The Benefit of Continuous Hydrological Modelling for Drought Hazard Assessment in Small and Coastal Ungauged Basins: A Case Study in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Description
2.2. The Synthetic Rainfall Generation Model
- The waiting time (assumed as exponentially distributed) between the occurrences of two consecutive storms;
- The number of rain cells (also named as bursts or pulses) in each storm. This quantity is considered as a geometric random variable;
- The waiting time (assumed as exponentially distributed) between the occurrences of a storm and of an associated cell;
- The intensity and the duration (both considered as exponentially distributed) of each cell inside a storm.
- A decrease of the annual cumulative precipitation value, which is comprised between −100 and −50 mm;
- A modest increase (no greater than 5 mm) for the annual maximum daily rainfall.
- A linear increasing trend of about 26% in 50 years concerning the mean waiting time between two consecutive storms;
- A linear increasing trend of about 22% in 50 years concerning the mean value of intensity of rainfall cells;
- A linear decreasing trend of about 14% in 50 years concerning the mean value of duration of rainfall cells.
2.3. The Continuous Rainfall-Runoff Model
2.4. The Investigated Metrics Based on the Generated Rainfall and Runoff Time Series
- MAP: yearly cumulative precipitation amount (mm);
- WD1: yearly cumulative number of wet days (amount of precipitation greater or equal than 1 mm) (days);
- DRYD: yearly cumulative number of dry days (amount of precipitation lower than 1 mm) (days);
- GSTP: yearly cumulative growing season (from April to October) precipitation (mm);
- NGSTP: yearly cumulative non-growing season precipitation (from November to March) (mm);
- DP10: yearly cumulative number of days where the daily precipitation amount is greater or equal than 10 mm (days);
- TNGR: total number of isolated (Ts = 24 h) rainfall events in the 51 years for each generated rainfall time series (-);
- TNER: total number of isolated excess rainfall events in the 51 years for each generated rainfall time series (-);
- CUMVOL: yearly cumulated volume, averaged on the 500 rainfall realizations (m3);
- SDI: streamflow drought index (-), i.e., a well-known index using monthly streamflow values (here averaged on the 500 rainfall realizations) and a process of normalization associated for developing a drought index based upon streamflow data [48]. Literature states that for SDI < −2.0 there is an extreme drought condition, for −2.0 < SDI < −1.5 there is a severe drought condition, for −1.5 < SDI < −1.0 there is a moderate drought condition, for −1.0 < SDI < 0 there is a mild drought condition, and for SDI > 0 there is a non-drought condition;
- FDC: flow duration curves (m3/month). Flow duration curves (here averaged on the 500 rainfall realizations) represent cumulative frequency curves that show the amount of time when specified volumes are equaled or exceeded during a given period.
3. Results and Discussion
3.1. Analysis of the Synthetic Rainfall Time Series
3.2. Results of the Continuous Rainfall-Runoff Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, J.; Fang, J.; Xu, W.; Shi, P. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 377–387. [Google Scholar] [CrossRef]
- Krysanova, V.; Vetter, T.; Hattermann, F. Detection of change in drought frequency in the Elbe basin: Comparison of three methods. Hydrol. Sci. J. 2008, 53, 519–537. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 26 March 2021).
- Yang, T.-H.; Liu, W.-C. A General Overview of the Risk-Reduction Strategies for Floods and Droughts. Sustainability 2020, 12, 2687. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding the Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- American Meteorological Society (AMS). Statement on meteorological drought. Bull. Am. Meteorol. Soc. 2004, 85, 771–773. [Google Scholar]
- World Meteorological Organization (WMO). Report on Drought and Countries Affected by Drought during 1974–1985; WMO: Geneva, Switzerland, 1986; p. 118. [Google Scholar]
- UN Secretariat General. United Nations Convention to Combat Drought and Desertification in Countries Experiencing Serious Droughts and Desertification, Particularly in Africa; UN Secretariat General: Paris, France, 1994.
