Downscaled Climate Change Projections in Urban Centers of Southwest Ethiopia Using CORDEX Africa Simulations
Abstract
:1. Introduction
2. Data and Methods
2.1. Description of the Study Area
2.2. Data Used and Method of Analysis
No. | Driving GCM | RCM | Institution/ Country | Simulation Period Experiment | References | |
---|---|---|---|---|---|---|
Historical | Under RCP8.5 | |||||
1 | MOCH | COSMO-CLMcom | Met Office Hadley Center (MOCH), United Kingdom Climate Limited Area modeling Community (CLMcom), Germany | 1950–2005 | 2006–2099 | [73] |
2 | MOCH | REMO 2015 | Germany Climate Service Center (GERICS) | 1970–2005 | 2006–2099 | [74,75] |
3 | MPI | COSMO-CLMcom | Max Planck Institute for Meteorology (MPI), Germany | 1950–2005 | 2006–2100 | [76] |
4 | MPI | REMO 2015 | 1970–2005 | 2006–2100 | [77] | |
5 | NCC | COSMO-CLMcom | Norwegian Climate Center (NCC), Norway | 1950–2005 | 2006–2100 | [73] |
6 | NCC | REMO 2015 | 1970–2005 | 2006–2100 | [78,79] |
2.3. Methods of Data Analysis and Presentation
2.3.1. Climate Modeling Scenarios and Projected Changes in the Twenty-First Century
2.3.2. Spatial Interpolation Methods
2.3.3. Bias Correction
3. Results
3.1. Bias Correction
3.2. Projections of Temperature and Precipitation
3.3. Temperature and Precipitation Projection Change Using Models in the Study Area
3.4. Future Temperature and Precipitation Change Scenarios
3.4.1. Future Temperature Projection Change Scenarios
3.4.2. Future Precipitation Projection Change Scenarios
3.5. Spatio-Temporal Interpolation of Temperature and Precipitation Projection Change
3.5.1. Interpolation of Maximum and Minimum Temperatures Projection Change in Urban Centers
3.5.2. Interpolation of Future Precipitation Projection Changes in Urban Centers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014. In Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; Available online: http://www.ipcc.ch/report/ar5/wg2/ (accessed on 20 July 2022).
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- Gudoshava, M.; Misiani, H.O.; Segele, Z.T.; Jain, S.; Ouma, J.O.; Otieno, G.; Anyah, R.; Indasi, V.S.; Endris, H.S.; Osima, S.; et al. Projected effects of 1.5 °C and 2 °C global warming levels on the intra-seasonal rainfall characteristics over the Greater Horn of Africa. Environ. Res. Lett. 2020, 15, 034037. [Google Scholar] [CrossRef]
- United Nations. Department of Economic and Social Affairs, Population Division. In World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Tuholske, C.; Caylora, K.; Funk, C.; Verdine, A.; Sweeneya, S.; Gracee, K.; Peterson, P.; Evans, T. Global Urban Population Exposure to Extreme Heat. Proc. Natl. Acad. Sci. USA 2021, 118, e2024792118. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- Endris, H.S.; Lennard, C.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.-J. Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa. Clim. Dyn. 2016, 46, 2821–2846. [Google Scholar] [CrossRef]
- Lyon, B. Biases in CMIP5 Sea Surface Temperature and the Annual Cycle of East African Rainfall. J. Clim. 2020, 33, 8209–8223. [Google Scholar] [CrossRef]
- Lyon, B. Biases in sea surface temperature and the annual cycle of Greater Horn of Africa rainfall in CMIP6. Int. J. Clim. 2021, 42, 4179–4186. [Google Scholar] [CrossRef]
- Schwarzwald, K.; Goddard, L.; Seager, R.; Ting, M.; Marvel, K. Understanding CMIP6 Biases in the Representation of the Greater Horn of Africa Long and Short Rains. Clim. Dyn. 2022, 1, 1366281. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Endris, H.S.; Omondi, P.; Jain, S.; Lennard, C.; Hewitson, B.; Chang’a, L.; Awange, J.L.; Dosio, A.; Ketiem, P.; Nikulin, G.; et al. Assessment of the performance of CORDEX regional climate models in simulating East Africa rainfall. J. Clim. 2013, 26, 8453–8475. [Google Scholar] [CrossRef]
