Forecast Bitcoin Volatility with Least Squares Model Averaging
Abstract
:1. Introduction
2. Prior HAR-Type Strategies to Forecast Volatility
3. Model Uncertainty
4. Data Description
5. The Empirical Exercise
6. Robustness Check
6.1. Various Forecast Horizons
6.2. Alternative Window Lengths
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Andersen, Torben G., and Tim Bollerslev. 1998. Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts. International Economic Review 39: 885–905. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, and Francis X. Diebold. 2007. Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility. The Review of Economics and Statistics 89: 701–20. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Heiko Ebens. 2001a. The distribution of realized stock return volatility. Journal of Financial Economics 61: 43–76. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2001b. The Distribution of Realized Exchange Rate Volatility. Journal of the American Statistical Association 96: 42–55. [Google Scholar] [CrossRef]
- Audrino, Francesco, and Simon D. Knaus. 2016. Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics. Econometric Reviews 35: 1485–521. [Google Scholar] [CrossRef]
- Audrino, Francesco, Huang Chen, and Okhrin Ostap. 2019. Flexible HAR Model for Realized Volatility. Studies in Nonlinear Dynamics & Econometrics 23: 1–22. [Google Scholar]
- Audrino, Francesco, Lorenzo Camponovo, and Constantin Roth. 2015. Testing the lag Structure of Assets’ Realized Volatility Dynamics. Economics Working Paper Series 1501; St. Gallen: University of St. Gallen, School of Economics and Political Science. [Google Scholar]
- Barnard, George A. 1963. New Methods of Quality Control. Journal of the Royal Statistical Society. Series A (General) 126: 255–58. [Google Scholar] [CrossRef]
- Breiman, Leo. 2001. Random Forests. Machine Learning 45: 5–32. [Google Scholar] [CrossRef] [Green Version]
- Buckland, Steven T., Kenneth P. Burnham, and Nicole H. Augustin. 1997. Model Selection: An Integral Part of Inference. Biometrics 53: 603–18. [Google Scholar] [CrossRef]
- Corsi, Fulvio, Francesco Audrino, and Roberto Renò. 2012. HAR Modeling for Realized Volatility Forecasting. In Handbook of Volatility Models and Their Applications. Hoboken: John Wiley & Sons, Inc., pp. 363–82. [Google Scholar]
- Corsi, Fulvio, Stefan Mittnik, Christian Pigorsch, and Uta Pigorsch. 2008. The Volatility of Realized Volatility. Econometric Reviews 27: 46–78. [Google Scholar] [CrossRef]
- Corsi, Fulvio. 2009. A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics 7: 174–96. [Google Scholar] [CrossRef]
- Craioveanu, Mihaela, and Eric Hillebrand. 2012. Why It Is OK to Use the HAR-RV (1, 5, 21) Model. Technical Report. Missouri: University of Central Missouri. [Google Scholar]
- Dacorogna, Michael M., Ulrich A. Müller, Robert J. Nagler, Richard B. Olsen, and Olivier V. Pictet. 1993. A geographical model for the daily and weekly seasonal volatility in the foreign exchange market. Journal of International Money and Finance 12: 413–38. [Google Scholar] [CrossRef]
- Giacomini, Raffaella, and Halbert White. 2006. Tests of Conditional Predictive Ability. Econometrica 74: 1545–78. [Google Scholar] [CrossRef]
