Perception of Climate Change Effects over Time and the Contribution of Different Areas of Knowledge to Its Understanding and Mitigation
Abstract
:1. Introduction
2. The Perception of Climate Change over Time
2.1. The Pre-Second World War Period (<1939)
2.2. The Period of Second World War (1939–1945)
2.3. The Post-War and Global Reconstruction Period
2.4. The Late 20th Century Period (1970–2000)
2.5. The 21st Century
3. Contributions from Different Areas of Knowledge
3.1. The Natural Sciences Approach
3.2. The Approach of Social and Economic Sciences
3.3. The Human Sciences Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raymo, M.E.; Mitrovica, J.X.; O’Leary, M.J.; DeConto, R.M.; Hearty, P.J. Departures from eustasy in Pliocene sea-level records. Nat. Geosci. 2011, 4, 328–332. [Google Scholar] [CrossRef]
- Miller, K.G.; Wright, J.D.; Browning, J.V.; Kulpecz, A.; Kominz, M.; Naish, T.R.; Cramer, B.S.; Rosenthal, Y.; Peltier, W.R.; Sosdian, S. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 2012, 40, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Dowsett, H.J.; Cronin, T.M. High eustatic sea level during the middle Pliocene: Evidence from the southeastern US Atlantic Coastal Plain. Geology 1990, 18, 435–438. [Google Scholar] [CrossRef]
- Kellstedt, P.M.; Zahran, S.; Vedlitz, A. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States. Risk Anal. Int. J. 2008, 28, 113–126. [Google Scholar] [CrossRef]
- Pasquaré, F.A.; Oppizzi, P. How do the media affect public perception of climate change and geohazards? An Italian case study. Glob. Planet. Change 2012, 90, 152–157. [Google Scholar] [CrossRef]
- Spence, G.H.; Le Heron, D.P.; Fairchild, I.J. Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era. Sedimentology 2016, 63, 253–306. [Google Scholar] [CrossRef]
- Zhang, D.D.; Brecke, P.; Lee, H.F.; He, Y.-Q.; Zhang, J. Global climate change, war, and population decline in recent human history. Proc. Natl. Acad. Sci. USA 2007, 104, 19214–19219. [Google Scholar] [CrossRef] [Green Version]
- deMenocal, P.B. Climate and human evolution. Science 2011, 331, 540–542. [Google Scholar] [CrossRef]
- Stewart, J.R.; Stringer, C.B. Human evolution out of Africa: The role of refugia and climate change. Science 2012, 335, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Koven, C.D.; Riley, W.J.; Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. 2013, 26, 1877–1900. [Google Scholar] [CrossRef] [Green Version]
- Kay, J.E.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.M.; Bates, S.; Danabasoglu, G.; Edwards, J. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef] [Green Version]
- Otto-Bliesner, B.L.; Brady, E.C.; Fasullo, J.; Jahn, A.; Landrum, L.; Stevenson, S.; Rosenbloom, N.; Mai, A.; Strand, G. Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 2016, 97, 735–754. [Google Scholar] [CrossRef]
- Bauer, E.; Claussen, M.; Brovkin, V.; Huenerbein, A. Assessing climate forcings of the Earth system for the past millennium. Geophys. Res. Lett. 2003, 30, 1276. [Google Scholar] [CrossRef] [Green Version]
- Sagan, C. Nuclear war and climatic catastrophe: Some policy implications. Foreign Aff. 1983, 62, 257–292. [Google Scholar] [CrossRef]
- Turco, R.P.; Toon, O.B.; Ackerman, T.P.; Pollack, J.B.; Sagan, C. Nuclear winter: Global consequences of multiple nuclear explosions. Science 1983, 222, 1283–1292. [Google Scholar] [CrossRef] [Green Version]
- Sagan, C.; Turco, R.P. Nuclear winter in the post-Cold War era. J. Peace Res. 1993, 30, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.; Harrison, S. Limitations of uniformitarianism in the Anthropocene. Anthropocene 2014, 5, 71–75. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Gislason, S.R.; Matter, J. Mineral carbonation of CO2. Elements 2008, 4, 333–337. [Google Scholar] [CrossRef]
