. “Economic forecast evaluation: Profits versus the conventional error measures.” Am. Econ. Rev. 81 (1991): 580–590. [Google Scholar]
- L. Menkhoff, L. Sarno, M. Schmeling, and A. Schrimpf. “Carry trades and global foreign exchange volatility.” J. Financ. 67 (2012): 681–718. [Google Scholar] [CrossRef] [Green Version]
- P. Della Corte, L. Sarno, and I. Tsiakas. “An Economic Evaluation of Empirical Exchange Rate Models.” Rev. Financ. Stud. 22 (2009): 3491–3530. [Google Scholar] [CrossRef]
- J. Cochrane. Asset Pricing. Princeton, NJ, USA: Princeton University Press, 2001. [Google Scholar]
- E.F. Fama. “Forward and spot exchange rates.” J. Monet. Econ. 14 (1984): 319–338. [Google Scholar] [CrossRef]
- Q.F. Akram, D. Rime, and L. Sarno. “Arbitrage in the foreign exchange market: Turning on the microscope.” J. Int. Econ. 76 (2008): 237–253. [Google Scholar] [CrossRef]
- H.A. Chipman, E.I. George, and R.E. McCulloch. “Bayesian CART Model Search (with discussion).” J. Am. Stat. Assoc. 93 (1998): 935–960. [Google Scholar] [CrossRef]
- H.A. Chipman, E.I. George, and R.E. McCulloch. “Bayesian Treed Models.” Mach. Learn. 48 (2002): 303–324. [Google Scholar] [CrossRef]
- L. Breiman, J.H. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Belmont, CA, USA: Wadsworth, 1984. [Google Scholar]
- A. Abhyankar, L. Sarno, and G. Valente. “Exchange rates and fundamentals: Evidence on the economic value of predictability.” J. Int. Econ. 66 (2005): 325–348. [Google Scholar] [CrossRef]
- A.W. Lo. “The Statistics of Sharpe Ratios.” Financ. Anal. J. 58 (2002): 36–52. [Google Scholar] [CrossRef]
- F.X. Diebold, and R.S. Mariano. “Comparing Predictive Accuracy.” J. Bus. Econ. Stat. 13 (1995): 253–263. [Google Scholar]
- R. Dornbusch. “Expectations and Exchange Rate Dynamics.” J. Political Econ. 84 (1976): 1161–1176. [Google Scholar] [CrossRef]
- J.A. Frankel. “On the Mark: A Theory of Floating Exchange Rates Based on Real Interest Rate Differentials.” Am. Econ. Rev. 69 (1979): 601–622. [Google Scholar]
- D.W.K. Andrews. “Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation.” Econometrica 59 (1991): 817–858. [Google Scholar] [CrossRef]
Model | RW | RWWD | LM | BTGP | |
---|---|---|---|---|---|
Number of countries | 28 | 28 | 28 | 28 | |
Dir. accuracy (%) | Mean | 0.5458 | 0.5496 | 0.5431 | 0.5406 |
Median | 0.5574 | 0.5575 | 0.5449 | 0.543 | |
Min | 0.3824 | 0.4054 | 0.2353 | 0.2353 | |
Max | 0.6818 | 0.6765 | 0.6475 | 0.6475 | |
