Wave Climate along Calabrian Coasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methodology
- Maximum significant wave height hs,max;
- Average significant wave height hs, average peak period tp and average mean period tm;
- Frequency f of each sector;
- Average annual energy flux Φ of each sector;
- Average annual energy flux Φt;
- Main, secondary and tertiary sectors;
- Significant wave height of fixed return period (hs1, corresponding to return period of 1 year, and hs100, corresponding to return period of 100 years, to consider both frequent and rare events) and their difference ∆hs1–100;
- Characteristic parameters u, w, a10, b10.
- 9.
- Seasonal maximum significant wave height hs,max,i;
- 10.
- Seasonal average significant wave height hs,i;
- 11.
- Seasonal average annual energy flux Φt,i;
- 12.
- Seasonal main sector MSi.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bacon, S.; Carter, D.J.T. A connection between mean wave height and atmospheric pressure gradient in the North Atlantic. Int. J. Climatol. 1993, 13, 423–436. [Google Scholar] [CrossRef]
- Young, I.R. Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol. 1999, 19, 931–950. [Google Scholar] [CrossRef]
- Stewart, R.H. Introduction to Physical Oceanography; Department of Oceanography, Texas A&M University: College Station, TX, USA, 2005; p. 353. [Google Scholar] [CrossRef]
- Pecher, A.; Kofoed, J.P. Handbook of Ocean Wave Energy; Springer Open: Aalborg, Denmark, 2017; p. 305. [Google Scholar]
- Cuttler, M.V.; Hansen, J.E.; Lowe, R.J. Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia. Renew. Energy 2020, 146, 2337–2350. [Google Scholar] [CrossRef]
- Cavaleri, L.; Fox-Kemper, B.; Hemer, M. Wind waves in the coupled climate system. Bull. Am. Meteorol. Soc. 2012, 93, 1651–1661. [Google Scholar] [CrossRef]
- Cotrim, C.D.S.; Semedo, A.; Lemos, G. Brazil wave climate from a high-resolution wave hindcast. Climate 2022, 10, 53. [Google Scholar] [CrossRef]
- Dodet, G.; Bertin, X.; Taborda, R. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model. 2010, 31, 120–131. [Google Scholar] [CrossRef]
- Hemer, M.A.; Church, J.A.; Hunter, J.R. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 2010, 30, 475–491. [Google Scholar] [CrossRef]
- Young, I.R.; Zieger, S.; Babanin, A.V. Global trends in wind speed and wave height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef]
- Kamranzad, B. Persian Gulf zone classification based on the wind and wave climate variability. Ocean Eng. 2018, 169, 604–635. [Google Scholar] [CrossRef]
- Semedo, A. Seasonal variability of wind sea and swell waves climate along the Canary Current: The local wind effect. J. Mar. Sci. Eng. 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Divinsky, B.V.; Kosyan, R.D. Spatiotemporal variability of the Black Sea wave climate in the last 37 years. Cont. Shelf Res. 2017, 136, 1–19. [Google Scholar] [CrossRef]
- Vieira, F.; Cavalcante, G.; Campos, E. Analysis of wave climate and trends in a semi-enclosed basin (Persian Gulf) using a validated SWAN model. Ocean Eng. 2020, 196, 106821. [Google Scholar] [CrossRef]
- Rapizo, H.; Godoi, V.A.; Perez, J.; Durrant, T.; Guedes, R. Analysis of the New Zealand’s Taranaki regional wave climate using high-resolution modelling. Reg. Stud. Mar. Sci. 2021, 45, 101806. [Google Scholar] [CrossRef]
- Yuksel, Y.; Yuksel, Z.T.; Islek, F.; Sahin, C.; Guner, H.A.A. Spatiotemporal long-term trends of wind and wave climate and extreme characteristics over the Sea of Marmara. Ocean Eng. 2021, 228, 108946. [Google Scholar] [CrossRef]
- Menéndez, M.; Méndez, F.J.; Losada, I.J.; Graham, N.E. Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Swail, V.R. North lsevier wave height trends as reconstructed from the 20th century reanalysis. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Barbariol, F.; Bidlot, J.R.; Cavaleri, L.; Sclavo, M.; Thomson, J.; Benetazzo, A. Maximum wave heights from global model reanalysis. Prog. Oceanogr. 2019, 175, 139–160. [Google Scholar] [CrossRef]
- Ramos, M.S.; Farina, L.; Faria, S.H.; Li, C. Relationships between large-scale climate modes and the South Atlantic Ocean wave climate. Prog. Oceanogr. 2021, 197, 102660. [Google Scholar] [CrossRef]
- Soomere, T. Numerical simulations of wave climate in the Baltic Sea: A review. Oceanologia 2022. [Google Scholar] [CrossRef]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: New York, NY, USA, 2007; p. 405. [Google Scholar]
- Barbaro, G.; Foti, G.; Nucera, A.; Barillà, G.C.; Canale, C.; Puntorieri, P.; Minniti, F. Risk mapping of coastal flooding areas. Case studies: Scilla and Monasterace (Italy). Int. J. Saf. Secur. Eng. 2020, 10, 59–67. [Google Scholar] [CrossRef]
- Lemee, C.; Navarro, O.; Restrepo-Ochoa, D.; Mercier, D.; Fleury-Bahi, G. Protective behaviors regarding coastal flooding risk in a context of climate change. Adv. Clim. Chang. Res. 2020, 11, 310–316. [Google Scholar] [CrossRef]
- Fiori, E.; Comellas, A.; Molini, L.; Rebora, N.; Siccardi, F.; Gochis, D.J.; Tanelli, S.; Parodi, A. Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmos. Res. 2014, 138, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Zellou, B.; Rahali, H. Assessment of the joint impact of extreme rainfall and storm surge on the risk of flooding in a coastal area. J. Hydrol. 2019, 569, 647–665. [Google Scholar] [CrossRef]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Comparison of stormcluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 2015, 164, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, G.; Petrucci, O.; Canale, C.; Foti, G.; Mancuso, P.; Puntorieri, P. Contemporaneity of floods and storms. A case study of Metropolitan Area of Reggio Calabria in Southern Italy. In Proceedings of the 3rd International Symposium New Metropolitan Perspectives (ISTH2020), Reggio Calabria, Italy, 22–25 May 2018; Smart Innovation, Systems and Technologies, 2019. Volume 101, pp. 614–620. [Google Scholar] [CrossRef]
- Canale, C.; Barbaro, G.; Petrucci, O.; Fiamma, V.; Foti, G.; Barillà, G.C.; Puntorieri, P.; Minniti, F.; Bruzzaniti, L. Analysis of floods and storms: Concurrent conditions. Ital. J. Eng. Geol. Environ. 2020, 1, 23–29. [Google Scholar] [CrossRef]
- Almar, R.; Kestenare, E.; Reyns, J.; Jouanno, J.; Anthony, E.; Laibi, R.; Hemer, M.A.; du Penhoat, Y.; Ranasinghe, R. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part 1: Wave climate variability and impacts on the longshore sediment transport. Cont. Shelf Res. 2015, 110, 48–59. [Google Scholar] [CrossRef]