- Hansen, Bruce E. 2007. Least Squares Model Averaging. Econometrica 75: 1175–89. [Google Scholar] [CrossRef]
- Hansen, Bruce E. 2008. Least-squares forecast averaging. Journal of Econometrics 146: 342–50. [Google Scholar] [CrossRef]
- Hansen, Bruce E. 2009. Averaging Estimators for Regressions with A Possible Structural Break. Econometric Theory 25: 1498–514. [Google Scholar] [CrossRef]
- Hansen, Bruce E. 2010. Averaging Estimators for Autoregressions with A Near Unit Root. Journal of Econometrics 158: 142–55. [Google Scholar] [CrossRef]
- Hansen, Bruce E., and Jeffrey S. Racine. 2012. Jackknife model averaging. Journal of Econometrics 167: 38–46. [Google Scholar] [CrossRef]
- Hoeting, Jennifer A., David Madigan, Adrian E. Raftery, and Chris T. Volinsky. 1999. Bayesian Model Averaging: A Tutorial. Statistical Science 14: 382–401. [Google Scholar]
- Huang, Xin, and George Tauchen. 2005. The Relative Contribution of Jumps to Total Price Variance. Journal of Financial Econometrics 3: 456–99. [Google Scholar] [CrossRef]
- Lehrer, Steven F., Tian Xie, and Xinyu Zhang. 2018. Wits versus Tweets: Does Adding Social Media Wisdom Trump Admitting Ignorance when Forecasting the CBOE VIX? Working Paper A0167. Hong Kong, China: The City University of Hong Kong. [Google Scholar]
- Liu, Qingfeng, and Ryo Okui. 2013. Heteroskedasticity-robust Cp Model Averaging. The Econometrics Journal 16: 463–72. [Google Scholar] [CrossRef]
- Magnus, Jan R., Owen Powell, and Patricia Prüfer. 2010. A comparison of two model averaging techniques with an application to growth empirics. Journal of Econometrics 154: 139–53. [Google Scholar] [CrossRef]
- Müller, Ulrich A., Michel M. Dacorogna, Rakhal D. Davé, Olivier V. Pictet, Richard B. Olsen, and J. Robert Ward. 1993. Fractals and Intrinsic Time—A Challenge to Econometricians. Technical Report. Zürich: Olsen & Associates. [Google Scholar]
- Patton, Andrew J., and Kevin Sheppard. 2015. Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility. The Review of Economics and Statistics 97: 683–97. [Google Scholar] [CrossRef]
- Qiu, Yue, and Tian Xie. 2018. Forecasting Foreign Exchange Realized Volatility: A Least Squares Model Averaging Approach. Journal of Systems Science and Mathematical Sciences 38: 725–44. [Google Scholar]
- Qiu, Yue, Xinyu Zhang, Tian Xie, and Shangwei Zhao. 2019. Versatile HAR model for realized volatility: A least square model averaging perspective. Journal of Management Science and Engineering 4: 55–73. [Google Scholar] [CrossRef]
- Wan, Alan TK, Xinyu Zhang, and Guohua Zou. 2010. Least Squares Model Averaging by Mallows Criterion. Journal of Econometrics 156: 277–83. [Google Scholar] [CrossRef]
- Xie, Tian. 2015. Prediction Model Averaging Estimator. Economics Letters 131: 5–8. [Google Scholar] [CrossRef]
- Xie, Tian. 2017. Heteroscedasticity-robust Model Screening: A Useful Toolkit for Model Averaging in Big Data Analytics. Economics Letters 151: 119–22. [Google Scholar] [CrossRef]
- Yuan, Zheng, and Yuhong Yang. 2005. Combining Linear Regression Models: When and How? Journal of the American Statistical Association 100: 1202–14. [Google Scholar] [CrossRef]