EP test | EP > 0, | 4 | 2 | 2 | 1 |
EP insignificant | 24 | 25 | 26 | 26 | |
EP < 0, | 0 | 1 | 0 | 1 | |
Incidence of EP > 0 | 14 | 17 | 17 | 19 | |
Cum. APR
(pre-TC) | Mean | 0.0187 | 0.0145 | 0.0052 | 0.0045 |
Median | 0.0269 | 0.0217 | 0.0215 | 0.0261 | |
Min | −0.1563 | −0.0971 | −0.2433 | −0.2568 | |
Max | 0.1065 | 0.1306 | 0.1104 | 0.088 | |
Sharpe ratio (pre-TC) | Mean | 0.2539 | 0.2257 | 0.1167 | 0.1591 |
Median | 0.3206 | 0.285 | 0.3409 | 0.2802 | |
Min | −0.8995 | −0.822 | −4.0664 | −2.5734 | |
Max | 1.3098 | 1.3879 | 1.3317 | 0.9035 |
Model | RW | RWWD | LM | BTGP | |
---|---|---|---|---|---|
Number of countries | 43 | 43 | 43 | 43 | |
Dir. accuracy (%) | Mean | 0.5792 | 0.5601 | 0.7648 | 0.7665 |
Median | 0.5523 | 0.5414 | 0.7978 | 0.7879 | |
Min | 0.3824 | 0.3636 | 0.5455 | 0.6061 | |
Max | 0.9083 | 0.9 | 0.963 | 0.9444 | |
EP test | EP > 0, | 9 | 3 | 38 | 38 |
EP insignificant | 34 | 39 | 5 | 5 | |
EP < 0, | 0 | 1 | 0 | 0 | |
Incidence of EP > 0 | 25 | 21 | 43 | 43 | |
Cum. APR (pre-TC) | Mean | 0.0279 | 0.0098 | 0.2229 | 0.2235 |
Median | 0.0285 | 0.0125 | 0.2452 | 0.2422 | |
Min | −0.0714 | −0.1701 | 0.0005 | 0.0013 | |
Max | 0.1139 | 0.1306 | 0.4742 | 0.5017 | |
Sharpe ratio (pre-TC) | Mean | 0.374 | 0.1958 | 2.0704 | 2.1052 |
Median | 0.3369 | 0.1809 | 1.8147 | 1.6784 | |
Min | −0.33 | −1.6726 | 0.0827 | 0.2587 | |
Max | 1.3752 | 1.3879 | 4.5951 | 4.5871 |
GFX Factor Subset: | Benchmarks | Panel A: Forward Premium | Panel B: Carry | Panel C: Dollar | |||||
---|---|---|---|---|---|---|---|---|---|
Model | RW | RWWD | LM | BTGP | LM | BTGP | LM | BTGP | |
Dir. accuracy (%) | Mean | 0.5792 | 0.5601 | 0.5519 | 0.5698 | 0.5985 | 0.5929 | 0.763 | 0.762 |
Median | 0.5523 | 0.5414 | 0.5492 | 0.5667 | 0.5833 | 0.5848 | 0.7942 | 0.7909 | |
Min | 0.3824 | 0.3636 | 0.303 | 0.3333 | 0.4242 | 0.3333 | 0.5758 | 0.5152 | |
Max | 0.9083 | 0.9 | 0.825 | 0.875 | 0.8182 | 0.8182 | 0.9074 | 0.9074 | |
EP test | EP > 0, | 9 | 3 | 5 | 7 | 19 | 17 | 40 | 40 |
EP insignificant | 34 | 39 | 36 | 36 | 24 | 26 | 3 | 3 | |
EP < 0, | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | |
Incidence of EP > 0 | 25 | 21 | 27 | 35 | 36 | 32 | 43 | 43 | |
Cum. APR (pre-TC) | Mean | 0.0279 | 0.0098 | -0.0011 | 0.0217 | 0.053 | 0.0489 | 0.2332 | 0.2291 |
Median | 0.0285 | 0.0125 | 0.009 | 0.0246 | 0.0547 | 0.0474 | 0.266 | 0.2532 | |
Min | −0.0714 | −0.1701 | −0.2559 | −0.1872 | −0.1191 | −0.1487 | 0.0036 | 0.0008 | |