- Montreuil, A.L.; Chen, M.; Elyahyioui, J. Assessment of the impacts of storm events for developing an erosion index. Reg. Stud. Mar. Sci. 2017, 16, 124–130. [Google Scholar] [CrossRef]
- Kroon, A.; de Schipper, M.A.; van Gelder, P.H.A.J.M.; Aarninkhof, S.G.J. Ranking uncertainty: Wave climate variability versus model uncertainty in probabilistic assessment of coastline change. Coast. Eng. 2020, 158, 103673. [Google Scholar] [CrossRef]
- Dada, O.A.; Qiao, L.; Ding, D.; Li, G.; Ma, Y.; Wang, L. Evolutionary trends of the Niger Delta shoreline during the last 100 years: Responses to rainfall and river discharge. Mar. Geol. 2015, 367, 202–211. [Google Scholar] [CrossRef]
- Acciarri, A.; Bisci, C.; Cantalamessa, G.; Di Pancrazio, G. Anthropogenic influence on recent evolution of shoreline between the Conero Mt. and the Tronto, R. mouth (southern Marche, Central Italy). Catena 2016, 147, 545–555. [Google Scholar] [CrossRef]
- Smith, E.R.; D’Alessandro, F.; Tomasicchio, G.R.; Gailani, J.Z. Nearshore placement of a sand dredged mound. Coast. Eng. 2017, 126, 1–10. [Google Scholar] [CrossRef]
- Tomasicchio, G.R.; D’Alessandro, F.; Frega, F.; Francone, A.; Ligorio, F. Recent improvements for estimation of longshore transport. Ital. J. Eng. Geol. Environ. 2018, 1, 179–187. [Google Scholar]
- Barbaro, G.; Bombino, G.; Foti, G.; Borrello, M.M.; Puntorieri, P. Shoreline evolution near river mouth: Case study of Petrace River (Calabria, Italy). Reg. Stud. Mar. Sci. 2019, 29, 100619. [Google Scholar] [CrossRef]
- Foti, G.; Barbaro, G.; Bombino, G.; Fiamma, V.; Puntorieri, P.; Minniti, F.; Pezzimenti, C. Shoreline changes near river mouth: Case study of Sant’Agata River (Reggio Calabria, Italy). Eur. J. Remote Sens. 2019, 52, 102–112. [Google Scholar] [CrossRef]
- Ngowo, R.G.; Ribeiro, M.C.; Pereira, M.J. Quantifying 28-year (1991–2019) shoreline change trends along the Mnazi Bay–Ruvuma Estuary Marine Park, Tanzania. Remote Sens. Appl. Soc. Environ. 2021, 23, 100607. [Google Scholar] [CrossRef]
- Komar, P.D. Coastal erosion—Underlying factors and human impacts. Shore Beach 2000, 68, 3–16. [Google Scholar]
- Dada, O.A.; Li, G.; Qiao, L.; Asiwaju-Bello, Y.A.; Anifowose, A.Y.B. Recent Niger Delta shoreline response to Niger River Hydrology: Conflicts between forces of Nature and Humans. J. Afr. Earth Sci. 2018, 139, 222–231. [Google Scholar] [CrossRef]
- Ozpolat, E.; Demir, T. The spatiotemporal shoreline dynamics of a delta under natural and anthropogenic conditions from 1950 to 2018: A dramatic case from the Eastern Mediterranean. Ocean Coast. Manag. 2019, 180, 104910. [Google Scholar] [CrossRef]
- Anthony, E.J.; Almar, R.; Besset, M.; Reyns, J.; Laibi, R.; Ranasinghe, R.; Abessolo Ondoa, G.; Vacchi, M. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part 2: Sources and patterns of sediment supply, sediment cells, and recent shoreline change. Cont. Shelf Res. 2019, 173, 93–103. [Google Scholar] [CrossRef]
- Besset, M.; Anthony, E.J.; Bouchette, F. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review. Earth-Sci. Rev. 2019, 193, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Sci. Total Environ. 2020, 708, 135153. [Google Scholar] [CrossRef] [PubMed]
- Foti, G.; Barbaro, G.; Barillà, G.C.; Mancuso, P.; Puntorieri, P. Shoreline evolutionary trends along calabrian coasts: Causes and classification. Front. Mar. Sci. 2022, 9, 846914. [Google Scholar] [CrossRef]
- Sancho, F.; Abreu, T.; D’Alessandro, F.; Tomasicchio, G.R.; Silva, P.A. Surf hydrodynamics under collapsing coastal dunes. J. Coast. Res. 2011, 64, 144–148. [Google Scholar]
- D’Alessandro, F.; Tomasicchio, G.R.; Musci, F.; Ricca, A. Dune erosion physical, analytical and numerical modelling. In Proceedings of the 33rd International Conference on Coastal Engineering, Santander, Boadilla del Monte, Spain, 1–6 July 2012; Volume 1, pp. 1–11. [Google Scholar]
- Barbaro, G.; Foti, G.; Barillà, G.C.; Frega, F. Beach and dune erosion: Causes and interventions, case study: Kaulon archaeological site. J. Mar. Sci. Eng. 2022, 10, 14. [Google Scholar] [CrossRef]
- Foti, G.; Barbaro, G.; Barillà, G.C.; Frega, F. Effects of anthropogenic pressures on dune systems—Case study: Calabria (Italy). J. Mar. Sci. Eng. 2022, 10, 10. [Google Scholar] [CrossRef]
- Foti, G.; Barbaro, G.; Manti, A.; Foti, P.; La Torre, A.; Geria, P.F.; Puntorieri, P.; Tramontana, N. A methodology to evaluate the effects of river sediment withdrawal: The case study of the Amendolea River in Southern Italy. Aquat. Ecosyst. 2020, 23, 465–473. [Google Scholar] [CrossRef]
- Barbaro, G. Saline Joniche: A predicted disaster. Disaster Adv. 2013, 6, 1–3. [Google Scholar]
- Tomasicchio, G.R.; D’Alessandro, F. Wave energy transmission through and over low crest-ed breakwaters. J. Coast. Res. 2013, 65, 398–403. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Boix-Fayos, C.; Tamburino, V.; Zimbone, S.M.; Fortugno, D. Evaluation and modeling of scouring and sedimentation around check dams in a Mediterranean torrent in Calabria, Italy. J. Soil Water Conserv. 2014, 69, 316–329. [Google Scholar] [CrossRef]
- Prumm, M.; Iglesias, G. Impacts of port development on estuarine morphodynamics: Ribadeo (Spain). Ocean Coast. Manag. 2016, 130, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Miduri, M.; Foti, G.; Puntorieri, P. Impact generated by Marina of Badolato on adjacent coasts. In Proceedings of the 13th International Congress on Coastal and Marine Sciences, Engineering, Management & Conservation (MEDCOAST), Mellieha, Malta, 31 October–4 November 2017; Volume 2, pp. 935–945. [Google Scholar]
- Valsamidis, A.; Reeve, D.E. Modelling shoreline evolution in the vicinity of a groyne and a river. Cont. Shelf Res. 2017, 132, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Canale, C.; Barbaro, G.; Foti, G.; Petrucci, O.; Besio, G.; Barillà, G.C. Bruzzano river mouth damage due to meteorological events. Int. J. River Basin Manag. 2021. [Google Scholar] [CrossRef]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1996; p. 532. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Powers, J.G. A Description of the Advanced Research WRF Version 3; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III TM Version 3.14; Technical note, MMAB Contribution; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction: Camp Springs, MD, USA, 2009; Volume 276.