- Zhang, Xinyu, Alan TK Wan, and Guohua Zou. 2013. Model averaging by jackknife criterion in models with dependent data. Journal of Econometrics 174: 82–94. [Google Scholar] [CrossRef]
- Zhao, Shangwei, Xinyu Zhang, and Yichen Gao. 2016. Model Averaging with Averaging Covariance Matrix. Economics Letters 145: 214–17. [Google Scholar] [CrossRef]
1. | The CME Group Inc. (Chicago Mercantile Exchange & Chicago Board of Trade) in December 2017 launched Bitcoin future (XBT), with Bitcoin as the underlying asset. |
2. | This phenomenon has been documented by Dacorogna et al. (1993) and Andersen et al. (2001b) for the foreign exchange market and by Andersen et al. (2001a) for stock market returns. |
3. | ARFIMA is designed to model time series with long memory at the beginning. It is now a popular tool for modeling volatility, since volatility exhibits long memory. |
4. | Corsi et al. (2012) provided a comprehensive review of the development of HAR-type models and their various extensions. |
5. | Müller et al. (1993) referred to this interpretation as the Heterogeneous Market Hypothesis. |
6. | The ratio statistic is defined as
|
7. | Although all the elements in are h-period lags from the period t, we follow the conventional notation in time series and denote as the explanatory variable corresponding to the period t dependent variable. |
8. | Corsi et al. (2008) also demonstrated that the residuals of commonly used realized volatility models for the S&P 500 index exhibit non-Gaussianity and volatility clustering. They assessed its relevance for modeling and forecasting volatility in the proposed HAR-GARCH model. |
9. | Additional results using both the GARCH and the ARFIMA models are available upon request. These estimators performed poorly relative to the HAR model and thus are not included for space limitation. |
10. | The reason we have to exclude RV is because the summation of semi-variance terms equals RV. |
11. | We also tried the 10-fold cross-validation and fixed tuning parameter . The results remain qualitatively intact. |
12. | Giacomini and White (2006) proposed a framework for out-of-sample predictive ability testing and forecast selection designed for use in the realistic situation in which the forecasting model is possibly misspecified due to unmodeled dynamics, unmodeled heterogeneity, incorrect functional form, or any combination of these. The null hypothesis of the GW test is that the two models we want to compare are equally accurate on average based on certain criterion. |
13. | Note that the forecasting horizons we considered in this paper are all short. The HAR-type models which our model-averaging methods build upon do not perform well in the long forecasting horizons. One possible explanation is that the Bitcoin market is relatively small compared to conventional stock markets; therefore, it is more sensitive to various policy shocks, information impact, and even social media sentiment changes. Most of these shocks are short-lived, and it seems that the momentum effect does not last long in Bitcoin realized volatility. How to model Bitcoin volatility in a long forecasting horizon is beyond the scope of this paper and guarantees future research. |