- Chen, J.; Chen, B.; Montañez, I.P. Carboniferous isotope stratigraphy. Geol. Soc. Lond. Spec. Publ. 2020, 512, 1–25. [Google Scholar] [CrossRef]
- Beerling, D.; Lake, J.; Berner, R.; Hickey, L.; Taylor, D.; Royer, D. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere. Geochim. Et Cosmochim. Acta 2002, 66, 3757–3767. [Google Scholar] [CrossRef]
- Mii, H.-s.; Grossman, E.L.; Yancey, T.E. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geol. Soc. Am. Bull. 1999, 111, 960–973. [Google Scholar] [CrossRef]
- Petersen, H.I.; Nytoft, H.P. Oil generation capacity of coals as a function of coal age and aliphatic structure. Org. Geochem. 2006, 37, 558–583. [Google Scholar] [CrossRef]
- Hallam, A.; Grose, J.; Ruffell, A. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 81, 173–187. [Google Scholar] [CrossRef]
- Alsharhan, A. Petroleum geology of the United Arab Emirates. J. Pet. Geol. 1989, 12, 253–288. [Google Scholar] [CrossRef]
- Scheffler, K.; Hoernes, S.; Schwark, L. Global changes during Carboniferous–Permian glaciation of Gondwana: Linking polar and equatorial climate evolution by geochemical proxies. Geology 2003, 31, 605–608. [Google Scholar] [CrossRef]
- Lamb, S.; Davis, P. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 2003, 425, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Molnar, P.; England, P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature 1990, 346, 29–34. [Google Scholar] [CrossRef]
- Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to Quaternary climate change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Bond, D.P.; Grasby, S.E. On the causes of mass extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 478, 3–29. [Google Scholar] [CrossRef]
- Ivany, L.C.; Patterson, W.P.; Lohmann, K.C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 2000, 407, 887–890. [Google Scholar] [CrossRef] [Green Version]
- Wignall, P.B. Large igneous provinces and mass extinctions. Earth-Sci. Rev. 2001, 53, 1–33. [Google Scholar] [CrossRef]
- Leichenko, R.; Silva, J.A. Climate change and poverty: Vulnerability, impacts, and alleviation strategies. Wiley Interdiscip. Rev. Clim. Change 2014, 5, 539–556. [Google Scholar] [CrossRef]
- Badeck, F.W.; Bondeau, A.; Böttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of spring phenology to climate change. New Phytol. 2004, 162, 295–309. [Google Scholar] [CrossRef]
- Van Aalst, M.K.; Cannon, T.; Burton, I. Community level adaptation to climate change: The potential role of participatory community risk assessment. Glob. Environ. Change 2008, 18, 165–179. [Google Scholar] [CrossRef]
- Olmstead, A.T. Climate and History. J. Geogr. 1912, 10, 163–168. [Google Scholar] [CrossRef]
- Huntington, E. Changes of climate and history. Am. Hist. Rev. 1913, 18, 213–232. [Google Scholar] [CrossRef]
- Bhavan, V.; Ambience, K. Coffee and climate change: The importance of systems thinking. World 1914, 10, 55. [Google Scholar]
- Semple, E.C. The barrier boundary of the Mediterranean basin and its northern breaches as factors in history. Ann. Assoc. Am. Geogr. 1915, 5, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Alperovitz, G.; Guinan, J.; Hanna, T.M. The policy weapon climate activists need. Policy 1917, 3, 34. [Google Scholar]
- Stupart, F. Is the Climate Changing? J. R. Astron. Soc. Can. 1917, 11, 197. [Google Scholar]
- Kincer, J.B. Is our climate changing? A study of long-time temperature trends. Mon. Weather. Rev. 1933, 61, 251–259. [Google Scholar] [CrossRef]
- Raup, H.M. Recent changes of climate and vegetation in southern New England and adjacent New York. J. Arnold Arbor. 1937, 18, 79–117. [Google Scholar] [CrossRef]
- Hoyle, F.; Lyttleton, R.A. The effect of interstellar matter on climatic variation. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge Philosophical Society: Cambridge, UK, 1939; pp. 405–415. [Google Scholar]