- Masui, T.; Matsumoto, K.; Hijioka, Y.; Kinoshita, T.; Nozawa, T.; Ishiwatari, S.; Kato, E.; Shukla, P.R.; Ya-magata, Y.; Kainuma, M. An emission path-way for stabilization at 6 Wm−2 radiative forcing. Clim. Chang. 2011, 109, 59–76. [Google Scholar] [CrossRef]
- Hayhoe, K.; Edmonds, J.; Kopp, R.E.; Le Grande, A.N.; Sanderson, B.M.; Wehner, M.F.; Wuebbles, D.J. Climate models, scenarios, and projections. In Climate Science Special Report: Fourth National Climate Assessment, Volume I U.S; Global Change Research Program: Washington, DC, USA, 2017; pp. 133–160. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; In Press. [Google Scholar]
- Al-Hameedi, W.M.M.; Chen, J.; Faichia, C.; Al-Shaibah, B.; Nath, B.; Kafy, A.-A.; Hu, G.; Al-Aizari, A. Remote Sensing-Based Urban Sprawl Modeling Using Multilayer Perceptron Neural Network Markov Chain in Baghdad, Iraq. Remote Sens. 2021, 13, 4034. [Google Scholar] [CrossRef]
- Naim, N.H.; Al Kafy, A. Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach. Environ. Chall. 2021, 4, 100107. [Google Scholar] [CrossRef]
- Rahaman, Z.A.; Al Kafy, A.; Faisal, A.-A.; Al Rakib, A.; Jahir, D.M.A.; Fattah, A.; Kalaivani, S.; Rathi, R.; Mallik, S.; Rahman, M.T. Predicting Microscale Land Use/Land Cover Changes Using Cellular Automata Algorithm on the Northwest Coast of Peninsular Malaysia. Earth Syst. Environ. 2022. [Google Scholar] [CrossRef]
- Dessu, T.; Korecha, D.; Hunde, D.; Worku, A. Long-Term Land Use Land Cover Change in Urban Centers of Southwest Ethiopia from a Climate Change Perspective. Front. Clim. 2020, 2, 577169. [Google Scholar] [CrossRef]
- Saha, M.; Kafy, A.A.; Bakshi, A.; Almulhim, A.I.; Rahaman, Z.A.; Al Rakib, A.; Rathi, R. Modelling microscale impacts assessment of urban expansion on seasonal surface urban heat island intensity using neural network algorithms. Energy Build. 2022, 275, 112452. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Kafy, A.-A.; Tan, S. Simulating the Relationship between Land Use/Cover Change and Urban Thermal Environment Using Machine Learning Algorithms in Wuhan City, China. Land 2021, 11, 14. [Google Scholar] [CrossRef]
- Al Kafy, A.; Al Faisal, A.; Al Rakib, A.; Akter, K.S.; Rahaman, Z.A.; Jahir, D.M.A.; Subramanyam, G.; Michel, O.O.; Bhatt, A. The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh. Appl. Geomat. 2021, 13, 793–816. [Google Scholar] [CrossRef]
- Al Kafy, A.; Faisal, A.A.; Rahman, S.; Islam, M.; Al Rakib, A.; Islam, A.; Khan, H.H.; Sikdar, S.; Sarker, H.S.; Mawa, J.; et al. Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustain. Cities Soc. 2021, 64, 102542. [Google Scholar] [CrossRef]
- AlDousari, A.E.; Kafy, A.A.; Saha, M.; Fattah, A.; Almulhim, A.I.; Faisal, A.-A.; Al Rakib, A.; Jahir, D.M.A.; Rahaman, Z.A.; Bakshi, A.; et al. Modelling the impacts of land use/land cover changing pattern on urban thermal characteristics in Kuwait. Sustain. Cities Soc. 2022, 86, 104107. [Google Scholar] [CrossRef]
- Kafy, A.A.; Saha, M.; Rahaman, Z.A.; Rahman, M.T.; Liu, D.; Fattah, M.A.; Al Rakib, A.; AlDousari, A.E.; Rahaman, S.N.; Hasan, M.Z.; et al. Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms. Build. Environ. 2022, 217, 109066. [Google Scholar] [CrossRef]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2010, 47. [Google Scholar] [CrossRef]
- Cities Alliance. About CDS (Online). 2017. Available online: http://www.citiesalliance.org/about-cds (accessed on 26 July 2021).