Statistics | First Half | Second Half | Full Sample |
---|---|---|---|
Mean | 32.4200 | 12.3319 | 22.3760 |
Median | 21.9565 | 6.4271 | 11.8865 |
Maximum | 197.6081 | 115.6538 | 197.6081 |
Minimum | 1.8285 | 0.5241 | 0.5241 |
Std. Dev. | 33.7164 | 17.2047 | 28.5575 |
Skewness | 2.4792 | 3.2186 | 2.9249 |
Kurtosis | 10.6082 | 15.9842 | 14.3301 |
Jarque–Bera | 0.0010 | 0.0010 | 0.0010 |
ADF Test | 0.0010 | 0.0010 | 0.0010 |
Panel A: Conventional Regressions | ||
(1) | AR(1) | a simple autoregressive model |
(2) | HAR-Full | the HAR model proposed in Corsi (2009) with , equivalent to a restricted AR(30) |
(3) | HAR | the conventional HAR model proposed in Corsi (2009) with |
(4) | HAR-J | the HAR model with jump component proposed in Andersen et al. (2007) |
(5) | HAR-CJ | the HAR model with continuous jump component proposed in Andersen et al. (2007) |
(6) | HAR-RS-I | the HAR model with semi-variance components (Type I) proposed in Patton and Sheppard (2015) |
(7) | HAR-RS-II | the HAR model with semi-variance components (Type II) proposed in Patton and Sheppard (2015) |
(8) | HAR-SJ-I | the HAR model with semi-variance and jump components (Type I) proposed in Patton and Sheppard (2015) |
(9) | HAR-SJ-II | the HAR model with semi-variance and jump components (Type II) proposed in Patton and Sheppard (2015) |
Panel B: Methods Acknowledging Model Uncertainty | ||
(10) | LASSO | the LASSO HAR method proposed in Audrino and Knaus (2016) |
(11) | MAHAR | the model averaging HAR method proposed in Lehrer et al. (2018) |
(12) | HRCP | the hetero-robust model-averaging method proposed in Liu and Okui (2013) |
(13) | JMA | the jackknife model-averaging method discussed in Zhang et al. (2013) |
(14) | H-MAHAR | the hetero-robust model averaging HAR method proposed in Qiu and Xie (2018) |
Method | MSFE | MAFE | SDFE | Pseudo |
---|---|---|---|---|
Panel A: Conventional Regressions | ||||
AR(1) | 239.1504 | 10.0717 | 15.4645 | 0.4106 |
HAR-Full | 302.3662 | 10.8925 | 17.3887 | 0.2548 |
HAR | 204.6532 | 8.3302 | 14.3057 | 0.4956 |
HAR-J | 208.7348 | 8.5570 | 14.4477 | 0.4856 |
HAR-CJ | 215.9540 | 8.3766 | 14.6954 | 0.4678 |
HAR-RS-I | 193.2083 | 8.1705 | 13.8999 | 0.5238 |
HAR-RS-II | 197.3354 | 8.2618 | 14.0476 | 0.5137 |
HAR-SJ-I | 193.7362 | 8.2167 | 13.9189 | 0.5225 |
HAR-SJ-II | 201.1249 | 8.3640 | 14.1819 | 0.5043 |
Panel B: Method Acknowledging Model Uncertainty | ||||
LASSO | 247.8799 | 8.2628 | 15.7442 | 0.3891 |
MAHAR | 191.9673 | 7.1735 | 13.8552 | 0.5269 |
HRCP | 196.8785 | 7.3539 | 14.0313 | 0.5148 |
JMA | 191.9862 | 7.1772 | 13.8559 | 0.5269 |
H-MAHAR | 191.3624 | 7.1621 | 13.8334 | 0.5284 |
Method | AR(1) | Full | HAR | J | CJ | RS-I | RS-II | SJ-I | SJ-II | LASSO | MAHAR | HRCP | JMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panel A: Conventional Regressions | |||||||||||||
AR(1) | - | - | - | - | - | - | - | - | - | - | - | - | - |
HAR-Full | 0.1617 | - | - | - | - | - | - | - | - | - | - | - | - |
HAR | 0.0000 | 0.0000 | - | - | - | - | - | - | - | - | - | - | - |
HAR-J | 0.0000 | 0.0000 | 0.0888 | - | - | - | - | - | - | - | - | - | - |