- Lewis, R. The Influence of Earth Movements on Climate. Geol. Mag. 1935, 72, 64–73. [Google Scholar] [CrossRef]
- Huntington, E. The solar hypothesis of climatic changes. Bull. Geol. Soc. Am. 1914, 25, 477–590. [Google Scholar] [CrossRef]
- Kincer, J. Our Changing Climate. Bull. Am. Meteorol. Soc. 1939, 20, 448–450. [Google Scholar] [CrossRef]
- Kolstad, C.D. What Is Killing the US Coal Industry? Energy 1940, 1960, 2000. [Google Scholar]
- Lasker, B. Is Climate the Clew? Far East. Surv. 1945, 14, 74–76. [Google Scholar] [CrossRef]
- Gottmann, J. The background of geopolitics. Mil. Aff. J. Am. Mil. Inst. 1942, 6, 197–206. [Google Scholar] [CrossRef]
- SINGER, C.I. Climate and Military Preparedness. J. Am. Med. Assoc. 1940, 115, 1421–1424. [Google Scholar] [CrossRef]
- Simpson, G.C. Possible causes of change in climate and their limitations. In Proceedings of the Linnean Society of London, London, UK, 11 April 1940; pp. 190–219. [Google Scholar]
- Zain, C.M. Enhanced Growth, Yield and Physiological Characteristics of Rice under Elevated Carbon Dioxide. AIP Conf. Proc. 2018, 1940, 020064. [Google Scholar] [CrossRef]
- Fukui, E. Secular Change of Climate at the Great Cities in Japan. J. Meteorol. Soc. Japan. Ser. II 1943, 21, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Markham, S.F. Climate and the Energy of Nations. Clim. Energy Nations 1943, 151, 431–432. [Google Scholar] [CrossRef]
- Turunen, M.T.; Rasmus, S.; Kietäväinen, A. The Importance of Reindeer in Northern Finland during World War II (1939–1945) and the Post-War Reconstruction. Arctic 2018, 71, 167–182. [Google Scholar] [CrossRef]
- Jacoby, T. Hegemony, modernisation and post-war reconstruction. Glob. Soc. 2007, 21, 521–537. [Google Scholar] [CrossRef]
- Plass, G.N. Carbon dioxide and climate. Sci. Am. 1959, 201, 41–47. [Google Scholar] [CrossRef]
- Mitchell, J.M., Jr. Recent secular changes of global temperature. Ann. N. Y. Acad. Sci. 1961, 95, 235–250. [Google Scholar] [CrossRef]
- Vowinckel, E.; Orvig, S. Climate change over the Polar Ocean. I. Arch. Für Meteorol. Geophys. Bioklimatol. Ser. B 1967, 15, 1–23. [Google Scholar] [CrossRef]
- Vowinckel, E.; Orvig, S. Climate change over the Polar Ocean. Arch. Für Meteorol. Geophys. Bioklimatol. Ser. B 1969, 17, 121–146. [Google Scholar] [CrossRef]
- Hepting, G.H. Climate and forest diseases. Annu. Rev. Phytopathol. 1963, 1, 31–50. [Google Scholar] [CrossRef]
- Benton, G.S. Carbon dioxide and its role in climate change. Proc. Natl. Acad. Sci. USA 1970, 67, 898. [Google Scholar] [CrossRef] [Green Version]
- Cess, R.D. Global climate change: An investigation of atmospheric feedback mechanisms. Tellus 1975, 27, 193–198. [Google Scholar] [CrossRef]
- Kent, D.; Opdyke, N.D.; Ewing, M. Climate change in the North Pacific using ice-rafted detritus as a climatic indicator. Geol. Soc. Am. Bull. 1971, 82, 2741–2754. [Google Scholar] [CrossRef] [Green Version]
- Vergnaud-Grazzini, C.; Ryan, W.B.; Cita, M.B. Stable isotopic fractionation, climate change and episodic stagnation in the eastern Mediterranean during the late Quaternary. Mar. Micropaleontol. 1977, 2, 353–370. [Google Scholar] [CrossRef]
- Baes, C.; Goeller, H.; Olson, J.; Rotty, R. Carbon Dioxide and Climate: The Uncontrolled Experiment: Possibly severe consequences of growing CO 2 release from fossil fuels require a much better understanding of the carbon cycle, climate change, and the resulting impacts on the atmosphere. Am. Sci. 1977, 65, 310–320. [Google Scholar]
- Lettenmaier, D.P.; Burges, S.J. Climate change: Detection and its impact on hydrologic design. Water Resour. Res. 1978, 14, 679–687. [Google Scholar] [CrossRef]
- Gleick, P.H. Climate change, hydrology, and water resources. Rev. Geophys. 1989, 27, 329–344. [Google Scholar] [CrossRef]