- Haslinger, K.; Blöschl, G. Space-time patterns of meteorological drought events in the European Greater Alpine Region over the past 210 years. Water Resour. Res. 2017, 53, 9807–9823. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.D.; Stewart, R.E.; Wang, H.; Barlow, M.; Berbery, E.H.; Cai, W.; Hoerling, M.P.; Kanikicharta, K.K.; Koster, R.D.; Lyon, B.; et al. Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J. Clim. 2016, 29, 3989–4019. [Google Scholar] [CrossRef] [Green Version]
- Huning, L.S.; AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl. Acad. Sci. USA 2020, 117, 19753–19759. [Google Scholar] [CrossRef]
- van Loon, A.F. Hydrological drought explained. WIRES Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Hasan, H.H.; Razali, S.F.M.; Muhammad, N.S.; Ahmad, A. Research Trends of Hydrological Drought: A Systematic Review. Water 2019, 11, 2252. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pan, Z.; Zhuang, Q.; Miralles, D.G.; Teuling, A.J.; Zhang, T.; An, P.; Dong, Z.; Zhang, J.; He, D.; et al. Agriculture intensifies soil moisture decline in Northern China. Sci. Rep. 2015, 5, 11261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Huang, S.; Huang, Q.; Wang, H.; Fang, W.; Yang, Y.; Wang, L. Assessing socioeconomic drought based on an improved Multivariate Standardized Reliability and Resilience Index. J. Hydrol. 2019, 568, 904–918. [Google Scholar] [CrossRef]
- Jahangir, M.H.; Yarahmadi, Y. Hydrological drought analyzing and monitoring by using Streamflow Drought Index (SDI) (case study: Lorestan, Iran). Arab. J. Geosci. 2020, 13, 110. [Google Scholar] [CrossRef]
- Mlenga, D.H.; Jordaan, A.J.; Mandebvu, B. Integrating standard precipitation index and normalised difference vegetation index for near-real-time drought monitoring in Eswatini. Jamba J. Disaster Risk Stud. 2019, 11, a917. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; National Center for Atmospheric Research Staff (Eds.) The Climate Data Guide: Palmer Drought Severity Index (PDSI). Last modified 12 December 2019. Available online: https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi (accessed on 31 January 2022).
- Kosmas, C.; Ferrara, A.; Briassoulis, H.; Imeson, A. Methodology for mapping environmentally sensitive areas (ESAs) to desertification. In The Medalus Project: Mediterranean Desertification and Land Use. Manual on Key Indicators of Desertification and Mapping Environ-Mentally Sensitive Areas to Desertification; European Union Report No. 18882; Kosmas, C., Kirkby, M., Geeson, N., Eds.; European Union: Brussels, Belgium, 1999; pp. 31–47. ISBN 92-828-6349-2. [Google Scholar]
- Kosmas, K.; Tsara, M.; Moustakas, N.; Karavitis, C. Identification of indicators for desertification. Ann. Arid. Zones 2003, 42, 393–416. [Google Scholar]
- Ferrara, A.; Salvati, L.; Sateriano, A.; Nolè, A. Performance evaluation and costs assessment of a key indicator system to monitor desertification vulnerability. Ecol. Indic. 2012, 23, 123–129. [Google Scholar] [CrossRef]
- Salvati, L. From simplicity to complexity: The (changing) geography of land vulnerability to degradation in Italy. Geogr. Res. 2013, 51, 318–328. [Google Scholar] [CrossRef]
- Basso, F.; Bove, E.; Dumontet, S.; Ferrara, A.; Pisante, M.; Quaranta, G.; Taberner, M. Evaluating Environmental Sensitivity at the basin scale through the use of Geographic Information Systems and Remote Sensed data: An example covering the Agri basin (southern Italy). Catena 2000, 40, 19–35. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration of time scales. In Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, USA, 17–23 January 1993. [Google Scholar]
- FAO. Report of FAO-CRIDA Expert Group Consultation on Farming System and Best Practices for Drought-Prone Areas of Asia and the Pacific Region; Food and Agricultural Organization of United Nations, Central Research Institute for Dryland Agriculture: Hyderabad, India, 2002. [Google Scholar]
- Gumbel, E.J. Statistical forecast of droughts. Bull. Int. Assoc. Sci. Hydrol. 1963, 8, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Sabzevari, T. Runoff prediction in ungauged catchments using the gamma dimensionless time-area method. Arab. J. Geosci. 2017, 10, 131. [Google Scholar] [CrossRef]
- Apollonio, C.; Bruno, M.F.; Iemmolo, G.; Molfetta, M.G.; Pellicani, R. Flood Risk Evaluation in Ungauged Coastal Areas: The Case Study of Ippocampo (Southern Italy). Water 2020, 12, 1466. [Google Scholar] [CrossRef]