HAR-CJ | 0.0000 | 0.0000 | 0.8449 | 0.4070 | - | - | - | - | - | - | - | - | - |
HAR-RS-I | 0.0000 | 0.0000 | 0.4376 | 0.1074 | 0.4895 | - | - | - | - | - | - | - | - |
HAR-RS-II | 0.0000 | 0.0000 | 0.7418 | 0.2239 | 0.7047 | 0.1137 | - | - | - | - | - | - | - |
HAR-SJ-I | 0.0000 | 0.0000 | 0.5839 | 0.1283 | 0.5811 | 0.3202 | 0.5546 | - | - | - | - | - | - |
HAR-SJ-II | 0.0000 | 0.0000 | 0.8739 | 0.4253 | 0.9667 | 0.0969 | 0.4063 | 0.1413 | - | - | - | - | - |
Panel B: Methods Acknowledging Model Uncertainty | |||||||||||||
LASSO | 0.0009 | 0.0000 | 0.8632 | 0.4805 | 0.7957 | 0.8245 | 0.9980 | 0.9113 | 0.8042 | - | - | - | - |
MAHAR | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0007 | 0.0003 | 0.0001 | 0.0002 | 0.0001 | 0.0029 | - | - | - |
HRCP | 0.0000 | 0.0000 | 0.0008 | 0.0001 | 0.0037 | 0.0035 | 0.0018 | 0.0023 | 0.0012 | 0.0150 | 0.0255 | - | - |
JMA | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0007 | 0.0003 | 0.0001 | 0.0002 | 0.0001 | 0.0030 | 0.5774 | 0.0251 | - |
H-MAHAR | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0024 | 0.3481 | 0.0227 | 0.3119 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
---|---|---|---|---|---|
Weight | 0.3441 | 0.3355 | 0.2546 | 0.0488 | 0.0170 |
Panel A: HAR-RS Components | |||||
RV | |||||
RV | x | x | x | x | x |
Panel B: Selected HAR Covariates | |||||
RV | x | x | x | ||
RV | x | x | x | ||
RV | x | x | |||
RV | x | x | |||
RV | x | x | |||
RV | x | x | x | x | |
RV | x | x | x | x | x |
RV | x | x | x | x | x |
Method | MSFE | MAFE | SDFE | Pseudo | MSFE | MAFE | SDFE | Pseudo | MSFE | MAFE | SDFE | Pseudo | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panel A: Conventional Regressions | |||||||||||||||
AR(1) | 262.9289 | 10.3286 | 16.2151 | 0.3062 | 277.6988 | 10.6643 | 16.6643 | 0.2643 | 283.2303 | 10.9911 | 16.8294 | 0.2502 | |||
HAR-Full | 334.5891 | 11.6691 | 18.2918 | 0.1171 | 346.2303 | 12.1207 | 18.6073 | 0.0828 | 346.7523 | 12.2453 | 18.6213 | 0.0821 | |||
HAR | 224.2440 | 8.8998 | 14.9748 | 0.4083 | 234.6886 | 9.3141 | 15.3196 | 0.3783 | 241.8037 | 9.2817 | 15.5500 | 0.3599 | |||
HAR-J | 226.2970 | 8.9210 | 15.0432 | 0.4028 | 235.0144 | 9.2912 | 15.3302 | 0.3774 | 245.8197 | 9.5108 | 15.6786 | 0.3493 | |||
HAR-CJ | 221.2180 | 8.8997 | 14.8734 | 0.4162 | 223.1287 | 9.1104 | 14.9375 | 0.4089 | 244.7930 | 9.6451 | 15.6459 | 0.3520 | |||
HAR-RS-I | 226.5678 | 8.9060 | 15.0522 | 0.4021 | 258.0224 | 9.5877 | 16.0631 | 0.3164 | 230.6331 | 9.0845 | 15.1866 | 0.3895 | |||
HAR-RS-II | 231.1408 | 9.0014 | 15.2033 | 0.3901 | 262.3614 | 9.7318 | 16.1976 | 0.3050 | 242.0860 | 9.3867 | 15.5591 | 0.3591 | |||
HAR-SJ-I | 228.7837 | 8.9241 | 15.1256 | 0.3963 | 260.7971 | 9.6530 | 16.1492 | 0.3091 | 232.6273 | 9.1173 | 15.2521 | 0.3842 | |||
HAR-SJ-II | 233.0146 | 9.1070 | 15.2648 | 0.3851 | 290.9509 | 9.6781 | 17.0573 | 0.2292 | 239.4566 | 9.3162 | 15.4744 | 0.3661 | |||
Panel B: Methods Acknowledging Model Uncertainty | |||||||||||||||
LASSO | 265.2809 | 8.7407 | 16.2874 | 0.3000 | 270.9054 | 9.0213 | 16.4592 | 0.2823 | 270.9619 | 9.2020 | 16.4609 | 0.2827 | |||
MAHAR | 216.7814 | 8.4566 | 14.7235 | 0.4280 | 228.6793 | 8.4375 | 15.1221 | 0.3942 | 225.0127 | 8.1343 | 15.0004 | 0.4043 | |||