- Omondi, P.; Awange, J.; Ogallo, L.; Okoola, R.; Forootan, E. Decadal rainfall variability modes in observed rainfall records over East Africa and their relations to historical sea surface temperature changes. J. Hydrol. 2012, 464, 140–156. [Google Scholar] [CrossRef] [Green Version]
- Viste, E.; Korecha, D.; Sorteberg, A. Recent drought and precipitation tendencies in Ethiopia. Theor. Appl. Climatol. 2013, 112, 535–551. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, C.; New, M.; Lizcano, G. UNDP Climate Change Country Profiles: Ethiopia; United Nations Development Programme: New York, NY, USA, 2010. [Google Scholar]
- Wilby, R.L.; Dawson, C.W. The statistical downscaling model (SDSM): Insights from one decade of application. Int. J. Clim. 2013, 33, 1707–1719. [Google Scholar] [CrossRef]
- World Bank Group. Unlocking Ethiopia’s Urban Land and Housing Markets: Urban Land Supply and Affordable Housing Study; World Bank: Washington, DC, USA, 2019; (No. 138371). [Google Scholar] [CrossRef] [Green Version]
- Tessema, M.W. Impact of urban expansion on surrounding peasant land the case of Boloso Sore Woreda, Areka Town, SNNPR, Ethiopia. Glob. J. Hum. Soc. Sci. Res. 2017, 17, 53–65. [Google Scholar]
- United Nations Human Settlements Programme (UN-Habitat). State of the World’s Cities 2010/2011: Bridging the Urban Divide; Earthscan: Nairobi, Kenya, 2010. [Google Scholar]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- MUDHC (Ministry of Urban Development Housing and Construction). National Report on Housing on Housing and Sustainable Urban Development; MUDC: Addis Ababa, Ethiopia, 2014. [Google Scholar]
- Zewdie, M.; Worku, H.; Bantider, A. Temporal dynamics of the driving factors of urban landscape change of Addis Ababa during the past three decades. Environ. Manag. 2018, 61, 132–146. [Google Scholar] [CrossRef]
- UN-Habitat. The State of Addis Ababa 2017: The Addis Ababa We Want; UN-Habitat: Nairobi, Kenya, 2017. [Google Scholar]
- UN-Habitat. Cities and Climate Change Global Report on Human Settlements 2011; UN-Habitat: Nairobi, Kenya, 2011. [Google Scholar]
- Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected changes in the annual cycle of high-intensity precipitation events over West Africa for the late twenty-first century. J. Clim. 2015, 28, 6475–6488. [Google Scholar] [CrossRef]
- Shiferaw, A.; Tadesse, T.; Rowe, C.; Oglesby, R. Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa. Atmosphere 2018, 9, 112. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef] [Green Version]
- Fotso-Nguemo, T.C.; Diallo, I.; Diakhaté, M.; Vondou, D.A.; Mbaye, M.L.; Haensler, A.; Gaye, A.T.; Tchawoua, C.J.C.C. Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa. Clim. Chang. 2019, 155, 339–357. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int. J. Clim. 2018, 39, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Onyutha, C.; Rutkowska, A.; Nyeko-Ogiramoi, P.; Willems, P. How well do climate models reproduce variability in observed rainfall? A case study of the Lake Victoria basin considering CMIP3, CMIP5 and CORDEX simulations. Stoch. Hydrol. Hydraul. 2019, 33, 687–707. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Gnitou, G.T.; Ojara, M.A.; Ongoma, V. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos. Res. 2020, 232, 104705. [Google Scholar] [CrossRef]
- Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B. Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environ. Syst. Res. 2020, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Ogega, O.M.; Koske, J.; Kung’U, J.B.; Scoccimarro, E.; Endris, H.S.; Mistry, M.N. Heavy precipitation events over East Africa in a changing climate: Results from CORDEX RCMs. Clim. Dyn. 2020, 55, 993–1009. [Google Scholar] [CrossRef]
- Onyutha, C. Analyses of rainfall extremes in East Africa based on observations from rain gauges and climate change simulations by CORDEX RCMs. Clim. Dyn. 2020, 54, 4841–4864. [Google Scholar] [CrossRef]
- Tegegne, G.; Melesse, A.M. Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources. Water Resour. Manag. 2020, 34, 3019–3035. [Google Scholar] [CrossRef]
- Mekasha, A.; Tesfaye, K.; Duncan, A.J. Trends in daily observed temperature and precipitation extremes over three Ethiopian eco-environments. Int. J. Clim. 2014, 34, 1990–1999. [Google Scholar] [CrossRef]
- Omondi, P.A.; Awange, J.L.; Forootan, E.; Ogallo, L.A.; Barakiza, R.; Girmaw, G.B.; Fesseha, I.; Kululetera, V.; Kilembe, C.; Mbati, M.M.; et al. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Clim. 2014, 34, 1262–1277. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Getenet, K.; Bewket, W. Variations in rainfall and extreme event indices in the wettest part of Ethiopia. SINET Ethiop. J. Sci. 2009, 32, 129–140. [Google Scholar]
- Central Statistical Authority (CSA). Population Statistical Abstract. In Addis Ababa: Federal Democratic Republic of Ethiopia, Population Census Commission. Democratic Republic of Ethiopia; Population Census Commission: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- CSA. Population Projections for Ethiopia 2007–2037; Addis Ababa, Ethiopia, 2017. [Google Scholar]
- Buontempo, C.; Mathison, C.; Jones, R.; Williams, K.; Wang, C.; McSweeney, C. An ensemble climate projection for Africa. Clim. Dyn. 2014, 44, 2097–2118. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Raffaele, F. A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations. J. Geophys. Res. Atmos. 2014, 119, 11695–11708. [Google Scholar] [CrossRef]
- Dosio, A.; Turner, A.G.; Tamoffo, A.T.; Sylla, M.B.; Lennard, C.; Jones, R.G.; Terray, L.; Nikulin, G.; Hewitson, B. A tale of two futures: Contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models. Environ. Res. Lett. 2020, 15, 064007. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Schwalma, C.; Spencer, G.; Philip, D. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef]
- Dosio, A.; Fischer, E.M. Will Half a Degree Make a Difference? Robust Projections of Indices of Mean and Extreme Climate in Europe Under 1.5°C, 2°C, and 3°C Global Warming. Geophys. Res. Lett. 2018, 45, 935–944. [Google Scholar] [CrossRef] [Green Version]
- DKRZ. Earth System Grid Federation (ESGF) Node at Deutsches Klimarechenzentrum (DKRZ). 2022. Available online: https://esgf-data.dkrz.de/projects/esgf-dkrz/ (accessed on 10 June 2021).