- Gioia, A.; Lioi, B.; Totaro, V.; Molfetta, M.G.; Apollonio, C.; Bisantino, T.; Iacobellis, V. Estimation of Peak Discharges under Different Rainfall Depth-Duration-Frequency Formulations. Hydrology 2021, 8, 150. [Google Scholar] [CrossRef]
- Vojtek, M.; Petroselli, A.; Vojteková, J.; Asgharinia, S. Flood inundation mapping in small and ungauged basins: Sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach. Hydrol. Res. 2019, 50, 1002–1019. [Google Scholar] [CrossRef] [Green Version]
- Piscopia, R.; Petroselli, A.; Grimaldi, S. A software package for predicting design-flood hydrographs in small and ungauged basins. J. Agric. Eng. 2015, 46, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Onof, C.; Chandler, R.E.; Kakou, A.; Northrop, P.; Wheater, H.S.; Isham, V. Rainfall modelling using Poisson-cluster processes: A review of developments. Stoch. Environ. Res. Risk Assess. 2000, 14, 384–411. [Google Scholar] [CrossRef]
- de Luca, D.L.; Petroselli, A.; Galasso, L. A Transient Stochastic Rainfall Generator for Climate Changes Analysis at Hydrological Scales in Central Italy. Atmosphere 2000, 11, 1292. [Google Scholar] [CrossRef]
- de Luca, D.L.; Petroselli, A. STORAGE (STOchastic RAinfall GEnerator): A user-friendly software for generating long and high-resolution rainfall time series. Hydrology 2021, 8, 76. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Serinaldi, F. A continuous simulation model for design-hydrograph estimation in small and ungauged watersheds. Hydrol. Sci. J. 2012, 57, 1035–1051. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Serinaldi, F. Design hydrograph estimation in small and ungauged watersheds: Continuous simulation method versus event-based approach. Hydrol. Processes 2012, 26, 3124–3134. [Google Scholar] [CrossRef]
- Grimaldi, S.; Nardi, F.; Piscopia, R.; Petroselli, A.; Apollonio, C. Continuous hydrologic modelling for design simulation in small and ungauged basins: A step forward and some tests for its practical use. J. Hydrol. 2021, 595, 125664. [Google Scholar] [CrossRef]
- Apollonio, C.; Rose, M.D.; Fidelibus, C.; Orlanducci, L.; Spasiano, D. Water management problems in a karst flood-prone endorheic basin. Environ. Earth Sci. 2018, 77, 676. [Google Scholar] [CrossRef]
- Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A.; Galluccio, G.; Marcomini, A. A risk assessment framework for irrigated agriculture under climate change. Adv. Water Resour. 2017, 110, 562–578, ISSN 0309-1708. [Google Scholar] [CrossRef]
- Alfio, M.R.; Balacco, G.; Parisi, A.; Totaro, V.; Fidelibus, M.D. Drought Index as Indicator of Salinization of the Salento Aquifer (Southern Italy). Water 2020, 12, 1927. [Google Scholar] [CrossRef]
- Giordano, R.; Milella, P.; Portoghese, I.; Vurro, M.; Apollonio, C.; D’Agostino, D.; Lamaddalena, N.; Scardigno, A.; Piccinni, A.F. An innovative monitoring system for sustainable management of groundwater resources: Objectives, stakeholder acceptability and implementation strategy. In Proceedings of the 2010 IEEE Workshop on Environmental Energy and Structural Monitoring Systems, Taranto, Italy, 9 September 2010; pp. 32–37. [Google Scholar]
- Giordano, R.; D’Agostino, D.; Apollonio, C.; Lamaddalena, N.; Vurro, M. Bayesian Belief Network to support conflict analysis for groundwater protection: The case of the Apulia region. J. Environ. Manag. 2013, 115, 136–146. [Google Scholar] [CrossRef]
- The Groundwater and the Seawater Intrusion in Apulia: From Research to the Emergency in the Safeguard of the Water Resource; Technical Periodicals for Descriptive Memories of the Geological Map of Italy; ISPRA: Rome, Italy, 2014; Volume 92.
- Decreto del Presidente di Giunta Regionale. Agricoltura, 6 August 1992; No. 376. Available online: http://bur.regione.veneto.it/BurvServices/Pubblica/DettaglioDecretoPGR.aspx?id=435751(accessed on 31 January 2020).
- Council Directive 92/43/EEC of the Council of The European Communities of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31992L0043 (accessed on 11 March 2020).
- Piano di Tutela delle Acque della Regione Puglia 2015–2021. Available online: http://www.sit.puglia.it/portal/portale_pianificazione_regionale/Piano%20di%20Tutella%20delle%20Acque/Documenti/PTA/PTADocumentiDownloadWindow?title=Piano%20di%20Tutela%20delle%20Acque%20-%20PTA%20Adozione%20proposta%20di%20Aggiornamento%202015-2021&piano=PTA_2019&entity=fascicolo&action=2 (accessed on 6 February 2022).
- Piano di Bacino: Stralcio Assetto Idro-geologico (PAI); Relazione di piano; Autorità di bacino della Puglia (AdBP): Bari, Italy, 2004.
