Exploring Aerosol Effects on Rainfall for Brisbane, Australia
Abstract
:1. Introduction
1.1. Aerosol Effects on Rainfall and the Primary Study Objective
1.2. Potential Confounding Processes and Secondary Study Objectives
2. Materials and Methods
2.1. Study Area
2.2. Data—Rain Events and Rain Rate
2.3. Geostatistics
2.4. Selection of an Aerosol Parameter
- less than 1 indicates that coarse mode aerosol predominate (0.2–0.5 are dust aerosol);
- 1–8 indicates fine mode particles of many species; and
- greater than 2 indicates that fine mode anthropogenic aerosol dominate the air column.
2.5. Data—WRF-Chem Aerosol
- Lin. microphysics scheme
- Rapid Radiative Transfer Model for Global Climate Models short-wave and long-wave radiation schemes;
- Yonsei University planetary boundary layer scheme;
- Monin-Obukhov surface layer scheme; and
- Unified Noah land surface scheme.
- as at 2000, Reanalysis of the Troposphere (RETRO) anthropogenic chemical emissions [54] at 0.5 degree resolution;
- as at 2006, Goddard Chemistry Aerosol Radiation and Transport (GOCART) anthropogenic and background emissions [35] at 1 degree resolution;
- as at 2005, Emissions Database for Global Atmospheric Research (EDGAR) global anthropogenic emissions [55] at 0.1 degree resolution; and
- as at 2003, Model of Emissions of Gases and Aerosols from Nature (MEGAN) biogenic aerosol emissions [56] at 1 km resolution.
2.6. Data—Atmospheric Parameters
2.7. Methods
- aerosol sources (background, biogenic, anthropogenic emissions);
- emissions only;
- and anthropogenic aerosol emissions; and
- and biogenic aerosol emissions.
3. Results
3.1. Spatial Analysis—Correlation of Aerosol and Rain Rate
3.2. Spatial Analysis—Stratified for Cloud Water Content and Vertical Air Movement
3.3. Spatial Analysis—Potential Alternative Correlations
4. Discussion
4.1. Spatial Analysis—Correlation of Aerosol and Rain Rate
4.2. Spatial Analysis—Potential Alternative Correlations
4.3. Spatial Analysis—General Comments
5. Conclusions and Further Work
Acknowledgments
Conflicts of Interest
References
- Ahrens, C.D. Essentials of Meteorology: An Invitation to the Atmosphere, 6th ed.; Brooks/Cole Cengage Learning: Belmont, CA., USA, 2012. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing; Intergovernmental Panel on Climate Change: Cambridge, UK, New York, NY, USA, 2007. [Google Scholar]
- Levin, Z.; Cotton, W.R. Aerosol Pollution Impact on Precipitation, A Scientific Review; Springer, 2009. [Google Scholar]
- Andreae, M.O.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1, The nature and sources of cloud-active aerosols. Earth Sci. Rev. 2008, 89, 13–41. [Google Scholar]
- Warner, J. A reduction in rainfall associated with smoke from suger-cane fires—An inadvertent weather modification? J. Appl. Meteorol. 1968, 7, 247–251. [Google Scholar] [CrossRef]
- Rosenfeld, D. Suppression of rain and snow by urban and industrial air pollution. Science 2000, 287, 1793–1796. [Google Scholar] [CrossRef]
- Bigg, E.K. Trends in rainfall associated with sources of air pollution. Environ. Chem. 2008, 5, 184–193. [Google Scholar] [CrossRef]
- Jin, M.; Shepherd, J.M.; King, M.D. Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res. 2005, 110, 1–12. [Google Scholar]
- Lacke, M.C.; Mote, T.L.; Shepherd, J.M. Aerosols and associated precipitation patterns in Atlanta. Atmos. Environ. 2009, 43, 4359–4373. [Google Scholar] [CrossRef]
- Koren, I.; Altaratz, O.; Remer, L.A.; Feingold, G.; Martins, J.V.; Heiblum, R.H. Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci. 2012, 5, 118–122. [Google Scholar]
- Van den Heever, S.C.; Cotton, W.R. Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol. 2007, 46, 828–850. [Google Scholar]
- Yang, Q.; Gustafson, W.I., Jr.; Fast, J.D.; Wang, H.; Easter, R.C.; Wang, M.; Ghan, S.J.; Berg, L.K.; Leung, L.R.; Morrison, H. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modelling study using WRF-Chem. Atmos. Chem. Phys. Discuss. 2012, 12, 14623–14667. [Google Scholar] [CrossRef]
- Lohmann, U. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys. 2008, 8, 2115–2131. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J.; Khain, A.P. A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci. 2012, 69, 504–520. [Google Scholar] [CrossRef]
- Lin, Y.; Min, Q.; Zhuang, G.; Wang, Z.; Gong, W.; Li, R. Spatial features of rain frequency change and pollution and associated aerosols. Atmos. Chem. Phys. Discuss. 2011, 11, 8747–8776. [Google Scholar]