- Panitz, H.-J.; Dosio, A.; Büchner, M.; Lüthi, D.; Keuler, K. COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: Analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution. Clim. Dyn. 2014, 42, 3015–3038. [Google Scholar] [CrossRef]
- Remedio, A.R.; Teichmann, C.; Buntemeyer, L.; Sieck, K.; Weber, T.; Rechid, D.; Hoffmann, P.; Nam, C.; Kotova, L.; Jacob, D. Evaluation of New CORDEX Simulations Using an Updated Köppen–Trewartha Climate Classification. Atmosphere 2019, 10, 726. [Google Scholar] [CrossRef] [Green Version]
- Olusegun, C.F.; Awe, O.; Ijila, I.; Ajanaku, O.; Ogunjo, S. Evaluation of dry and wet spell events over West Africa using CORDEX-CORE regional climate models. Model. Earth Syst. Environ. 2022. [Google Scholar] [CrossRef]
- Sørland, S.L.; Brogli, R.; Pothapakula, P.K.; Russo, E.; Van de Walle, J.; Ahrens, B.; Anders, I.; Bucchignani, E.; Davin, E.L.; Demory, M.-E.; et al. COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: A review. Geosci. Model Dev. 2021, 14, 5125–5154. [Google Scholar] [CrossRef]
- Roeckner, E.; Arpe, K.; Bengtsson, L.; Christoph, M.; Claussen, M.; Duemenil, L.; Esch, M.; Giorgetta, M.; Schlese, U.; Schulzweida, U. The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate. 1996. Available online: https://www.osti.gov/etdeweb/biblio/472992 (accessed on 20 July 2021).
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef] [Green Version]
- Doms, G.; Coauthors. A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. COSMO Rep. LM_F90, 2011, 4.20, 154. Available online: http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf (accessed on 18 August 2022).
- Baldauf, M.; Seifert, A.; Fo¨rstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev. 2011, 139, 3887–3905. [Google Scholar] [CrossRef]
- Jacob, D. An inter-comparison of regional climate models for Europe: Design of the experiments and model performance. Clim. Chang. 2007, 81, 31–52. [Google Scholar] [CrossRef]
- Roeckner, E.; Brokopf, R.; Esch, M.; Giorgetta, M.A.; Hagemann, S.; Kornblueh, L.; Schulzweida, U. Sensitivity of simulated cli-mate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Clim. 2006, 19, 3771–3791. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Doms, G.; Förstner, J.; Heise, E.; Herzog, H.; Mironov, D.; Raschendorfer, M.; Reinhardt, T.; Ritter, B.; Schrodin, R.; Schulz, J.; et al. A description of the nonhydrostatic regional cosmo-model-part ii: Physical parameterizations; Deutscher Wetterdienst: Ofenbach, Germany, 2013; p. 15. [Google Scholar]
- Jacob, D.; Elizalde, A.; Haensler, A.; Hagemann, S.; Kumar, P.; Podzun, R.; Rechid, D.; Remedio, A.R.; Saeed, F.; Sieck, K.; et al. Assessing the Transferability of the Regional Climate Model REMO to Different Coordinated Regional Climate Downscaling Experiment (CORDEX) Regions. Atmosphere 2012, 3, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Pang, G.; Wang, X.; Chen, D.; Yang, M.; Liu, L. Evaluation of a climate simulation over the Yellow River Basin based on a regional climate model (REMO) within the CORDEX. Atmospheric Res. 2021, 254, 105522. [Google Scholar] [CrossRef]
- Choi, G.; Collins, D.; Ren, G.; Trewin, B.; Baldi, M.; Fukuda, Y.; Afzaal, M.; Pianmana, T.; Gomboluudev, P.; Huong, P.T.T.; et al. Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Clim. 2009, 29, 1906–1925. [Google Scholar] [CrossRef]
- Feyissa, G.; Zeleke, G.; Bewket, W.; Gebremariam, E. Downscaling of Future Temperature and Precipitation Extremes in Addis Ababa under Climate Change. Climate 2018, 6, 58. [Google Scholar] [CrossRef]
- Wily, R.L.; Dawson, C.W. SDSM4.2—A Decision Support Tool for the Assessment of Regional Climate Change Impacts. User Manual. 2007. Available online: https://sdsm.org.uk/software.html (accessed on 15 December 2021).