HRCP | 217.2918 | 8.4100 | 14.7408 | 0.4266 | 228.5923 | 8.3638 | 15.1193 | 0.3944 | 220.1249 | 7.9448 | 14.8366 | 0.4173 | |||
JMA | 216.9337 | 8.4577 | 14.7287 | 0.4276 | 228.7295 | 8.4372 | 15.1238 | 0.3940 | 227.8901 | 8.1982 | 15.0960 | 0.3967 | |||
H-MAHAR | 216.9262 | 8.4746 | 14.7284 | 0.4276 | 228.7536 | 8.4606 | 15.1246 | 0.3940 | 223.9671 | 8.1245 | 14.9655 | 0.4071 |
Method | AR(1) | Full | HAR | J | CJ | RS-I | RS-II | SJ-I | SJ-II | LASSO | MAHAR | HRCP | JMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panel A: | |||||||||||||
AR(1) | - | - | - | - | - | - | - | - | - | - | - | - | - |
HAR-Full | 0.0688 | - | - | - | - | - | - | - | - | - | - | - | - |
HAR | 0.0008 | 0.0000 | - | - | - | - | - | - | - | - | - | - | - |
HAR-J | 0.0013 | 0.0000 | 0.7804 | - | - | - | - | - | - | - | - | - | - |
HAR-CJ | 0.0065 | 0.0000 | 0.9999 | 0.9478 | - | - | - | - | - | - | - | - | - |
HAR-RS-I | 0.0011 | 0.0000 | 0.9548 | 0.9016 | 0.9848 | - | - | - | - | - | - | - | - |
HAR-RS-II | 0.0033 | 0.0000 | 0.4109 | 0.5236 | 0.7577 | 0.1555 | - | - | - | - | - | - | - |
HAR-SJ-I | 0.0011 | 0.0000 | 0.8446 | 0.9817 | 0.9418 | 0.6648 | 0.3559 | - | - | - | - | - | - |
HAR-SJ-II | 0.0048 | 0.0000 | 0.2016 | 0.2599 | 0.5321 | 0.0556 | 0.4204 | 0.0425 | - | - | - | - | - |
LASSO | 0.0149 | 0.0004 | 0.7522 | 0.7190 | 0.7794 | 0.7414 | 0.6079 | 0.7187 | 0.4705 | - | - | - | - |
MAHAR | 0.0005 | 0.0000 | 0.2397 | 0.2196 | 0.2723 | 0.2467 | 0.1613 | 0.2397 | 0.1070 | 0.5903 | - | - | - |
HRCP | 0.0003 | 0.0000 | 0.1952 | 0.1811 | 0.2413 | 0.2040 | 0.1304 | 0.1987 | 0.0868 | 0.5285 | 0.6363 | - | - |
JMA | 0.0005 | 0.0000 | 0.2430 | 0.2231 | 0.2768 | 0.2500 | 0.1640 | 0.2428 | 0.1090 | 0.5930 | 0.9213 | 0.6168 | - |
H-MAHAR | 0.0006 | 0.0000 | 0.2616 | 0.2404 | 0.2964 | 0.2685 | 0.1780 | 0.2606 | 0.1188 | 0.6154 | 0.3316 | 0.4998 | 0.2370 |
Panel B: | |||||||||||||
AR(1) | - | - | - | - | - | - | - | - | - | - | - | - | - |
HAR-Full | 0.0974 | - | - | - | - | - | - | - | - | - | - | - | - |
HAR | 0.0121 | 0.0000 | - | - | - | - | - | - | - | - | - | - | - |
HAR-J | 0.0149 | 0.0000 | 0.8366 | - | - | - | - | - | - | - | - | - | - |
HAR-CJ | 0.0281 | 0.0001 | 0.6213 | 0.6402 | - | - | - | - | - | - | - | - | - |
HAR-RS-I | 0.0477 | 0.0001 | 0.2135 | 0.3144 | 0.3559 | - | - | - | - | - | - | - | - |
HAR-RS-II | 0.0979 | 0.0002 | 0.0511 | 0.1174 | 0.2237 | 0.1753 | - | - | - | - | - | - | - |
HAR-SJ-I | 0.0580 | 0.0002 | 0.1491 | 0.2454 | 0.3068 | 0.0937 | 0.4849 | - | - | - | - | - | - |
HAR-SJ-II | 0.0933 | 0.0005 | 0.2751 | 0.3349 | 0.3545 | 0.5870 | 0.7948 | 0.8733 | - | - | - | - | - |
LASSO | 0.0410 | 0.0014 | 0.6278 | 0.6430 | 0.9034 | 0.3877 | 0.2914 | 0.3399 | 0.3513 | - | - | - | - |
MAHAR | 0.0011 | 0.0000 | 0.0393 | 0.0431 | 0.1216 | 0.0218 | 0.0102 | 0.0174 | 0.0327 | 0.3106 | - | - | - |
HRCP | 0.0007 | 0.0000 | 0.0236 | 0.0257 | 0.0872 | 0.0136 | 0.0059 | 0.0108 | 0.0230 | 0.2573 | 0.4987 | - | - |
JMA | 0.0011 | 0.0000 | 0.0402 | 0.0443 | 0.1260 | 0.0223 | 0.0105 | 0.0178 | 0.0333 | 0.3115 | 0.9892 | 0.4993 | - |
H-MAHAR | 0.0012 | 0.0000 | 0.0471 | 0.0515 | 0.1411 | 0.0258 | 0.0124 | 0.0206 | 0.0372 | 0.3333 | 0.4041 | 0.3999 | 0.2248 |