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Goldberg, M. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Developing and validating a forecast/hindcast system for the Mediterranean Sea. J. Coast. Res. 2013, 65, 1551–1556. [Google Scholar] [CrossRef]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean Model. 2015, 90, 82–94. [Google Scholar] [CrossRef]
- Boccotti, P. Wave Mechanics for Ocean Engineering; Elsevier Oceanography Series: Amsterdam, The Netherlands, 2000; Available online: https://www.sciencedirect.com/bookseries/lsevier-oceanography-series/vol/64/suppl/C (accessed on 15 February 2022).
- Arena, F.; Pavone, D. Return period of nonlinear high wave crests. J. Geophys. Res. 2006, 111, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Parunov, J.; Ćorak, M.; Pensa, M. Wave height statistics for seakeeping assessment of ships in the Adriatic Sea. Ocean Eng. 2011, 38, 1323–1330. [Google Scholar] [CrossRef]
- Sartini, L.; Mentaschi, L.; Besio, G. Comparing different extreme wave analysis models for wave climate assessment along the Italian coast. Coast. Eng. 2015, 100, 37–47. [Google Scholar] [CrossRef]
- Kotz, S.; Balakrishnan, N.; Read, C.B.; Vidakovic, B. Encyclopedia of Statistical Sciences Volume 1; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Maiolo, M.; Versace, P.; Natale, L.; Irish, J.; Pope, J.; Frega, F. A comprehensive study of the tyrrhenian shoreline of the Province of Cosenza. In AIPCN—Giornate Italiane di Ingegneria Costiera, 5th ed.; AIPCN: Ravenna, Italy, 2000. [Google Scholar]
- Bellotti, P.; Caputo, C.; Davoli, L.; Evangelista, S.; Pugliese, F. Coastal protections in Tyrrhenian Calabria (Italy): Morphological and sedimentological feedback on the vulnerable area of belvedere Marittimo. Geogr. Fis. E Din. Quat. 2009, 32, 3–14. [Google Scholar]
- D’Alessandro, F.; Tomasicchio, G.R.; Frega, F.; Carbone, M. Design and management aspects of a coastal protection system. A case history in the South of Italy. J. Coast. Res. 2011, 64, 492–495. [Google Scholar]
- Ietto, F.; Le Pera, E.; Caracciolo, L. Geomorphology and sand provenance of the Tyrrhenian coast between capo Suvero and Gizzeria (Calabria, southern Italy). Rend. Online Soc. Geol. Ital. 2012, 21, 487–488. [Google Scholar]
- Ietto, F.; Cantasano, N.; Pellicone, G. A new coastal erosion risk assessment indicator: Application to the Calabria tyrrhenian littoral (southern Italy). Environ. Process. 2018, 5, 201–223. [Google Scholar] [CrossRef]
- Maiolo, M.; Carini, M.; Pantusa, D.; Capano, G.; Bonora, M.A.; Feudo, T.L.; Sinopoli, S.; Mel, R.A. History and heritage of coastal protection in the southern Tyrrhenian area. Ital. J. Eng. Geol. Environ. 2020, 2, 19–30. [Google Scholar]
- Cantasano, N.; Pellicone, G. Marine and River environments: A pattern of integrated coastal zone management (ICZM) in Calabria (southern Italy). Ocean Coast. Manag. 2014, 89, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Cantasano, N.; Pellicone, G.; Ietto, F. The coastal sustainability standard method: A case study in Calabria (southern Italy). Ocean Coast. Manag. 2020, 183, 104962. [Google Scholar] [CrossRef]
- Cantasano, N.; Caloiero, T.; Pellicone, G.; Aristodemo, F.; De Marco, A.; Tagarelli, G. Can ICZM contribute to the mitigation of erosion and of human activities threatening the natural and cultural heritage of the coastal landscape of Calabria? Sustainability 2021, 13, 1122. [Google Scholar] [CrossRef]
- Rago, V.; Chiaravalloti, F.; Chiodo, G.; Gabriele, S.; Lupiano, V.; Nicastro, R.; Pellegrino, A.D.; Procopio, A.; Siviglia, S.; Terranova, O.G.; et al. Geomorphic effects caused by heavy rainfall in southern Calabria (Italy) on 30 October–1 November 2015. J. Maps 2017, 13, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Rosskopf, C.M.; Mucerino, L.; Montella, R.; Contestabile, P. Monitoring and modelling coastal vulnerability and mitigation proposal for an archaeological site (Kaulonia, Southern Italy). Sustainability 2018, 10, 2017. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, G. Master plan of solutions to mitigate the risk of coastal erosion in Calabria (Italy), a case study. Ocean Coast. Manag. 2016, 132, 24–35. [Google Scholar] [CrossRef]