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1084. [Google Scholar] [CrossRef]
- Philip, S.; Kew, S.F.; van Oldenborgh, G.J.; Otto, F.; O’Keefe, S.; Haustein, K.; King, A.; Zegeye, A.; Eshetu, Z.; Hailemariam, K.; et al. Attribution Analysis of the Ethiopian Drought of 2015. J. Clim. 2018, 31, 2465–2486. [Google Scholar] [CrossRef]
- Valéry, A.; Andréassian, V.; Perrin, C. Regionalization of precipitation and air temperature over high-altitude catchments-learning from outliers. Hydrol. Sci. J. 2010, 55, 928–940. [Google Scholar] [CrossRef]
- Stockdale, T.N.; Anderson, D.L.T.; Balmaseda, M.A.; Doblas-Reyes, F.; Ferranti, L.; Mogensen, K.; Palmer, T.N.; Molteni, F.; Vitart, F. ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim. Dyn. 2011, 37, 455–471. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Menna, B.Y. Simulation of Hydro Climatological Impacts Caused by Climate Change: The Case of Hare Watershed, Southern Rift Valley of Ethiopia. J. Waste Water Treat. Anal. 2017, 8, 276. [Google Scholar] [CrossRef]
- Yekambessoun, N.M.; Agnide, E.L.; Ganiyu, T.O.; Benjamin, K.Y.; Abel, A.A. Comparison of Daily Precipitation Bias Correction Methods Based on Four Regional Climate Model Outputs in Oueme Basin, Benin. Hydrology. 2016, 4, 58–71. [Google Scholar]
- Kahsay, D.K.; Santosh, M.P.; Samuel, D.H. Impact of climate change on groundwater recharge and base flow in the sub catchment of Tekeze basin. Ethiop. Groundw. Sustain. Dev. 2018, 6, 121–133. [Google Scholar] [CrossRef]
- Bichet, A.; Diedhiou, A.; Hingray, B.; Evin, G.; Touré, N.; Browne, K.N.A.; Kouadio, K. Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA. Clim. Chang. 2020, 162, 583–601. [Google Scholar] [CrossRef]
- Korecha, D.; Barnston, A.G. Predictability of June–September Rainfall in Ethiopia. Mon. Weather Rev. 2007, 135, 628–650. [Google Scholar] [CrossRef]
- Williams, A.P.; Funk, C.; Michaelsen, J.; Rauscher, S.A.; Robertson, I.; Wils, T.H.G.; Koprowski, M.; Eshetu, Z.; Loader, N.J. Recent summer precipitation trends in the greater horn of Africa and the emerging role of Indian Ocean Sea surface temperature. Clim Dyn. 2012, 39, 2307–2328. [Google Scholar] [CrossRef] [Green Version]
- Seleshi, Y.; Zanke, U. Recent changes in rainfall and rainy days in Ethiopia. Int. J. Clim. 2004, 24, 973–983. [Google Scholar] [CrossRef]
- Kisembe, J.; Favre, A.; Dosio, A.; Lennard, C.; Sabiiti, G.; Nimusiima, A. Evaluation of rainfall simulations over Uganda in CORDEX regional climate models. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2018, 137, 1117–1134. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Bambrick, H.; Moncada, S.; Briguglio, M. Climate change and health vulnerability in informal urban settlements in the Ethiopian Rift Valley. Environ. Res. Lett. 2015, 10, 054014. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Climate Change 2014: Impacts, Adaptation, and Vulnerability. In Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. [Google Scholar]