Max | 0.1139 | 0.1306 | 0.1139 | 0.1027 | 0.3262 | 0.3262 | 0.5007 | 0.5098 | |
Sharpe ratio (pre-TC) | Mean | 0.374 | 0.1958 | 0.1389 | 0.3524 | 0.529 | 0.5116 | 2.1233 | 2.0295 |
Median | 0.3369 | 0.1809 | 0.1484 | 0.3565 | 0.5711 | 0.5106 | 2.0975 | 1.9984 | |
Min | −0.33 | −1.6726 | −1.6781 | −1.0858 | −0.9747 | −0.7985 | 0.6388 | 0.1512 | |
Max | 1.3752 | 1.3879 | 1.3752 | 1.3752 | 2.5624 | 2.5624 | 4.5866 | 4.5866 |
Factor: | Panel A: Carry | |||
Model: | RWWD | LM | BTGP | GM |
RMSE | 0.0269 | 0.0277 | 0.028 | 0.0277 |
MAE | 0.0202 | 0.0207 | 0.0207 | 0.0207 |
Dir. Accuracy | 0.6976 | 0.6855 | 0.6855 | 0.6855 |
EP test | 0.46 | 3.362 *** | 2.617 *** | 2.984 *** |
Cum. APR | 0.103 | 0.119 | 0.122 | 0.115 |
Sharpe ratio | 0.762 | 1.109 | 1.232 | 1.088 |
Factor: | Panel B: Dollar | |||
Model: | RWWD | LM | BTGP | GM |
RMSE | 0.0204 | 0.0211 | 0.0211 | 0.0212 |
MAE | 0.0151 | 0.0157 | 0.016 | 0.0159 |
Dir. Accuracy | 0.5766 | 0.5565 | 0.5484 | 0.5565 |
EP test | 0.097 | 1.477 | 1.338 | 1.372 |
Cum. APR | 0.009 | 0.026 | 0.026 | 0.025 |
Sharpe ratio | 0.135 | 0.315 | 0.38 | 0.309 |
Panel A: Benchmarks | Panel B: LM | Panel C: Subcases of BTGP | ||||||
---|---|---|---|---|---|---|---|---|
Model | RW | RWWD | LM | BLM | BTLM | BGP | BTGP | |
Dir. accuracy (%) | Mean | 0.5798 | 0.559 | 0.5626 | 0.5675 | 0.5714 | 0.5707 | 0.5756 |
Median | 0.5517 | 0.5379 | 0.5667 | 0.5688 | 0.566 | 0.5606 | 0.5682 | |
Min | 0.3824 | 0.3636 | 0.3333 | 0.3333 | 0.3824 | 0.3276 | 0.3636 | |
Max | 0.9083 | 0.9 | 0.8485 | 0.8485 | 0.85 | 0.875 | 0.8833 | |
EP test | EP > 0, | 9 | 3 | 9 | 11 | 6 | 11 | 13 |
EP insignificant | 34 | 39 | 32 | 29 | 35 | 29 | 29 | |
EP < 0, | 0 | 1 | 2 | 3 | 2 | 3 | 1 | |
Incidence of | 25 | 21 | 32 | 32 | 31 | 33 | 34 | |
Cum. APR (pre-TC) | Mean | 0.0285 | 0.0087 | 0.0115 | 0.0147 | 0.0186 | 0.0204 | 0.0309 |
Median | 0.03 | 0.0112 | 0.0297 | 0.0322 | 0.0303 | 0.0356 | 0.0354 | |
Min | −0.0714 | −0.1701 | −0.264 | −0.264 | −0.1965 | −0.2167 | −0.1564 | |
Max | 0.1156 | 0.1306 | 0.2553 | 0.2553 | 0.163 | 0.1782 | 0.2391 | |
Sharpe ratio (pre-TC) | Mean | 0.3778 | 0.1857 | 0.2538 | 0.2758 | 0.3214 | 0.3625 | 0.4483 |
Median | 0.3582 | 0.1695 | 0.3787 | 0.4081 | 0.3413 | 0.4309 | 0.4239 | |
Min | −0.33 | −1.6726 | −1.7623 | −1.7623 | −0.8017 | −1.4444 | −0.9104 | |
Max | 1.3752 | 1.3879 | 2.109 | 2.109 | 1.4546 | 1.4546 | 2.1321 |
Panel A: Tests of unconditional ex post forecasting ability | ||||||