- Ferraro, D.A.; Aristodemo, F.; Veltri, P. Wave energy resources along calabrian coasts (Italy). Coast. Eng. Proc. 2017, 35, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Caloiero, T.; Aristodemo, F.; Algieri Ferraro, D. Trend analysis of significant wave height and energy period in southern Italy. Theor. Appl. Climatol. 2019, 138, 917–930. [Google Scholar] [CrossRef]
Point | Coastal Municipality | hs,max [m] | hs [m] | tp [s] | tm [s] | hs1 [m] | hs100 [m] | ∆hs1–100 [m] |
---|---|---|---|---|---|---|---|---|
I1 | Rocca Imperiale, Montegiordano | 5.68 | 0.56 | 4.57 | 3.87 | 3.67 | 6.68 | 3.01 |
I2 | Roseto Capo Spulico | 5.72 | 0.58 | 4.51 | 3.82 | 3.73 | 6.62 | 2.89 |
I3 | Amendolara, Albidona, Trebisacce | 5.88 | 0.61 | 4.43 | 3.76 | 3.69 | 6.23 | 2.54 |
I4 | Villapiana, Cassano allo Ionio | 5.57 | 0.50 | 4.22 | 3.57 | 3.19 | 5.44 | 2.25 |
I5 | Corigliano-Rossano to the Trionto River mouth | 4.91 | 0.43 | 3.94 | 3.36 | 2.76 | 4.71 | 1.95 |
I6 | Corigliano-Rossano from the Trionto River mouth to the east, Crosia, Calopezzati, Pietrapaola, Mandatoriccio | 6.04 | 0.54 | 4.30 | 3.62 | 3.46 | 5.88 | 2.42 |
I7 | Scala Coeli, Cariati | 6.18 | 0.57 | 4.37 | 3.67 | 3.57 | 6.03 | 2.46 |
I8 | Crucoli, Cirò, Cirò Marina up to Punta Alice | 6.87 | 0.71 | 4.66 | 3.94 | 4.11 | 6.86 | 2.75 |
I9 | Cirò Marina from Punta Alice to the south | 7.42 | 0.79 | 4.94 | 4.19 | 4.50 | 7.58 | 3.08 |
I10 | Melissa, Strongoli, Crotone to the Neto River mouth | 7.44 | 0.79 | 4.99 | 4.22 | 4.49 | 7.54 | 3.05 |
I11 | Crotone from the Neto River mouth to the port | 7.34 | 0.80 | 5.04 | 4.27 | 4.53 | 7.63 | 3.10 |
I12 | Crotone from the port up to Capo Colonna | 7.23 | 0.81 | 5.11 | 4.33 | 4.55 | 7.67 | 3.12 |
I13 | Crotone from Capo Colonna to the south, Isola Capo Rizzuto up to Capo Cimiti | 7.02 | 0.84 | 5.18 | 4.39 | 4.58 | 7.64 | 3.06 |
I14 | Isola Capo Rizzuto from Capo Cimiti up to Capo Rizzuto | 7.04 | 0.92 | 5.22 | 4.43 | 4.77 | 7.82 | 3.05 |
I15 | Isola Capo Rizzuto from Capo Rizzuto up to Le Castella | 6.69 | 0.82 | 5.08 | 4.31 | 4.42 | 7.46 | 3.04 |
I16 | Isola Capo Rizzuto from Le Castella to the west, Cutro, Belcastro, Botricello, Cropani, Sellia Marina to the Uria River mouth | 6.45 | 0.76 | 4.99 | 4.23 | 4.16 | 7.06 | 2.90 |
I17 | Sellia Marina from Uria River mouth to the south-west, Simeri Crichi, Catanzaro, Borgia, Squillace, Stalettì up to Punta di Stalettì | 6.28 | 0.68 | 4.92 | 4.17 | 3.92 | 6.93 | 3.01 |
I18 | Stalettì from Punta di Stalettì to the south, Montauro, Montepaone, Soverato up to Punta Soverato | 6.11 | 0.67 | 4.90 | 4.18 | 3.90 | 7.11 | 3.21 |
I19 | Soverato from Punta Soverato to the south, Satriano, Davoli, San Sostene, Sant’Andrea Apostolo dello Ionio | 6.11 | 0.69 | 5.00 | 4.24 | 3.96 | 7.06 | 3.10 |
I20 | Isca sullo Ionio, Badolato, Santa Caterina dello Ionio | 6.51 | 0.71 | 5.11 | 4.32 | 4.19 | 7.46 | 3.27 |
I21 | Guardavalle, Monasterace | 6.67 | 0.72 | 5.23 | 4.42 | 4.22 | 7.37 | 3.15 |
I22 | Stilo, Camini, Riace, Stignano | 7.06 | 0.78 | 5.30 | 4.48 | 4.55 | 7.90 | 3.35 |
I23 | Caulonia | 6.38 | 0.77 | 5.25 | 4.45 | 4.28 | 7.32 | 3.04 |
I24 | Roccella Ionica, Marina di Gioiosa Ionica, Grotteria, Siderno | 6.37 | 0.69 | 5.14 | 4.35 | 3.89 | 6.74 | 2.85 |
I25 | Locri, Portigliola, Sant’Ilario dello Ionio, Ardore | 6.36 | 0.67 | 5.15 | 4.37 | 3.85 | 6.70 | 2.85 |
I26 | Bovalino, Casignana, Bianco, Africo | 6.62 | 0.72 | 5.26 | 4.46 | 4.15 | 7.24 | 3.09 |
I27 | Ferruzzano, Bruzzano Zeffirio | 7.37 | 0.76 | 5.33 | 4.52 | 4.35 | 7.45 | 3.10 |