- Sylla, M.B.; Nikiema, P.M.; Gibba, P.; Kebe, I.; Klutse, N.A.B. Climate change over West Africa: Recent trends and future projections. In Adaptation to Climate Change and Variability in Rural West Africa; Yaro, J.A., Hesselberg, J., Eds.; Springer International Publishing: Basel, Switzerland, 2016; pp. 25–40. [Google Scholar]
- Todzo, S.; Bichet, A.; Diedhiou, A. Intensification of the hydrological cycle expected in West Africa over the 21st century. Earth Syst. Dyn. 2020, 11, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Argüeso, D.; Evans, J.; Fita, L.; Bormann, K.J. Temperature response to future urbanization and climate change. Clim. Dyn. 2013, 42, 2183–2199. [Google Scholar] [CrossRef]
- Kusaka, H.; Hara, M.; Takane, Y. Urban Climate Projection by the WRF Model at 3-km Horizontal Grid Increment: Dynamical Downscaling and Predicting Heat Stress in the 2070′s August for Tokyo, Osaka, and Nagoya Metropolises. J. Meteorol. Soc. Jpn. Ser. II 2012, 90B, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Suzuki-Parker, A.; Kusaka, H.; Takayabu, I.; Dairaku, K.; Ishizaki, N.; Ham, S. Contributions of GCM/RCM Uncertainty in Ensemble Dynamical Downscaling for Precipitation in East Asian Summer Monsoon Season. SOLA 2018, 14, 97–104. [Google Scholar] [CrossRef]
- Takane, Y.; Ohashi, Y.; Grimmond, C.S.B.; Hara, M.; Kikegawa, Y. Asian megacity heat stress under future climate scenarios: Impact of air-conditioning feedback. Environ. Res. Commun. 2020, 2, 015004. [Google Scholar] [CrossRef]
- Georgescu, M. Challenges Associated with Adaptation to Future Urban Expansion. J. Clim. 2015, 28, 2544–2563. [Google Scholar] [CrossRef]
- Doan, V.Q.; Kusaka, H. Projections of urban climate in the 2050s in a fast-growing city in Southeast Asia: The greater Ho Chi Minh City metropolitan area, Vietnam. Int. J. Clim. 2018, 38, 4155–4171. [Google Scholar] [CrossRef]
- Oleson, K. Contrasts between Urban and Rural Climate in CCSM4 CMIP5 Climate Change Scenarios. J. Clim. 2012, 25, 1390–1412. [Google Scholar] [CrossRef]
- Tegegne, G.; Melesse, A.M.; Alamirew, T. Projected changes in extreme precipitation indices from CORDEX simulations over Ethiopia, East Africa. Atmospheric Res. 2020, 247, 105156. [Google Scholar] [CrossRef]
- Teferi, E.; Abraha, H. Urban heat island effect of Addis Ababa City: Implications of urban green spaces for climate change adaptation. In Climate Change Adaptation in Africa, Climate Change Management; Filho, W.L., Belay, S., Kalangu, J., Menas, W., Munishi, P., Musiyiwa, K., Eds.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Abebe, M.; Megento, T. The city of Addis Ababa from ‘Forest City’ to ‘Urban Heat Island’. Assessment of urban green space dynamic. J. Urban Environ. Eng. 2016, 10, 254–262. [Google Scholar] [CrossRef]
Stations | Evaluation | Precipitation | Maximum Temperature | Minimum Temperature |
---|---|---|---|---|
Observed and ensemble mean of four stations, multi-model projected RCP8.5 | MAE | 55.87 | 1.71 | 4.96 |
RMSE | 77.25 | 2.08 | 5.03 | |
RE | −0.065 | 0.048 | −0.492 | |
R2 | 0.99 | 0.99 | 1.0 | |
MB | 0.102 | 0.047 | −0.021 | |
T-test at α = 0.05 and 0.01 or at 95% and 99% confidence intervals | T | 1.446 | −39.082 ** | −55.047 ** |