- Zhang, L.; Liao, H.; Li, J. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res.: Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Khain, A.P.; BenMoshe, N.; Pokrovsky, A. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci. 2008, 65, 1721–1748. [Google Scholar] [CrossRef]
- Lee, S.S.; Penner, J.E.; Saleeby, S.M. Aerosol effects on liquid-water path of thin stratocumulus clouds. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics From Air Pollution to Climate Change, 2nd ed.; John Wiley and Sons: Hoboken, NJ., USA, 2006. [Google Scholar]
- Lin, Y.; Min, Q.; Zhuang, G.; Zhuang, Z.; Gong, W.; Li, R. Spatial features of rain frequency change induced by pollution and aossociated aerosols. Atmos. Chem. Phys. Discuss. 2010, 10, 14495–14511. [Google Scholar]
- Ayers, G. Air pollution and climate change: Has air pollution suppressed rainfall over Australia? Clean Air Soc. Aust. N. Z. 2005, 39, 51–57. [Google Scholar]
- Ayers, G. Air pollution and precipitation suppression over SE Australia: Critical review of evidence presented by Rosenfeld (2000) and Rosenfeld (2006). Tellus 2009, 61B, 685–693. [Google Scholar]
- Qin, Y.; Mitchell, R.M. Characterisation of episodic aerosol types over the Australian continent. Atmos. Chem. Phys. 2009, 9, 1943–1956. [Google Scholar] [CrossRef]
- Chan, Y. Identification of Sources of PM2.5 and PM10 Aerosols in Brisbane; Griffith University: Brisbane, Australia, 1997. [Google Scholar]
- Cheung, H.C.; Morawska, L.; Ristovski, Z.D. Observation of new particle formation in subtropical urban environment. Atmos. Chem. Phys. 2011, 11, 3823–3833. [Google Scholar] [CrossRef] [Green Version]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY., USA, 1997. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley and Sons: Chichester, West Sussex, England, 2007. [Google Scholar]
- Grimes, D.I.F.; Pardo-Iguzquiza, E. Geostatistical analysis of rainfall. Geogr. Anal. 2010, 42, 136–160. [Google Scholar] [CrossRef]
- Chappell, A. An Introduction to Geostatistics. In Key Methods in Geography, 2nd ed.; Clifford, N., French, S., Valentine, G., Eds.; SAGE: London, Great Britain, 2010. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The GSTAT package. Comp. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Bostan, P.A.; Heuvelink, G.B.M.; Akyurek, S.Z. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 115–126. [Google Scholar] [CrossRef]
- McComiskey, A.; Feingold, G. The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys. 2012, 12, 1031–1049. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, B.; Zhang, M. Seasonal variability of aerosol optical properties over Beijing. Atmos. Environ. 2009, 43, 4095–4101. [Google Scholar] [CrossRef]
- Sheridan, P.J.; Andrews, E.; Ogren, J.A.; Tackett, J.L.; Winker, D.M. Vertical profiles of aerosol optical properties over Central Illinois and comparison with surface and satellite measurements. Atmos. Chem. Phys. Discuss. 2012, 12, 17187–17244. [Google Scholar]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Dusek, U.; Frank, G.P.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D.; et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 2006, 312, 1375–1378. [Google Scholar]
- Rosenfeld, D. Aerosols, clouds and climate. Science 2006, 312, 1323–1324. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar]
- Drury, E.; Jacob, D.; Spurr, D.R.; Wang, J.; Shinozuka, Y.; Anderson, B.; Clarke, A.; Dibb, J.; McNaughton, C.; Weber, R. Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Jones, T.A.; Christopher, S.A.; Quaas, J. A six year satellite-based assessment of the regional variations in aerosol indirect effects. Atmos. Chem. Phys. 2009, 9, 4091–4114. [Google Scholar]
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; et al. Global aerosol climatology from the MODIS satellite sensor. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. Analysis of co-located MODIS and CALIPSO observations near clouds. Atmos. Meas. Tech. Discuss. 2011, 4, 6861–6881. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 1997, 102, 25847–25879. [Google Scholar]
- Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ebel, A.; Binkowski, F.S.; Shankar, U. Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ. 1998, 32, 2981–2999. [Google Scholar]