- Mitchell, J.; Manabe, S.; Meleshko, V.; Tokioka, T. Equilibrium climate change and its implications for the future. Clim. Change IPCC Sci. Assess. 1990, 131, 172. [Google Scholar]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H.; Dokken, D.J. The Regional Impacts of Climate Change; IPCC: Geneva, Switzerland, 1998. [Google Scholar]
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [Green Version]
- Cubasch, U.; Meehl, G.; Boer, G.; Stouffer, R.; Dix, M.; Noda, A.; Senior, C.; Raper, S.; Yap, K. Projections of future climate change. In Climate Change 2001: The Scientific Basis. Contribution of WG1 to the Third Assessment Report of the IPCC (TAR); Cambridge University Press: Cambridge, UK, 2001; pp. 525–582. [Google Scholar]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Gvero, P.M.; Tica, G.S.; Petrović, S.I.; Papuga, S.V.; Jakšić, B.M.; Roljić, L.M. Renewable energy sources and their potential role in mitigation of climate changes and as a sustainable development driver in Bosnia and Herzegovina. Therm. Sci. 2010, 14, 641–654. [Google Scholar] [CrossRef]
- Kovacevic, D.; Oljaca, S.; Dolijanovic, Z.; Milic, V. Climate changes: Ecological and agronomic options for mitigating the consequences of drought in Serbia. In Proceedings of the Third International Scientific Symposium, Agrosym, Jahorina, Bosnia and Herzegovina, 15–17 November 2012; pp. 15–17. [Google Scholar]
- Pandey, S.; Mishra, R.; Tiwari, K. Impact Assessment and Mitigation of Sources Responsible for Climate Changes. Int. J. Adv. Res. Innov. Ideas Educ. 2016, 2, 193–198. [Google Scholar]
- Gaglio, M.; Aschonitis, V.; Pieretti, L.; Santos, L.; Gissi, E.; Castaldelli, G.; Fano, E. Modelling past, present and future Ecosystem Services supply in a protected floodplain under land use and climate changes. Ecol. Model. 2019, 403, 23–34. [Google Scholar] [CrossRef]
- Indira, D.; Srinagesh, B. Review on Mitigation Technologies for Controlling Urban Heat Island Effect in Housing and Settlement Areas in Housing and Settlement Areas in Hyderabad. J. Emerg. Technol. Innov. Res. (JETIR) 2021, 8, 836–845. [Google Scholar]
- Mendelsohn, R.; Neumann, J.E. The Impact of Climate Change on the United States Economy; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Tanner, T.; Allouche, J. Towards a new political economy of climate change and development. IDS Bull. 2011, 42, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.K.; Linnér, B.-O. The Political Economy of Climate Change Adaptation; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Batten, S. Climate Change and the Macro-Economy: A Critical Review; Bank of England Working Paper no. 706; Bank of England: London, UK, 2018. [Google Scholar]
- Fekete, H.; Kuramochi, T.; Roelfsema, M.; den Elzen, M.; Forsell, N.; Höhne, N.; Luna, L.; Hans, F.; Sterl, S.; Olivier, J. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sustain. Energy Rev. 2021, 137, 110602. [Google Scholar] [CrossRef]
- Benedetti, D.; Biffis, E.; Chatzimichalakis, F.; Fedele, L.L.; Simm, I. Climate change investment risk: Optimal portfolio construction ahead of the transition to a lower-carbon economy. Ann. Oper. Res. 2021, 299, 847–871. [Google Scholar] [CrossRef] [Green Version]
- Crecente, F.; Sarabia, M.; del Val, M.T. Climate change policy and entrepreneurial opportunities. Technol. Forecast. Soc. Change 2021, 163, 120446. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Calheiros, C.S.; Nikolaou, I. Nature-based solutions as a tool in the new circular economic model for climate change adaptation. Circ. Econ. Sustain. 2021, 1, 303–318. [Google Scholar] [CrossRef]
- He, B.-J.; Zhu, J.; Zhao, D.-X.; Gou, Z.-H.; Qi, J.-D.; Wang, J. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 2019, 86, 147–157. [Google Scholar] [CrossRef]