I28 | Brancaleone | 6.56 | 0.69 | 5.41 | 4.59 | 4.21 | 7.43 | 3.22 |
I29 | Palizzi | 6.5 | 0.77 | 5.32 | 4.50 | 4.26 | 7.19 | 2.93 |
I30 | Bova Marina, Condofuri, San Lorenzo | 6.51 | 0.77 | 5.18 | 4.39 | 4.19 | 7.08 | 2.89 |
I31 | Melito di Porto Salvo, Montebello Ionico | 6.39 | 0.78 | 5.04 | 4.28 | 4.02 | 6.71 | 2.69 |
I32 | Motta San Giovanni, Reggio Calabria | 6.35 | 0.68 | 4.80 | 4.10 | 3.64 | 6.21 | 2.57 |
T1 | Villa San Giovanni, Scilla, Bagnara Calabra | 6.71 | 0.48 | 5.04 | 4.20 | 3.61 | 6.95 | 3.34 |
T2 | Seminara, Palmi | 8.29 | 0.62 | 5.14 | 4.31 | 4.42 | 8.06 | 3.64 |
T3 | Gioia Tauro, San Ferdinando, Rosarno | 8.14 | 0.63 | 5.11 | 4.27 | 4.39 | 7.92 | 3.53 |
T4 | Nicotera, Joppolo, Ricadi up to Capo Vaticano | 7.81 | 0.52 | 5.29 | 4.38 | 3.89 | 7.18 | 3.29 |
T5 | Ricadi from Capo Vaticano to the north | 9.4 | 0.74 | 5.38 | 4.49 | 4.90 | 8.89 | 3.99 |
T6 | Tropea, Parghelia, Zambrone | 9.22 | 0.69 | 5.46 | 4.55 | 4.74 | 8.76 | 4.02 |
T7 | Briatico, Vibo Marina, Pizzo, Curinga | 9.03 | 0.58 | 5.51 | 4.59 | 4.25 | 8.15 | 3.90 |
T8 | Lamezia Terme, Gizzeria | 8.54 | 0.59 | 5.50 | 4.60 | 4.20 | 7.92 | 3.72 |
T9 | Falerna, Nocera Terinese | 9.82 | 0.75 | 5.50 | 4.63 | 4.98 | 9.18 | 4.20 |
T10 | Amantea | 9.58 | 0.73 | 5.51 | 4.65 | 4.82 | 8.79 | 3.97 |
T11 | Belmonte Calabro, Longobardi, Fiumefreddo Bruzio | 9.44 | 0.73 | 5.53 | 4.68 | 4.75 | 8.65 | 3.90 |
T12 | Falconara Albanese, San Lucido, Paola to the San Domenico River mouth | 9.16 | 0.71 | 5.55 | 4.70 | 4.64 | 8.46 | 3.82 |
T13 | Paola from the San Domenico River mouth to the north, Fuscaldo, Guardia Piemontese | 8.31 | 0.67 | 5.54 | 4.66 | 4.29 | 7.75 | 3.46 |
T14 | Acquappesa, Cetraro | 9.49 | 0.80 | 5.57 | 4.70 | 4.93 | 8.77 | 3.84 |
T15 | Bonifati, Sangineto, Belvedere Marittimo to the Di Mare River mouth | 9.45 | 0.80 | 5.55 | 4.66 | 4.90 | 8.54 | 3.64 |
T16 | Belvedere Marittimo from Di Mare River mouth, Diamante to the port | 9.47 | 0.78 | 5.64 | 4.75 | 4.91 | 8.81 | 3.90 |
T17 | Diamante from the port to the north, Grisolia, Santa Maria del Cedro | 8.86 | 0.73 | 5.66 | 4.76 | 4.66 | 8.32 | 3.66 |
T18 | Scalea | 8.3 | 0.69 | 5.66 | 4.76 | 4.49 | 7.99 | 3.50 |
T19 | San Nicola Arcella, Praia a Mare, Tortora | 7.15 | 0.63 | 5.60 | 4.70 | 4.12 | 7.24 | 3.12 |
Maximum | 9.82 | 0.92 | 5.66 | 4.76 | 4.98 | 9.18 | 4.20 | |
Minimum | 4.91 | 0.43 | 3.94 | 3.36 | 2.76 | 4.71 | 1.95 | |
Average | 7.33 | 0.70 | 5.13 | 4.33 | 4.23 | 7.43 | 3.20 |
Point | Φt [kW/m] | MS [°] | ΦMS [kW/m] | SS [°] | ΦSS [kW/m] | TS [°] | ΦTS [kW/m] | ΦMS/Φt [%] | u | w [m] | a10 [m] | b10 [h] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
I1 | 3.5 | 130 | 1.01 | 29 | 0.94 | 0.47 | 2.83 | 66.65 | ||||
I2 | 3.7 | 130 | 1.15 | 31 | 0.98 | 0.51 | 2.89 | 65.77 | ||||
I3 | 3.8 | 130 | 0.86 | 230 | 0.34 | 23 | 1.05 | 0.58 | 2.92 | 63.40 | ||
I4 | 2.5 | 110 | 0.55 | 240 | 0.24 | 22 | 1.03 | 0.47 | 2.52 | 60.29 | ||
I5 | 1.7 | 100 | 0.28 | 250 | 0.19 | 30 | 0.15 | 17 | 1.02 | 0.40 | 2.22 | 58.48 |
I6 | 3.0 | 120 | 0.36 | 0 | 0.27 | 280 | 0.21 | 12 | 1.04 | 0.52 | 2.79 | 59.25 |
I7 | 3.4 | 0 | 0.44 | 110 | 0.36 | 300 | 0.15 | 13 | 1.06 | 0.56 | 2.92 | 66.18 |
I8 | 5.4 | 130 | 0.87 | 350 | 0.54 | 16 | 1.09 | 0.70 | 3.37 | 73.26 | ||
I9 | 7.1 | 140 | 0.95 | 350 | 0.76 | 13 | 1.09 | 0.77 | 3.70 | 82.51 | ||
I10 | 7.2 | 140 | 0.94 | 350 | 0.72 | 13 | 1.10 | 0.78 | 3.71 | 82.76 | ||
I11 | 7.4 | 140 | 0.90 | 0 | 0.81 | 12 | 1.09 | 0.79 | 3.73 | 85.06 | ||
I12 | 7.6 | 140 | 0.86 | 0 | 0.82 | 11 | 1.10 | 0.79 | 3.74 | 85.30 | ||
I13 | 8.0 | 140 | 0.75 | 10 | 0.76 | 190 | 0.42 | 9 | 1.11 | 0.82 | 3.77 | 84.97 |
I14 | 9.2 | 10 | 0.86 | 140 | 0.75 | 200 | 0.55 | 9 | 1.15 | 0.90 | 3.93 | 85.96 |
I15 | 7.2 | 140 | 0.69 | 190 | 0.51 | 270 | 0.34 | 10 | 1.09 | 0.76 | 3.53 | 83.75 |
I16 | 6.2 | 140 | 0.66 | 190 | 0.43 | 270 | 0.32 | 11 | 1.08 | 0.70 | 3.32 | 81.35 |