RW | RWWD | LM | RW | RWWD | LM | |
Squared Error | Abs. Error | |||||
RWWD | 22/21/0 | 12/31/0 | ||||
LM | 1/16/26 | 1/13/29 | 2/12/29 | 2/13/28 | ||
BTGP | 1/16/26 | 1/17/25 | 6/36/1 | 2/16/25 | 1/14/28 | 9/33/1 |
Dir. Acc. | Profits | |||||
RWWD | 5/37/1 | 7/36/0 | ||||
LM | 1/12/30 | 1/12/30 | 1/10/32 | 0/9/34 | ||
BTGP | 2/9/32 | 2/9/32 | 6/36/1 | 0/11/32 | 0/10/33 | 5/37/1 |
Panel B: Tests of conditional ex post forecasting ability | ||||||
RW | RWWD | LM | RW | RWWD | LM | |
Squared Error | Abs. Error | |||||
RWWD | 12/30/1 | 9/34/0 | ||||
LM | 0/17/26 | 0/16/27 | 3/14/26 | 2/13/28 | ||
BTGP | 0/19/24 | 0/19/24 | 3/40/0 | 2/17/24 | 1/16/26 | 6/37/0 |
Dir. Acc. | Profits | |||||
RWWD | 3/39/1 | 5/38/0 | ||||
LM | 1/16/26 | 1/13/29 | 0/13/30 | 0/10/33 | ||
BTGP | 2/12/29 | 2/11/30 | 1/42/0 | 0/13/30 | 0/11/32 | 1/41/1 |
Panel A: Tests of unconditional ex ante forecasting ability | ||||||
RW | RWWD | LM | RW | RWWD | LM | |
Squared Error | Abs. Error | |||||
RWWD | 22/21/0 | 12/31/0 | ||||
LM | 20/23/0 | 9/33/1 | 22/21/0 | 14/28/1 | ||
BTGP | 21/21/1 | 12/31/0 | 2/38/3 | 22/20/1 | 15/28/0 | 5/37/1 |
Dir. Acc. | Profits | |||||
RWWD | 5/37/1 | 7/36/0 | ||||
LM | 6/35/2 | 5/36/2 | 4/39/0 | 3/37/3 | ||
BTGP | 5/36/2 | 4/37/2 | 2/38/3 | 5/36/2 | 3/35/5 | 2/38/3 |
Panel B: Tests of conditional ex ante forecasting ability | ||||||
RW | RWWD | LM | RW | RWWD | LM | |
Squared Error | Abs. Error | |||||
RWWD | 10/32/1 | 9/34/0 | ||||
LM | 15/28/0 | 8/35/0 | 15/28/0 | 12/31/0 | ||
BTGP | 15/28/0 | 8/35/0 | 3/40/0 | 18/25/0 | 12/31/0 | 3/38/2 |
Dir. Acc. | Profits | |||||
RWWD | 3/39/1 | 5/38/0 | ||||
LM | 7/35/1 | 3/35/5 | 1/42/0 | 1/39/3 | ||
BTGP | 5/38/0 | 2/37/4 | 0/40/3 | 1/41/1 | 1/39/3 | 1/41/1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malone, S.W.; Gramacy, R.B.; Ter Horst, E. Timing Foreign Exchange Markets. Econometrics 2016, 4, 15. https://doi.org/10.3390/econometrics4010015
Malone SW, Gramacy RB, Ter Horst E. Timing Foreign Exchange Markets. Econometrics. 2016; 4(1):15. https://doi.org/10.3390/econometrics4010015
Chicago/Turabian StyleMalone, Samuel W., Robert B. Gramacy, and Enrique Ter Horst. 2016. "Timing Foreign Exchange Markets" Econometrics 4, no. 1: 15. https://doi.org/10.3390/econometrics4010015
APA StyleMalone, S. W., Gramacy, R. B., & Ter Horst, E. (2016). Timing Foreign Exchange Markets. Econometrics, 4(1), 15. https://doi.org/10.3390/econometrics4010015