- Soto-Navarro, C.; Ravilious, C.; Arnell, A.; De Lamo, X.; Harfoot, M.; Hill, S.; Wearn, O.; Santoro, M.; Bouvet, A.; Mermoz, S. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 2020, 375, 20190128. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A.; Pathak, M.; Joshi, C.; He, B.-J. A systematic review of the health co-benefits of urban climate change adaptation. Sustain. Cities Soc. 2021, 74, 103190. [Google Scholar] [CrossRef]
- Markandya, A.; Sampedro, J.; Smith, S.J.; Van Dingenen, R.; Pizarro-Irizar, C.; Arto, I.; González-Eguino, M. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: A modelling study. Lancet Planet. Health 2018, 2, e126–e133. [Google Scholar] [CrossRef] [Green Version]
- Farnsworth, A.; Lunt, D.; O’Brien, C.; Foster, G.; Inglis, G.; Markwick, P.; Pancost, R.; Robinson, S.A. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 2019, 46, 9880–9889. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.C.; Liu, H.L.; Marsh, D.R.; McInerney, J.M.; Qian, L.; Vitt, F.M. Whole atmosphere simulation of anthropogenic climate change. Geophys. Res. Lett. 2018, 45, 1567–1576. [Google Scholar] [CrossRef]
- Alcalde, J.; Flude, S.; Wilkinson, M.; Johnson, G.; Edlmann, K.; Bond, C.E.; Scott, V.; Gilfillan, S.M.; Ogaya, X.; Haszeldine, R.S. Estimating geological CO2 storage security to deliver on climate mitigation. Nat. Commun. 2018, 9, 2201. [Google Scholar] [CrossRef]
- Krissansen-Totton, J.; Catling, D.C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 2017, 8, 15423. [Google Scholar] [CrossRef]
- Kumar, V.; Verma, K. Geological records of climate change. In Global Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 175–185. [Google Scholar]
- Romano, M. Reviewing the term uniformitarianism in modern Earth sciences. Earth-Sci. Rev. 2015, 148, 65–76. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Dai, Z. Geologic CO2 sequestration: Progress and challenges. Geomech. Geophys. Geo-Energy Geo-Resour. 2017, 3, 221–223. [Google Scholar] [CrossRef]
- Kuch, D. Fixing” climate change through carbon capture and storage: Situating industrial risk cultures. Futures 2017, 92, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.B.; Phadke, P.C. CO2 capture and storage in coal gasification projects. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Shanghai, China, 19–22 October 2017; p. 012011. [Google Scholar]
- Hassanpouryouzband, A.; Yang, J.; Tohidi, B.; Chuvilin, E.; Istomin, V.; Bukhanov, B. Geological CO2 capture and storage with flue gas hydrate formation in frozen and unfrozen sediments: Method development, real time-scale kinetic characteristics, efficiency, and clathrate structural transition. ACS Sustain. Chem. Eng. 2019, 7, 5338–5345. [Google Scholar] [CrossRef]
- Middleton, R.S.; Yaw, S.P.; Hoover, B.A.; Ellett, K.M. SimCCS: An open-source tool for optimizing CO2 capture, transport, and storage infrastructure. Environ. Model. Softw. 2020, 124, 104560. [Google Scholar] [CrossRef]
- Yaw, S.; Middleton, R.S. Computational challenges to realizing large-scale CO2 capture and storage: Poster. In Proceedings of the Twelfth ACM International Conference on Future Energy Systems, Torino, Italy, 28 June–2 July 2021; pp. 296–297. [Google Scholar]
- Qin, A.; Liu, B.; Guo, Q.; Bussmann, R.W.; Ma, F.; Jian, Z.; Xu, G.; Pei, S. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 2017, 10, 139–146. [Google Scholar] [CrossRef]
- O’Gorman, P.A.; Dwyer, J.G. Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. J. Adv. Modeling Earth Syst. 2018, 10, 2548–2563. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H.; Lassaletta, L.; Gernaat, D.E.; Hermans, K.; Harmsen, M.; Daioglou, V.; Biemans, H. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 2018, 48, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Valipour, M.; Sefidkouhi, M.A.G.; Raeini, M. Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manag. 2017, 180, 50–60. [Google Scholar] [CrossRef]