Panel C: | |||||||||||||
AR(1) | - | - | - | - | - | - | - | - | - | - | - | - | - |
HAR-Full | 0.1863 | - | - | - | - | - | - | - | - | - | - | - | - |
HAR | 0.0063 | 0.0000 | - | - | - | - | - | - | - | - | - | - | - |
HAR-J | 0.0150 | 0.0000 | 0.1822 | - | - | - | - | - | - | - | - | - | - |
HAR-CJ | 0.0272 | 0.0006 | 0.3321 | 0.6941 | - | - | - | - | - | - | - | - | - |
HAR-RS-I | 0.0022 | 0.0000 | 0.2372 | 0.0900 | 0.1312 | - | - | - | - | - | - | - | - |
HAR-RS-II | 0.0109 | 0.0001 | 0.6134 | 0.6596 | 0.5091 | 0.0238 | - | - | - | - | - | - | - |
HAR-SJ-I | 0.0021 | 0.0000 | 0.2823 | 0.0800 | 0.1454 | 0.4460 | 0.0413 | - | - | - | - | - | - |
HAR-SJ-II | 0.0038 | 0.0000 | 0.8608 | 0.4391 | 0.3665 | 0.0606 | 0.5947 | 0.0570 | - | - | - | - | - |
LASSO | 0.0723 | 0.0047 | 0.9119 | 0.6823 | 0.5731 | 0.8570 | 0.7716 | 0.8976 | 0.8607 | - | - | - | - |
MAHAR | 0.0003 | 0.0000 | 0.0242 | 0.0067 | 0.0027 | 0.0370 | 0.0057 | 0.0317 | 0.0122 | 0.0649 | - | - | - |
HRCP | 0.0004 | 0.0000 | 0.0118 | 0.0027 | 0.0009 | 0.0172 | 0.0046 | 0.0149 | 0.0061 | 0.0484 | 0.5237 | - | - |
JMA | 0.0004 | 0.0000 | 0.0385 | 0.0124 | 0.0051 | 0.0593 | 0.0100 | 0.0516 | 0.0207 | 0.0866 | 0.1211 | 0.4208 | - |
H-MAHAR | 0.0002 | 0.0000 | 0.0200 | 0.0049 | 0.0025 | 0.0331 | 0.0055 | 0.0281 | 0.0112 | 0.0673 | 0.8426 | 0.5390 | 0.3280 |
Method | MSFE | MAFE | SDFE | Pseudo | MSFE | MAFE | SDFE | Pseudo | ||
---|---|---|---|---|---|---|---|---|---|---|
Panel A: Conventional Regression | ||||||||||
AR(1) | 249.6477 | 10.0160 | 15.8002 | 0.5658 | 238.3546 | 9.9032 | 15.4387 | 0.4277 | ||
HAR-Full | 1637.2399 | 22.4248 | 40.4628 | −1.8473 | 243.7945 | 9.6486 | 15.6139 | 0.4147 | ||
HAR | 276.8757 | 10.5585 | 16.6396 | 0.5185 | 212.9744 | 8.2480 | 14.5936 | 0.4887 | ||
HAR-J | 293.4600 | 10.7562 | 17.1307 | 0.4896 | 210.7548 | 8.2194 | 14.5174 | 0.4940 | ||
HAR-CJ | 374.7990 | 11.8093 | 19.3597 | 0.3482 | 208.9187 | 8.2310 | 14.4540 | 0.4984 | ||
HAR-RS-I | 283.6314 | 10.6281 | 16.8414 | 0.5067 | 201.2067 | 8.1321 | 14.1847 | 0.5169 | ||
HAR-RS-II | 295.0338 | 10.7334 | 17.1765 | 0.4869 | 204.8401 | 8.1870 | 14.3122 | 0.5082 | ||
HAR-SJ-I | 284.4146 | 10.6127 | 16.8646 | 0.5054 | 200.6347 | 8.1156 | 14.1646 | 0.5183 | ||
HAR-SJ-II | 299.5199 | 10.9971 | 17.3066 | 0.4791 | 206.0011 | 8.2656 | 14.3527 | 0.5054 | ||
Panel B: Method Acknowledges Model Uncertainty | ||||||||||
LASSO | 806.0115 | 15.7427 | 28.3903 | −0.4017 | 252.3836 | 7.7437 | 15.8866 | 0.3940 | ||
MAHAR | 255.5945 | 9.3474 | 15.9873 | 0.5555 | 200.1770 | 7.3587 | 14.1484 | 0.5194 | ||
HRCP | 298.5371 | 10.1002 | 17.2782 | 0.4808 | 203.2551 | 7.4930 | 14.2568 | 0.5120 | ||
JMA | 257.5357 | 9.4021 | 16.0479 | 0.5521 | 200.4459 | 7.3838 | 14.1579 | 0.5187 | ||
H-MAHAR | 252.6259 | 9.2245 | 15.8942 | 0.5607 | 199.8410 | 7.3540 | 14.1365 | 0.5202 |
Method | AR(1) | Full | HAR | J | CJ | RS-I | RS-II | SJ-I | SJ-II | LASSO | MAHAR | HRCP | JMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panel A: | |||||||||||||
AR(1) | - | - | - | - | - | - | - | - | - | - | - | - | - |
HAR-Full | 0.0000 | - | - | - | - | - | - | - | - | - | - | - | - |