I17 | 5.1 | 130 | 0.73 | 14 | 1.01 | 0.60 | 3.08 | 84.83 | ||||
I18 | 5.0 | 130 | 0.74 | 15 | 0.97 | 0.55 | 3.01 | 86.89 | ||||
I19 | 5.2 | 130 | 0.66 | 50 | 0.18 | 13 | 1.00 | 0.58 | 3.07 | 82.13 | ||
I20 | 5.9 | 130 | 0.70 | 50 | 0.34 | 12 | 1.00 | 0.62 | 3.27 | 83.23 | ||
I21 | 6.2 | 130 | 0.64 | 50 | 0.46 | 10 | 1.03 | 0.66 | 3.35 | 81.77 | ||
I22 | 7.3 | 130 | 0.70 | 50 | 0.62 | 200 | 0.31 | 10 | 1.04 | 0.72 | 3.61 | 83.61 |
I23 | 6.8 | 130 | 0.68 | 50 | 0.36 | 10 | 1.07 | 0.72 | 3.42 | 84.61 | ||
I24 | 5.5 | 130 | 0.71 | 13 | 1.05 | 0.64 | 3.09 | 89.43 | ||||
I25 | 5.2 | 120 | 0.64 | 70 | 0.19 | 12 | 1.04 | 0.62 | 3.05 | 86.91 | ||
I26 | 6.0 | 130 | 0.58 | 60 | 0.40 | 10 | 1.03 | 0.65 | 3.26 | 82.76 | ||
I27 | 6.9 | 120 | 0.61 | 60 | 0.54 | 9 | 1.06 | 0.71 | 3.48 | 82.77 | ||
I28 | 6.2 | 120 | 0.71 | 60 | 0.37 | 11 | 1.02 | 0.65 | 3.29 | 87.68 | ||
I29 | 6.8 | 120 | 0.58 | 60 | 0.34 | 300 | 0.17 | 9 | 1.09 | 0.72 | 3.40 | 82.19 |
I30 | 6.4 | 120 | 0.60 | 320 | 0.26 | 9 | 1.08 | 0.70 | 3.33 | 78.38 | ||
I31 | 6.0 | 120 | 0.60 | 330 | 0.38 | 10 | 1.10 | 0.70 | 3.22 | 78.01 | ||
I32 | 4.4 | 160 | 0.47 | 340 | 0.20 | 11 | 1.05 | 0.57 | 2.91 | 70.10 | ||
T1 | 3.1 | 310 | 0.74 | 24 | 0.87 | 0.40 | 2.76 | 66.79 | ||||
T2 | 5.2 | 300 | 1.18 | 23 | 0.94 | 0.57 | 3.48 | 69.86 | ||||
T3 | 5.3 | 300 | 0.97 | 18 | 0.96 | 0.59 | 3.47 | 69.42 | ||||
T4 | 3.9 | 280 | 1.11 | 28 | 0.93 | 0.48 | 3.10 | 68.04 | ||||
T5 | 7.4 | 280 | 1.53 | 21 | 0.96 | 0.67 | 3.90 | 76.96 | ||||
T6 | 6.8 | 290 | 1.50 | 22 | 0.94 | 0.62 | 3.76 | 76.97 | ||||
T7 | 5.1 | 290 | 1.55 | 30 | 0.89 | 0.51 | 3.36 | 78.57 | ||||
T8 | 5.1 | 270 | 1.59 | 31 | 0.91 | 0.51 | 3.32 | 75.96 | ||||
T9 | 8.0 | 280 | 2.05 | 26 | 0.95 | 0.67 | 3.96 | 83.01 | ||||
T10 | 7.6 | 270 | 2.01 | 26 | 0.96 | 0.67 | 3.84 | 83.20 | ||||
T11 | 7.5 | 270 | 2.11 | 28 | 0.97 | 0.67 | 3.78 | 84.16 | ||||
T12 | 7.2 | 270 | 2.08 | 29 | 0.97 | 0.65 | 3.68 | 84.17 | ||||
T13 | 6.2 | 260 | 2.01 | 33 | 0.98 | 0.62 | 3.40 | 83.72 | ||||
T14 | 8.4 | 260 | 2.21 | 26 | 1.00 | 0.73 | 3.89 | 83.66 | ||||
T15 | 8.4 | 260 | 1.84 | 22 | 1.03 | 0.75 | 3.88 | 78.96 | ||||
T16 | 8.4 | 260 | 2.39 | 28 | 0.99 | 0.72 | 3.89 | 84.66 | ||||
T17 | 7.4 | 260 | 2.23 | 30 | 0.99 | 0.68 | 3.68 | 81.41 | ||||
T18 | 6.8 | 260 | 2.08 | 31 | 0.99 | 0.65 | 3.54 | 79.06 | ||||
T19 | 5.5 | 250 | 1.88 | 34 | 1.00 | 0.60 | 3.25 | 73.63 | ||||
Max | 9.2 | 2.39 | 0.82 | 0.55 | 34 | 1.15 | 0.90 | 3.96 | 89.43 | |||
Min. | 1.7 | 0.28 | 0.18 | 0.15 | 9 | 0.87 | 0.40 | 2.22 | 58.48 | |||
Av. | 6.0 | 1.09 | 0.45 | 0.29 | 18 | 1.02 | 0.64 | 3.37 | 78.28 |
Point | hs,max,W [m] | hs,max,SP [m] | hs,max,SU [m] | hs,max,A [m] | hs,W [m] | hs,SP [m] | hs,SU [m] | hs,A [m] |
---|---|---|---|---|---|---|---|---|
I1 | 5.68 | 3.55 | 3.19 | 5.66 | 0.72 | 0.48 | 0.34 | 0.67 |
I2 | 5.72 | 3.47 | 3.36 | 5.72 | 0.76 | 0.50 | 0.37 | 0.70 |
I3 | 5.55 | 3.37 | 3.43 | 5.88 | 0.79 | 0.52 | 0.39 | 0.71 |
I4 | 5.23 | 2.77 | 3.28 | 5.57 | 0.65 | 0.43 | 0.33 | 0.58 |
I5 | 4.67 | 2.65 | 2.99 | 4.91 | 0.55 | 0.37 | 0.31 | 0.48 |
I6 | 5.87 | 3.57 | 3.46 | 6.04 | 0.71 | 0.45 | 0.37 | 0.64 |
I7 | 6.13 | 4.02 | 3.43 | 6.18 | 0.74 | 0.46 | 0.39 | 0.67 |
I8 | 6.26 | 4.23 | 3.79 | 6.87 | 0.93 | 0.59 | 0.47 | 0.86 |
I9 | 6.77 | 4.4 | 4.2 | 7.42 | 1.05 | 0.64 | 0.50 | 0.98 |
I10 | 6.8 | 4.27 | 4.32 | 7.44 | 1.05 | 0.63 | 0.49 | 0.99 |
I11 | 6.83 | 4.29 | 4.42 | 7.34 | 1.06 | 0.64 | 0.49 | 1.00 |
I12 | 6.78 | 4.24 | 4.48 | 7.23 | 1.08 | 0.65 | 0.50 | 1.02 |
I13 | 6.66 | 4.29 | 4.53 | 7.02 | 1.12 | 0.68 | 0.52 | 1.05 |
I14 | 6.71 | 4.33 | 4.79 | 7.04 | 1.21 | 0.76 | 0.58 | 1.13 |
I15 | 6.54 | 4.01 | 4.72 | 6.69 | 1.06 | 0.72 | 0.53 | 0.99 |
I16 | 6.34 | 3.77 | 4.64 | 6.45 | 0.97 | 0.68 | 0.49 | 0.91 |
I17 | 6.24 | 3.63 | 4.67 | 6.28 | 0.86 | 0.61 | 0.44 | 0.80 |
I18 | 6.11 | 3.67 | 4.69 | 6.03 | 0.85 | 0.60 | 0.44 | 0.80 |
I19 | 6.11 | 3.71 | 4.63 | 5.84 | 0.88 | 0.60 | 0.44 | 0.83 |