- Lotze, H.K.; Tittensor, D.P.; Bryndum-Buchholz, A.; Eddy, T.D.; Cheung, W.W.; Galbraith, E.D.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J.L. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. USA 2019, 116, 12907–12912. [Google Scholar] [CrossRef] [Green Version]
- Deser, C.; Lehner, F.; Rodgers, K.B.; Ault, T.; Delworth, T.L.; DiNezio, P.N.; Fiore, A.; Frankignoul, C.; Fyfe, J.C.; Horton, D.E. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 2020, 10, 277–286. [Google Scholar] [CrossRef]
- Weyant, J. Some contributions of integrated assessment models of global climate change. Rev. Environ. Econ. Policy 2020, 11, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Crane-Droesch, A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef] [Green Version]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality–A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Leisner, C.P. Climate change impacts on food security-focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J. Forest disturbances under climate change. Nat. Clim. Change 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, X.; Fahse, L.; Jactel, H.; Scherer-Lorenzen, M.; García-Valdés, R.; Bugmann, H. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 2018, 8, 1–12. [Google Scholar]
- Popkin, G. How much can forests fight climate change? Nature 2019, 565, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Boucher, D.; Gauthier, S.; Thiffault, N.; Marchand, W.; Girardin, M.; Urli, M. How climate change might affect tree regeneration following fire at northern latitudes: A review. New For. 2020, 51, 543–571. [Google Scholar] [CrossRef] [Green Version]
- He, B.-J.; Zhao, D.; Xiong, K.; Qi, J.; Ulpiani, G.; Pignatta, G.; Prasad, D.; Jones, P. A framework for addressing urban heat challenges and associated adaptive behavior by the public and the issue of willingness to pay for heat resilient infrastructure in Chongqing, China. Sustain. Cities Soc. 2021, 75, 103361. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Xue, B.; Li, Y.; Xiao, X.; Xia, J.C.; He, B. Contribution of urban ventilation to the thermal environment and urban energy demand: Different climate background perspectives. Sci. Total Environ. 2021, 795, 148791. [Google Scholar] [CrossRef]
- Vitart, F.; Robertson, A.W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. NPJ Clim. Atmos. Sci. 2018, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bellprat, O.; Guemas, V.; Doblas-Reyes, F.; Donat, M.G. Towards reliable extreme weather and climate event attribution. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.; Camargo, S.J.; Chan, J.C.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K. Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Wang, B.; Biasutti, M.; Byrne, M.P.; Castro, C.; Chang, C.-P.; Cook, K.; Fu, R.; Grimm, A.M.; Ha, K.-J.; Hendon, H. Monsoons climate change assessment. Bull. Am. Meteorol. Soc. 2021, 102, E1–E19. [Google Scholar] [CrossRef]
- Dogru, T.; Marchio, E.A.; Bulut, U.; Suess, C. Climate change: Vulnerability and resilience of tourism and the entire economy. Tour. Manag. 2019, 72, 292–305. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Jackson, R.B.; Le Quéré, C.; Andrew, R.; Canadell, J.G.; Korsbakken, J.I.; Liu, Z.; Peters, G.P.; Zheng, B. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 2018, 13, 120401. [Google Scholar] [CrossRef]
- Edenhofer, O.; Flachsland, C.; Wolff, C.; Schmid, L.K.; Leipprand, A.; Koch, N.; Kornek, U.; Pahle, M. Decarbonization and EU ETS Reform: Introducing a Price Floor to Drive Low-Carbon Investments. Berlin: Mercator Research Instituteon Global Commons and Climate Change. 2017. Available online: https://www.mcc-berlin.net/fileadmin/data/C18_MCC_Publications/Decarbonization_EU_ETS_Reform_Policy_Paper.pdf (accessed on 13 November 2021).