HAR | 0.1474 | 0.0000 | - | - | - | - | - | - | - | - | - | - | - |
HAR-J | 0.0681 | 0.0000 | 0.4518 | - | - | - | - | - | - | - | - | - | - |
HAR-CJ | 0.0034 | 0.0000 | 0.0321 | 0.0603 | - | - | - | - | - | - | - | - | - |
HAR-RS-I | 0.1389 | 0.0000 | 0.8267 | 0.7392 | 0.0471 | - | - | - | - | - | - | - | - |
HAR-RS-II | 0.0890 | 0.0000 | 0.6123 | 0.9521 | 0.0642 | 0.5173 | - | - | - | - | - | - | - |
HAR-SJ-I | 0.1486 | 0.0000 | 0.8691 | 0.7025 | 0.0448 | 0.7674 | 0.4758 | - | - | - | - | - | - |
HAR-SJ-II | 0.0244 | 0.0000 | 0.1869 | 0.4996 | 0.1604 | 0.1067 | 0.3281 | 0.1017 | - | - | - | - | - |
LASSO | 0.0000 | 0.0015 | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - | - | - | - |
MAHAR | 0.1109 | 0.0000 | 0.0062 | 0.0016 | 0.0001 | 0.0043 | 0.0022 | 0.0051 | 0.0003 | 0.0000 | - | - | - |
HRCP | 0.8760 | 0.0000 | 0.3767 | 0.2145 | 0.0160 | 0.3150 | 0.2315 | 0.3332 | 0.0954 | 0.0000 | 0.0045 | - | - |
JMA | 0.1450 | 0.0000 | 0.0089 | 0.0024 | 0.0002 | 0.0062 | 0.0032 | 0.0073 | 0.0005 | 0.0000 | 0.0783 | 0.0056 | - |
H-MAHAR | 0.0552 | 0.0000 | 0.0024 | 0.0005 | 0.0001 | 0.0015 | 0.0007 | 0.0019 | 0.0001 | 0.0000 | 0.1164 | 0.0059 | 0.0532 |
Panel B: | |||||||||||||
AR(1) | - | - | - | - | - | - | - | - | - | - | - | - | - |
HAR-Full | 0.6126 | - | - | - | - | - | - | - | - | - | - | - | - |
HAR | 0.0000 | 0.0003 | - | - | - | - | - | - | - | - | - | - | - |
HAR-J | 0.0000 | 0.0003 | 0.7912 | - | - | - | - | - | - | - | - | - | - |
HAR-CJ | 0.0002 | 0.0013 | 0.9390 | 0.9513 | - | - | - | - | - | - | - | - | - |
HAR-RS-I | 0.0001 | 0.0004 | 0.5688 | 0.6630 | 0.7045 | - | - | - | - | - | - | - | - |
HAR-RS-II | 0.0001 | 0.0008 | 0.7840 | 0.8864 | 0.8770 | 0.4173 | - | - | - | - | - | - | - |
HAR-SJ-I | 0.0001 | 0.0004 | 0.5361 | 0.5855 | 0.6460 | 0.7331 | 0.4473 | - | - | - | - | - | - |
HAR-SJ-II | 0.0001 | 0.0012 | 0.9318 | 0.8167 | 0.8949 | 0.1200 | 0.4995 | 0.0689 | - | - | - | - | - |
LASSO | 0.0000 | 0.0005 | 0.1911 | 0.2364 | 0.3101 | 0.3522 | 0.2891 | 0.3814 | 0.2050 | - | - | - | - |
MAHAR | 0.0000 | 0.0000 | 0.0014 | 0.0015 | 0.0028 | 0.0033 | 0.0024 | 0.0043 | 0.0007 | 0.3147 | - | - | - |
HRCP | 0.0000 | 0.0000 | 0.0068 | 0.0079 | 0.0114 | 0.0158 | 0.0118 | 0.0196 | 0.0038 | 0.5165 | 0.0173 | - | - |
JMA | 0.0000 | 0.0000 | 0.0018 | 0.0021 | 0.0037 | 0.0045 | 0.0033 | 0.0057 | 0.0009 | 0.3481 | 0.0001 | 0.0463 | - |
H-MAHAR | 0.0000 | 0.0000 | 0.0013 | 0.0015 | 0.0027 | 0.0031 | 0.0023 | 0.0040 | 0.0006 | 0.3081 | 0.6172 | 0.0204 | 0.0166 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, T. Forecast Bitcoin Volatility with Least Squares Model Averaging. Econometrics 2019, 7, 40. https://doi.org/10.3390/econometrics7030040
Xie T. Forecast Bitcoin Volatility with Least Squares Model Averaging. Econometrics. 2019; 7(3):40. https://doi.org/10.3390/econometrics7030040
Chicago/Turabian StyleXie, Tian. 2019. "Forecast Bitcoin Volatility with Least Squares Model Averaging" Econometrics 7, no. 3: 40. https://doi.org/10.3390/econometrics7030040
APA StyleXie, T. (2019). Forecast Bitcoin Volatility with Least Squares Model Averaging. Econometrics, 7(3), 40. https://doi.org/10.3390/econometrics7030040