2-tailed significance | 0.159 | 0.000 | 0.000 |
No. | Climate Variable | Period | Output from Climate Model | ||||||
---|---|---|---|---|---|---|---|---|---|
MOCH CLMcom | MOCH GERICS | MPI CLMcom | MPI GERICS | NCC CLMcom | NCC GERICS | Areal Average of Models | |||
I | Tasmax (°C) | Historical | 23.2 | 26.8 | 22.8 | 26.3 | 23.0 | 28.2 * | 25.0 |
2030 | 24.8 | 28.2 | 24.0 | 27.8 | 23.6 | 29.1 * | 26.3 | ||
2050 | 26.8 | 30.2 * | 25.1 | 29.0 | 24.5 | 30.2 * | 27.6 | ||
2080 | 28.6 | 32.2 * | 26.9 | 31.3 | 26.3 | 31.2 | 29.4 | ||
II | Tasmin (°C) | Historical | 15.0 | 13.7 | 14.5 | 13.1 | 15.2 * | 14.0 | 14.3 |
2030 | 16.3 * | 15.3 | 15.7 | 14.4 | 16.0 | 15.1 | 15.5 | ||
2050 | 17.9 * | 17.0 | 16.9 | 16.0 | 16.9 | 16.3 | 16.9 | ||
2080 | 19.7 * | 19.2 | 18.5 | 18.1 | 18.1 | 17.7 | 18.7 | ||
III | Precipitation (mm/month) | Historical | 115.4 | 97.4 | 154.5 | 164.2 * | 82.2 | 132.9 | 124.4 |
2030 | 109.9 | 93.6 | 160.4 | 109.7 | 162.8 * | 79.7 | 119.4 | ||
2050 | 108.2 | 86.3 | 165.3 * | 110.6 | 152.0 | 77.9 | 116.7 | ||
2080 | 110.1 | 83.0 | 171.1 * | 107.0 | 131.7 | 81.1 | 114.0 |
No | Variables | Period | Winter | Spring | Summer | Autumn | Annual Average | Standard Deviation (SD) |
---|---|---|---|---|---|---|---|---|
I | Tasmax (°C) | Base period | 28.7 * | 25.5 | 21.3 | 24.5 | 25.0 | 3.2 |
2030 | 29.9 * | 27.2 | 22.4 | 25.7 | 26.3 | 3.2 | ||
2050 | 31.4 * | 28.5 | 23.7 | 27.0 | 27.6 | 3.3 | ||
2080 | 33.1 * | 30.3 | 25.6 | 28.6 | 29.4 | 3.2 | ||
II | Tasmin (°C) | Base period | 14.6 | 15.2 * | 14.1 | 13.3 | 14.3 | 1.2 |
2030 | 15.9 | 16.4 * | 15.2 | 14.6 | 15.5 | 1.0 | ||
2050 | 17.4 | 17.8 * | 16.5 | 16.0 | 16.9 | 1.1 | ||
2080 | 19.4 * | 19.4 * | 18.2 | 17.8 | 18.7 | 1.1 | ||
III | Precipitation (mm/season) | Base period | 86.8 | 534.2 | 610.8 * | 261.2 | 1493 | 113.6 |
2030 | 64 | 470 | 500 * | 238.4 | 1272.4 | 112.0 | ||
2050 | 61.6 | 460.9 | 483.9 * | 238.3 | 1244.7 | 147.3 | ||
2080 | 74.3 | 411.5 | 471.7 * | 246.7 | 1204.2 | 147.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geleta, T.D.; Dadi, D.K.; Funk, C.; Garedew, W.; Eyelade, D.; Worku, A. Downscaled Climate Change Projections in Urban Centers of Southwest Ethiopia Using CORDEX Africa Simulations. Climate 2022, 10, 158. https://doi.org/10.3390/cli10100158
Geleta TD, Dadi DK, Funk C, Garedew W, Eyelade D, Worku A. Downscaled Climate Change Projections in Urban Centers of Southwest Ethiopia Using CORDEX Africa Simulations. Climate. 2022; 10(10):158. https://doi.org/10.3390/cli10100158
Chicago/Turabian StyleGeleta, Tesfaye Dessu, Diriba Korecha Dadi, Chris Funk, Weyessa Garedew, Damilola Eyelade, and Adefires Worku. 2022. "Downscaled Climate Change Projections in Urban Centers of Southwest Ethiopia Using CORDEX Africa Simulations" Climate 10, no. 10: 158. https://doi.org/10.3390/cli10100158
APA StyleGeleta, T. D., Dadi, D. K., Funk, C., Garedew, W., Eyelade, D., & Worku, A. (2022). Downscaled Climate Change Projections in Urban Centers of Southwest Ethiopia Using CORDEX Africa Simulations. Climate, 10(10), 158. https://doi.org/10.3390/cli10100158