- Meckling, J.; Sterner, T.; Wagner, G. Policy sequencing toward decarbonization. Nat. Energy 2017, 2, 918–922. [Google Scholar] [CrossRef]
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef] [Green Version]
- Lilliestam, J.; Patt, A.; Bersalli, G. The effect of carbon pricing on technological change for full energy decarbonization: A review of empirical ex-post evidence. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e681. [Google Scholar] [CrossRef]
- Durán-Romero, G.; López, A.M.; Beliaeva, T.; Ferasso, M.; Garonne, C.; Jones, P. Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model. Technol. Forecast. Soc. Change 2020, 160, 120246. [Google Scholar] [CrossRef]
- Lausselet, C.; Cherubini, F.; Oreggioni, G.D.; del Alamo Serrano, G.; Becidan, M.; Hu, X.; Rørstad, P.K.; Strømman, A.H. Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage. Resour. Conserv. Recycl. 2017, 126, 50–61. [Google Scholar] [CrossRef]
- Christis, M.; Athanassiadis, A.; Vercalsteren, A. Implementation at a city level of circular economy strategies and climate change mitigation–the case of Brussels. J. Clean. Prod. 2019, 218, 511–520. [Google Scholar] [CrossRef]
- Preston, F.; Lehne, J.; Wellesley, L. An Inclusive Circular Economy: Priorities for Developing Countries. 2019. Available online: https://apo.org.au/node/238101 (accessed on 13 November 2021).
- Nunes, L.J.; Meireles, C.I.; Pinto Gomes, C.J.; Almeida Ribeiro, N. Forest management and climate change mitigation: A review on carbon cycle flow models for the sustainability of resources. Sustainability 2019, 11, 5276. [Google Scholar] [CrossRef] [Green Version]
- Bremer, S.; Meisch, S. Co-production in climate change research: Reviewing different perspectives. Wiley Interdiscip. Rev. Clim. Change 2017, 8, e482. [Google Scholar] [CrossRef]
- Siegner, A.; Stapert, N. Climate change education in the humanities classroom: A case study of the Lowell school curriculum pilot. Environ. Educ. Res. 2020, 26, 511–531. [Google Scholar] [CrossRef]
- Wuebbles, D.J. Ethics in climate change: A climate scientist’s perspective. Geol. Soc. Lond. Spec. Publ. 2021, 508, 285–296. [Google Scholar] [CrossRef]
- Goldman, M.J.; Turner, M.D.; Daly, M. A critical political ecology of human dimensions of climate change: Epistemology, ontology, and ethics. Wiley Interdiscip. Rev. Clim. Change 2018, 9, e526. [Google Scholar] [CrossRef]
- Brooks, T. Climate Change Ethics for an Endangered World; Routledge: London, UK, 2020. [Google Scholar]
- Adger, W.N.; Butler, C.; Walker-Springett, K. Moral reasoning in adaptation to climate change. Environ. Politics 2017, 26, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Burroughs, W.J. Climate Change: A Multidisciplinary Approach; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Harley, C.D.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Naustdalslid, J. Climate change–the challenge of translating scientific knowledge into action. Int. J. Sustain. Dev. World Ecol. 2011, 18, 243–252. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Ferreira Dias, M. Perception of Climate Change Effects over Time and the Contribution of Different Areas of Knowledge to Its Understanding and Mitigation. Climate 2022, 10, 7. https://doi.org/10.3390/cli10010007
Nunes LJR, Ferreira Dias M. Perception of Climate Change Effects over Time and the Contribution of Different Areas of Knowledge to Its Understanding and Mitigation. Climate. 2022; 10(1):7. https://doi.org/10.3390/cli10010007
Chicago/Turabian StyleNunes, Leonel J. R., and Marta Ferreira Dias. 2022. "Perception of Climate Change Effects over Time and the Contribution of Different Areas of Knowledge to Its Understanding and Mitigation" Climate 10, no. 1: 7. https://doi.org/10.3390/cli10010007
APA StyleNunes, L. J. R., & Ferreira Dias, M. (2022). Perception of Climate Change Effects over Time and the Contribution of Different Areas of Knowledge to Its Understanding and Mitigation. Climate, 10(1), 7. https://doi.org/10.3390/cli10010007