- Wu, L.; Su, H.; Jiang, J.H. Regional simulations of deep convection and biomass burning over South America: 1. Model evaluations using multiple satellite data sets. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Fast, J.D.; Gustafson, W.I.; Chapman, E.G.; Easter, R.C.; Rishel, J.P.; Zaveri, R.A.; Grell, G.A.; Barth, M.C. The aerosol modeling testbed: A community tool to objectively evaluate aerosol process modules. Bull. Am. Meteorol. Soc. 2011, 92, 343–360. [Google Scholar]
- Peckham, S.; Grell, G.; McKeen, S.; Barth, M.; Pfister, G.; Wiedinmyer, C.; Fast, J.; Gustafson, W.; Ghan, S.; Zaveri, R.; et al. WRF/Chem Version 3.3 User’s Guide. In NOAA; NOAA Technical Memo.: Boulder, CO, USA, 2011; p. 98. [Google Scholar]
- Choobari, O.A.; Zawar-Reza, P.; Sturman, A. Atmospheric forcing of the three-dimensional distribution of dust particles over Australia: A case study. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Grell, G.; Freitas, S.R.; Stuefer, M.; Fast, J. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts. Atmos. Chem. Phys. 2011, 11, 5289–5303. [Google Scholar]
- Barnard, J.C.; Fast, J.D.; Paredes-Miranda, G.; Arnott, W.P.; Laskin, A. Technical note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” module using data from the MILAGRO campaign. Atmos. Chem. Phys. 2010, 10, 7325–7340. [Google Scholar]
- Saide, P.E.; Spak, S.N.; Carmichael, G.R.; Mena-Carrasco, M.A.; Howell, S.; Leon, D.C.; Snider, J.R.; Bandy, A.R.; Collett, J.L.; Benedict, K.B.; et al. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx. Atmos. Chem. Phys. Discuss. 2011, 11, 29723–29775. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, Q.; Huang, X.; Wang, T.; Zhuang, B.; Xie, M. Regional modeling of secondary organic aerosol over China using WRF/Chem. J. Aerosol Sci. 2012, 43, 57–73. [Google Scholar]
- Schultz, M.G.; Backman, L.; Balkanski, Y.; Bjoerndalsaeter, S.; Brand, R.; Burrows, J.P.; Dalsoeren, S.; Vasconcelos, M.D.; Grodtmann, B.; Hauglustaine, D.A.; et al. REanalysis of the TROpospheric Chemical Composition over the Past 40 years (RETRO)—A Long-Term Global Modeling Study of Tropospheric Chemistry Final Report; Max Planck Institute for Meteorology, Hamburg: Jülich/Hamburg, Germany, 2007. [Google Scholar]
- Olivier, J.G.J.; van Aardenne, J.A.; Dentener, F.J.; Pagliari, V.; Ganzeveld, L.N.; Peters, J.A.H.W. Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distributionof key sources in 2000. Environ. Sci. 2005, 2, 81–99. [Google Scholar]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar]
- Menzel, W.P.; Frey, R.A.; Baum, B.A.; Zhang, H. Cloud Top Properties and Cloud Phase Algorithm Theoretical Basis Document; NASA: USA, 2006. [Google Scholar]
- Geosciences-Australia, Global Map Australia 1M 2001 Product User Guide. In Geosciences-Australia; Australian Government: Canberra, Australia, 2004.
- Radhi, M.; Box, M.A.; Box, G.P.; Mitchell, R.M.; Cohen, D.D.; Stelcer, E.; Keywood, M.D. Optical, physical and chemical characteristics of Australian continental aerosols: Results from a field experiment. Atmos. Chem. Phys. 2010, 10, 5925–5942. [Google Scholar] [CrossRef]
- Sorooshian, A.; Feingold, G.; Lebsock, M.D.; Jiang, H.; Stephens, G.L. Deconstructing the precipitation susceptibility construct: Improving methodology for aerosol-cloud precipitation studies. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Warneck, P.; Williams, J. The Atmospheric Chemist’s Companion, Numerical Data for Use in the Atmospheric Sciences. Springer, 2012. [Google Scholar]
- Dixon, P.G.; Mote, T.L. Patterns and causes of Atlanta’s urban heat island–initiated precipitation. J. Appl. Meteorol. 2003, 42, 1273–1284. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hewson, M.; McGowan, H.; Phinn, S.; Peckham, S.; Grell, G. Exploring Aerosol Effects on Rainfall for Brisbane, Australia. Climate 2013, 1, 120-147. https://doi.org/10.3390/cli1030120
Hewson M, McGowan H, Phinn S, Peckham S, Grell G. Exploring Aerosol Effects on Rainfall for Brisbane, Australia. Climate. 2013; 1(3):120-147. https://doi.org/10.3390/cli1030120
Chicago/Turabian StyleHewson, Michael, Hamish McGowan, Stuart Phinn, Steven Peckham, and Georg Grell. 2013. "Exploring Aerosol Effects on Rainfall for Brisbane, Australia" Climate 1, no. 3: 120-147. https://doi.org/10.3390/cli1030120
APA StyleHewson, M., McGowan, H., Phinn, S., Peckham, S., & Grell, G. (2013). Exploring Aerosol Effects on Rainfall for Brisbane, Australia. Climate, 1(3), 120-147. https://doi.org/10.3390/cli1030120