I20 | 6.51 | 3.88 | 4.86 | 6.18 | 0.93 | 0.60 | 0.44 | 0.88 |
I21 | 6.67 | 3.98 | 4.7 | 6.04 | 0.96 | 0.60 | 0.44 | 0.91 |
I22 | 7.06 | 4.27 | 5.03 | 6.28 | 1.05 | 0.64 | 0.46 | 0.99 |
I23 | 6.38 | 4.33 | 4.75 | 6.31 | 1.01 | 0.66 | 0.46 | 0.95 |
I24 | 6.37 | 4.16 | 4.59 | 5.92 | 0.88 | 0.61 | 0.43 | 0.84 |
I25 | 6.36 | 4.12 | 4.33 | 5.8 | 0.86 | 0.60 | 0.42 | 0.82 |
I26 | 6.62 | 4.22 | 4.35 | 5.97 | 0.94 | 0.61 | 0.44 | 0.89 |
I27 | 7.37 | 4.34 | 4.42 | 6.17 | 1.01 | 0.63 | 0.45 | 0.96 |
I28 | 6.56 | 4.41 | 4.34 | 6.09 | 0.95 | 0.58 | 0.36 | 0.90 |
I29 | 6.4 | 4.35 | 4.23 | 6.5 | 1.02 | 0.67 | 0.45 | 0.96 |
I30 | 6.41 | 4.23 | 4.01 | 6.51 | 0.99 | 0.69 | 0.49 | 0.93 |
I31 | 6.39 | 4.03 | 3.64 | 6.19 | 0.97 | 0.71 | 0.54 | 0.90 |
I32 | 5.91 | 3.65 | 3.32 | 6.35 | 0.82 | 0.65 | 0.50 | 0.76 |
T1 | 6.71 | 3.53 | 2.67 | 6.61 | 0.65 | 0.41 | 0.31 | 0.57 |
T2 | 8.15 | 4.8 | 3.49 | 8.29 | 0.84 | 0.53 | 0.40 | 0.73 |
T3 | 7.91 | 4.84 | 3.59 | 8.14 | 0.84 | 0.54 | 0.41 | 0.75 |
T4 | 6.74 | 4.76 | 3.51 | 7.81 | 0.69 | 0.44 | 0.33 | 0.61 |
T5 | 8.73 | 5.69 | 4.16 | 9.4 | 0.99 | 0.63 | 0.48 | 0.87 |
T6 | 8.78 | 5.52 | 4.05 | 9.22 | 0.93 | 0.58 | 0.45 | 0.81 |
T7 | 8.32 | 5.38 | 3.76 | 9.03 | 0.77 | 0.49 | 0.39 | 0.66 |
T8 | 7.47 | 5.44 | 3.92 | 8.54 | 0.78 | 0.51 | 0.37 | 0.69 |
T9 | 9.1 | 6.1 | 4.66 | 9.82 | 1.00 | 0.65 | 0.48 | 0.88 |
T10 | 8.82 | 5.84 | 4.61 | 9.58 | 0.98 | 0.63 | 0.47 | 0.86 |
T11 | 8.55 | 5.73 | 4.66 | 9.44 | 0.97 | 0.62 | 0.46 | 0.86 |
T12 | 8.11 | 5.61 | 4.68 | 9.16 | 0.95 | 0.60 | 0.45 | 0.85 |
T13 | 7.25 | 5.3 | 4.47 | 8.31 | 0.89 | 0.56 | 0.41 | 0.81 |
T14 | 8.26 | 5.9 | 5 | 9.49 | 1.05 | 0.67 | 0.50 | 0.97 |
T15 | 8.14 | 5.99 | 4.84 | 9.45 | 1.06 | 0.67 | 0.51 | 0.97 |
T16 | 8.01 | 6.31 | 4.92 | 9.47 | 1.02 | 0.66 | 0.50 | 0.94 |
T17 | 7.35 | 6.38 | 4.61 | 8.86 | 0.95 | 0.62 | 0.46 | 0.87 |
T18 | 7.01 | 6.48 | 4.43 | 8.3 | 0.91 | 0.58 | 0.44 | 0.84 |
T19 | 6.36 | 5.99 | 4.01 | 7.15 | 0.83 | 0.52 | 0.38 | 0.77 |
Max | 9.1 | 6.48 | 5.03 | 9.82 | 1.21 | 0.76 | 0.58 | 1.13 |
Min. | 4.67 | 2.65 | 2.67 | 4.91 | 0.55 | 0.37 | 0.31 | 0.48 |
Av. | 6.90 | 4.55 | 4.19 | 7.22 | 0.91 | 0.59 | 0.44 | 0.84 |
Point | Φt,W [kW/m] | Φt,SP [kW/m] | Φt,SU [kW/m] | Φt,A [kW/m] | Φt,W [%] | Φt,SP [%] | Φt,SU [%] | Φt,A [%] | MS,W [°] | MS,SP [°] | MS,SU [°] | MS,A [°] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
I1 | 1.47 | 0.52 | 0.21 | 1.33 | 0.42 | 0.15 | 0.06 | 0.38 | 130 | 140 | 140 | 130 |
I2 | 1.56 | 0.55 | 0.24 | 1.38 | 0.42 | 0.15 | 0.06 | 0.37 | 130 | 130 | 130 | 130 |
I3 | 1.59 | 0.57 | 0.28 | 1.37 | 0.42 | 0.15 | 0.07 | 0.36 | 130 | 130 | 230 | 120 |
I4 | 1.05 | 0.36 | 0.20 | 0.90 | 0.42 | 0.14 | 0.08 | 0.36 | 110 | 110 | 240 | 110 |
I5 | 0.71 | 0.24 | 0.16 | 0.57 | 0.42 | 0.14 | 0.09 | 0.33 | 100 | 250 | 250 | 100 |
I6 | 1.29 | 0.41 | 0.24 | 1.09 | 0.43 | 0.13 | 0.08 | 0.36 | 120 | 280 | 280 | 110 |
I7 | 1.46 | 0.42 | 0.27 | 1.23 | 0.43 | 0.12 | 0.08 | 0.36 | 350 | 0 | 0 | 110 |
I8 | 2.29 | 0.73 | 0.41 | 2.00 | 0.42 | 0.13 | 0.08 | 0.37 | 130 | 140 | 350 | 130 |
I9 | 3.02 | 0.93 | 0.48 | 2.70 | 0.42 | 0.13 | 0.07 | 0.38 | 140 | 140 | 350 | 130 |
I10 | 3.06 | 0.93 | 0.47 | 2.74 | 0.43 | 0.13 | 0.06 | 0.38 | 140 | 140 | 0 | 130 |
I11 | 3.16 | 0.96 | 0.48 | 2.82 | 0.43 | 0.13 | 0.06 | 0.38 | 140 | 130 | 0 | 130 |
I12 | 3.25 | 1.00 | 0.49 | 2.91 | 0.42 | 0.13 | 0.06 | 0.38 | 140 | 140 | 0 | 130 |
I13 | 3.39 | 1.07 | 0.53 | 3.03 | 0.42 | 0.13 | 0.07 | 0.38 | 140 | 150 | 10 | 130 |
I14 | 3.87 | 1.27 | 0.65 | 3.44 | 0.42 | 0.14 | 0.07 | 0.37 | 140 | 150 | 10 | 10 |
I15 | 2.92 | 1.13 | 0.51 | 2.62 | 0.41 | 0.16 | 0.07 | 0.37 | 140 | 150 | 270 | 130 |
I16 | 2.51 | 0.99 | 0.43 | 2.25 | 0.41 | 0.16 | 0.07 | 0.36 | 140 | 150 | 270 | 130 |
I17 | 2.10 | 0.81 | 0.33 | 1.87 | 0.41 | 0.16 | 0.06 | 0.37 | 130 | 140 | 280 | 130 |
I18 | 2.04 | 0.79 | 0.33 | 1.80 | 0.41 | 0.16 | 0.07 | 0.36 | 130 | 140 | 280 | 130 |