- Rodriguez-Iturbe, I.; Cox, D.R.; Isham, V. Some models for rainfall based on stochastic point processes. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1987, 410, 269–288. [Google Scholar]
- Cowpertwait, P.S.P. Further developments of the neyman-scott clustered point process for modeling rainfall. Water Resour. Res. 1991, 27, 1431–1438. [Google Scholar] [CrossRef]
- ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale. Il Clima Futuro in Italia: Analisi delle Proiezioni dei Modelli Regionali; ISPRA: Rome, Italy, 2015; Volume 58, pp. 1–64. ISBN 978-88-448-0723-8. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente/il-clima-futuro-in-italia-analisi-delle-proiezioni-dei-modelli-regionali (accessed on 27 January 2022). (In Italian)
- Koutsoyiannis, D.; Montanari, A. Negligent killing of scientific concepts: The stationarity case. Hydrol. Sci. J. 2015, 60, 1174–1183. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Romano, N. Green-Ampt Curve Number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins. Hydrol. Processes 2013, 27, 1253–1264. [Google Scholar] [CrossRef]
- NRCS (Natural Resources Conservation Service). National Engineering Handbook—Part 630, Hydrology; U.S. Department of Agriculture: Washington, DC, USA, 2008.
- Green, W.H.; Ampt, G.A. Studies on soil physics. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Petroselli, A. A generalization of the EBA4SUB rainfall-runoff model considering surface and subsurface flow. Hydrol. Sci. J. 2020, 65, 2390–2401. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Singh, V.; Qin, X. Study of rainfall variabilities in Southeast Asia using long-term gridded rainfall and its substantiation through global climate indices. J. Hydrol. 2020, 585, 124320. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, G.; Yan, X.; Zhang, Q.; Hou, M.; Zhu, Y.; Tian, Z. Risk assessment of agricultural drought using the CERES-Wheat model: A case study of Henan Plain, China. Clim. Res. 2011, 50, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Carroll, C.J.; Griffin-Nolan, R.J.; Slette, I.J.; Chaves, F.A.; Baur, L.E.; Felton, A.J.; Gray, J.E.; Hoffman, A.M.; Lemoine, N.P.; et al. A reality check for climate change experiments: Do they reflect the real world? Ecology 2018, 99, 2145–2151. [Google Scholar] [CrossRef] [Green Version]
- Yao, G.; Nie, Z.; Turner, N.C.; Li, F.; Gao, T.; Fang, X.; Scoffoni, C. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. New Phytol. 2021, 229, 230–244. [Google Scholar] [CrossRef]
- Stuart-Haëntjens, E.; De Boeck, H.; Lemoine, N.P.; Mänd, P.; Kröel-Dulay, G.; Schmidt, I.K.; Jentsch, A.; Stampfli, A.; Anderegg, W.R.; Bahn, M.; et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 2018, 636, 360–366. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Spatial and temporal patterns of the mean annual precipitation at decadal time scale in southern Italy (Calabria region). Theor. Appl. Climatol. 2011, 105, 431–444. [Google Scholar] [CrossRef]
- Lionello, P.; Congedi, L.; Reale, M.; Scarascia, L.; Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Chang. 2014, 14, 2025–2038. [Google Scholar] [CrossRef]
- Marini, G.; Fontana, N.; Mishra, A.K. Investigating drought in Apulia region, Italy using SPI and RDI. Theor. Appl. Climatol. 2019, 137, 383–397. [Google Scholar] [CrossRef]
- Lopez, A.; Vurro, M. Planning agricultural wastewater reuse in southern Italy: The case of Apulia Region. Desalination 2008, 218, 164–169. [Google Scholar] [CrossRef]
- Giordano, R.; D’Agostino, D.; Apollonio, C.; Scardigno, A.; Pagano, A.; Portoghese, I.; Lamaddalena, N.; Piccinni, A.F.; Vurro, M. Evaluating acceptability of groundwater protection measures under different agricultural policies. Agric. Water Manag. 2015, 147, 54–66, ISSN 0378-3774. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, D.L.; Apollonio, C.; Petroselli, A. The Benefit of Continuous Hydrological Modelling for Drought Hazard Assessment in Small and Coastal Ungauged Basins: A Case Study in Southern Italy. Climate 2022, 10, 34. https://doi.org/10.3390/cli10030034
De Luca DL, Apollonio C, Petroselli A. The Benefit of Continuous Hydrological Modelling for Drought Hazard Assessment in Small and Coastal Ungauged Basins: A Case Study in Southern Italy. Climate. 2022; 10(3):34. https://doi.org/10.3390/cli10030034
Chicago/Turabian StyleDe Luca, Davide Luciano, Ciro Apollonio, and Andrea Petroselli. 2022. "The Benefit of Continuous Hydrological Modelling for Drought Hazard Assessment in Small and Coastal Ungauged Basins: A Case Study in Southern Italy" Climate 10, no. 3: 34. https://doi.org/10.3390/cli10030034
APA StyleDe Luca, D. L., Apollonio, C., & Petroselli, A. (2022). The Benefit of Continuous Hydrological Modelling for Drought Hazard Assessment in Small and Coastal Ungauged Basins: A Case Study in Southern Italy. Climate, 10(3), 34. https://doi.org/10.3390/cli10030034