I19 | 2.15 | 0.80 | 0.34 | 1.90 | 0.41 | 0.15 | 0.07 | 0.37 | 130 | 140 | 300 | 130 |
I20 | 2.47 | 0.85 | 0.36 | 2.18 | 0.42 | 0.14 | 0.06 | 0.37 | 130 | 140 | 310 | 120 |
I21 | 2.61 | 0.88 | 0.36 | 2.31 | 0.42 | 0.14 | 0.06 | 0.38 | 130 | 140 | 50 | 120 |
I22 | 3.12 | 1.01 | 0.42 | 2.76 | 0.43 | 0.14 | 0.06 | 0.38 | 130 | 140 | 50 | 120 |
I23 | 2.84 | 1.04 | 0.41 | 2.50 | 0.42 | 0.15 | 0.06 | 0.37 | 130 | 140 | 60 | 120 |
I24 | 2.27 | 0.89 | 0.34 | 1.98 | 0.41 | 0.16 | 0.06 | 0.36 | 130 | 140 | 310 | 120 |
I25 | 2.18 | 0.85 | 0.33 | 1.88 | 0.42 | 0.16 | 0.06 | 0.36 | 130 | 130 | 310 | 120 |
I26 | 2.54 | 0.92 | 0.37 | 2.20 | 0.42 | 0.15 | 0.06 | 0.37 | 130 | 130 | 330 | 120 |
I27 | 2.93 | 1.00 | 0.40 | 2.54 | 0.43 | 0.15 | 0.06 | 0.37 | 120 | 130 | 60 | 120 |
I28 | 2.67 | 0.93 | 0.30 | 2.30 | 0.43 | 0.15 | 0.05 | 0.37 | 120 | 130 | 70 | 110 |
I29 | 2.84 | 1.08 | 0.41 | 2.43 | 0.42 | 0.16 | 0.06 | 0.36 | 120 | 130 | 300 | 110 |
I30 | 2.62 | 1.10 | 0.45 | 2.22 | 0.41 | 0.17 | 0.07 | 0.35 | 120 | 130 | 320 | 110 |
I31 | 2.41 | 1.07 | 0.49 | 2.01 | 0.40 | 0.18 | 0.08 | 0.34 | 120 | 130 | 330 | 110 |
I32 | 1.71 | 0.84 | 0.39 | 1.43 | 0.39 | 0.19 | 0.09 | 0.33 | 130 | 150 | 340 | 120 |
T1 | 1.34 | 0.46 | 0.26 | 1.01 | 0.44 | 0.15 | 0.08 | 0.33 | 310 | 310 | 310 | 310 |
T2 | 2.26 | 0.80 | 0.45 | 1.72 | 0.43 | 0.15 | 0.09 | 0.33 | 290 | 300 | 310 | 300 |
T3 | 2.26 | 0.82 | 0.46 | 1.77 | 0.43 | 0.15 | 0.09 | 0.33 | 290 | 290 | 300 | 300 |
T4 | 1.68 | 0.62 | 0.33 | 1.30 | 0.43 | 0.16 | 0.08 | 0.33 | 280 | 280 | 290 | 280 |
T5 | 3.16 | 1.15 | 0.64 | 2.46 | 0.43 | 0.15 | 0.09 | 0.33 | 280 | 280 | 300 | 280 |
T6 | 2.92 | 1.02 | 0.59 | 2.25 | 0.43 | 0.15 | 0.09 | 0.33 | 290 | 290 | 300 | 280 |
T7 | 2.19 | 0.80 | 0.45 | 1.69 | 0.43 | 0.16 | 0.09 | 0.33 | 280 | 280 | 290 | 280 |
T8 | 2.16 | 0.81 | 0.42 | 1.69 | 0.43 | 0.16 | 0.08 | 0.33 | 270 | 280 | 280 | 270 |
T9 | 3.36 | 1.27 | 0.68 | 2.64 | 0.42 | 0.16 | 0.09 | 0.33 | 270 | 280 | 290 | 270 |
T10 | 3.20 | 1.21 | 0.64 | 2.53 | 0.42 | 0.16 | 0.08 | 0.33 | 270 | 270 | 290 | 270 |
T11 | 3.14 | 1.19 | 0.63 | 2.50 | 0.42 | 0.16 | 0.08 | 0.33 | 270 | 270 | 280 | 270 |
T12 | 3.00 | 1.14 | 0.60 | 2.42 | 0.42 | 0.16 | 0.08 | 0.34 | 270 | 270 | 280 | 270 |
T13 | 2.58 | 0.98 | 0.49 | 2.12 | 0.42 | 0.16 | 0.08 | 0.34 | 260 | 260 | 270 | 260 |
T14 | 3.49 | 1.35 | 0.70 | 2.91 | 0.41 | 0.16 | 0.08 | 0.34 | 260 | 270 | 280 | 260 |
T15 | 3.45 | 1.34 | 0.71 | 2.90 | 0.41 | 0.16 | 0.08 | 0.35 | 260 | 270 | 280 | 260 |
T16 | 3.44 | 1.36 | 0.71 | 2.89 | 0.41 | 0.16 | 0.08 | 0.34 | 260 | 260 | 280 | 260 |
T17 | 3.03 | 1.20 | 0.61 | 2.57 | 0.41 | 0.16 | 0.08 | 0.35 | 260 | 260 | 270 | 260 |
T18 | 2.76 | 1.09 | 0.54 | 2.36 | 0.41 | 0.16 | 0.08 | 0.35 | 260 | 260 | 260 | 260 |
T19 | 2.23 | 0.87 | 0.41 | 1.94 | 0.41 | 0.16 | 0.08 | 0.36 | 250 | 250 | 250 | 250 |
Max | 3.87 | 1.36 | 0.71 | 3.44 | 0.44 | 0.19 | 0.09 | 0.38 | ||||
Min. | 0.71 | 0.24 | 0.16 | 0.57 | 0.39 | 0.12 | 0.05 | 0.33 | ||||
Av. | 2.51 | 0.91 | 0.44 | 2.13 | 0.4 | 0.2 | 0.1 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foti, G.; Barbaro, G.; Besio, G.; Barillà, G.C.; Mancuso, P.; Puntorieri, P. Wave Climate along Calabrian Coasts. Climate 2022, 10, 80. https://doi.org/10.3390/cli10060080
Foti G, Barbaro G, Besio G, Barillà GC, Mancuso P, Puntorieri P. Wave Climate along Calabrian Coasts. Climate. 2022; 10(6):80. https://doi.org/10.3390/cli10060080
Chicago/Turabian StyleFoti, Giandomenico, Giuseppe Barbaro, Giovanni Besio, Giuseppina Chiara Barillà, Pierluigi Mancuso, and Pierfabrizio Puntorieri. 2022. "Wave Climate along Calabrian Coasts" Climate 10, no. 6: 80. https://doi.org/10.3390/cli10060080
APA StyleFoti, G., Barbaro, G., Besio, G., Barillà, G. C., Mancuso, P., & Puntorieri, P. (2022). Wave Climate along Calabrian Coasts. Climate, 10(6), 80. https://doi.org/10.3390/cli10060080