Assessment of Climate Models Performance and Associated Uncertainties in Rainfall Projection from CORDEX over the Eastern Nile Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study area Description
2.2. Observed Rainfall Data
2.3. Climate Model Data
2.4. Ensemble Formation
2.5. Evaluation of Individual Climate Models and Climate Model Ensembles for Rainfall Projection and Quantify the Associated Uncertainties
2.5.1. Climate Models Evaluation Periods
2.5.2. Climate Models Performance Evaluation Techniques
2.5.3. Effect of the Reference Data Source on the Climate Models Evaluation Process
3. Results and Discussion
3.1. Evaluation of Climate Models Performance and Associated Uncertainties in Rainfall Projection
3.1.1. Climate Models Performance over the Historical Period (1986–2005)
At Station Level
At Grid Level
Basin Level Evaluation (Mean Annual Rainfall, Inter and Intra-Annual Rainfall Variability)
Spatial Distribution of Rainfall
3.1.2. Climate Models Skill in Simulating the Future Climate (Validation Period)
3.2. Selection of Candidate Models for New Ensemble Model Creation
3.3. Performance of All the Individual and Ensemble Climate Models
3.4. Climate Models’ Potential Contribution to Future Rainfall Projection Uncertainty
3.5. Uncertainty in Observational (Reference) Dataset for Climate Model Evaluation Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Kondratyev, K.Y.; Varotsos, C. Atmospheric Greenhouse Effect in the Context of Global Climate Change. Il Nuovo Cimento 1995, 18, 123–151. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- Kim, J.; Waliser, D.E.; Hart, A.F.; Nikulin, G.; Favre, A.; Mattmann, C.A.; Zimdars, P.A.; Hewitson, B.; Crichton, D.J.; Jack, C.; et al. Evaluation of the CORDEX-Africa multi-RCM hindcast: Systematic model errors. Clim. Dyn. 2013, 42, 1189–1202. [Google Scholar] [CrossRef]
- Coninck, H.d.; Stephens, J.C.; Metz, B. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy 2009, 37, 2161–2165. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.; Cho, E. Comparison of GCM Precipitation Predictions with Their RMSEs and Pattern Correlation Coefficient. Water 2018, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Boko, M.; Niang, I.; Nyong, A.; Vogel, C.; Githeko, A.; Medany, M.; Osman-Elasha, B.; Tabo, R.; Yanda, P. Africa. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 433–467. [Google Scholar]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; BüChner, M.; Cerezo-Mota, R.; Christensen, O.B.; DéQué, M.; Fernandez, J.; Nsler, A.H.; et al. Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef] [Green Version]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Burke, M.B.; Miguel, E.; Satyanath, S.; Dykema, J.A.; Lobell, D.B. Warming increases the risk of civil war in Africa. Proc. Natl. Acad. Sci. USA 2009, 106, 20670–20674. [Google Scholar] [CrossRef] [Green Version]
- Dell, M.; Jones, B.F.; Olken, B.A. Climate Change and Economic Growth: Evidence from the Last Half Century; National Bureau of Economic Research; Massachusetts Avenue: Cambridge, MA, USA, 2008. [Google Scholar]
- Buytaert, W.; Célleri, R.; Timbe, L. Predicting climate change impacts on water resources in the tropical Andes: Effects of GCM uncertainty. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Bernhofer, C.; Hulsmann, S. Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach. Sci. Total Environ. 2020, 742, 140504. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, Ø.; Piniewskic, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Arora, M. Uncertainties in Climate Change Projection. Int. J. Adv. Innov. Res. 2019, 6, 1–7. [Google Scholar]
- Gaudard, L.; Gabbi, J.; Bauder, A.; Romerio, F. Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices. Water Resour. Manag. 2016, 30, 1325–1343. [Google Scholar] [CrossRef]
- Reichler, T.; Kim, J. Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J. Geophys. Res. 2008, 113, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Ivanov, V.Y.; Paschalis, A.; Peleg, N.; Molnar, P.; Rimkus, S.; Kim, J.; Burlando, P.; Caporali, E. Uncertainty partition challenges the predictability of vital details of climate change. Earths Future 2016, 4, 240–251. [Google Scholar] [CrossRef]
- Vetter, T.; Reinhardt, J.; Flörke, M.; van Griensven, A.; Hattermann, F.; Huang, S.; Koch, H.; Pechlivanidis, I.G.; Plötner, S.; Seidou, O.; et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim. Chang. 2016, 141, 419–433. [Google Scholar] [CrossRef]
- Kotlarski, S.; Szabó, P.; Herrera, S.; Räty, O.; Keuler, K.; Soares, P.M.; Cardoso, R.M.; Bosshard, T.; Pagé, C.; Boberg, F.; et al. Observational uncertainty and regional climate model evaluation: A pan-European perspective. Int. J. Climatol. 2019, 39, 3730–3749. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.; Dykema, J.; Lobell, D.B.; Miguel, E.; Satyanath, S. Incorporating Climate Uncertainty in to Estimates of Climate Change Impacts. Rev. Econ. Stat. 2015, 97, 461–471. [Google Scholar] [CrossRef]
- Maurer, E.P. Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Clim. Chang. 2007, 82, 309–325. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC Special Report Emissions Scenarios summary for Policy Maker; A Special Report of IPCC Working Group III; IPCC: Geneva, Switzerland, 2000. [Google Scholar]
- Almazroui, M.; Nazrul Islam, M.; Saeed, S.; Alkhalaf, A.K.; Dambul, R. Assessment of Uncertainties in Projected Temperature and Precipitation over the Arabian Peninsula Using Three Categories of Cmip5 Multimodel Ensembles. Earth Syst. Environ. 2017, 1, 23. [Google Scholar] [CrossRef] [Green Version]
- Aloysius, N.R.; Sheffield, J.; Saiers, J.E.; Li, H.; Wood, E.F. Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. J. Geophys. Res. Atmos. 2016, 121, 130–152. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Adv. Model. 2016, 2, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Endris, H.S.; Omondi, P.; Jain, S.; Lennard, C.; Hewitson, B.; Chang’a, L.; Awange, J.L.; Dosio, A.; Ketiem, P.; Nikulin, G.; et al. Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. J. Clim. 2013, 26, 8453–8475. [Google Scholar] [CrossRef]
- Luhunga, P.; Botai, J.; Kahimba, F. Evaluation of the performance of CORDEX regional climate models in simulating present climate conditions of Tanzania. J. South. Hemisph. Earth Syst. Sci. 2016, 66, 32–54. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O.; Gbode, I.E.; Ajayi, V.O. Assessing the Capabilities of Three Regional Climate Models over CORDEX Africa in Simulating West African Summer Monsoon Precipitation. Adv. Meteorol. 2015, 13, 935431. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.J. Complexity in climate change science. In Complexity and Analogy in Science: Theoretical, Methodological and Epistemological Aspects; Pontifical Academy of Sciences: Vatican City, Italy, 2014. [Google Scholar]
- Bader, D.; Covey, C.; Gutowski, W.; Held, I.; Kunkel, K. Climate Models: An Assessment of Strengths and Limitations; US Department of Energy Publications: Lincoln, NE, USA, 2008; Volume 8. [Google Scholar]
- Pirani, A.; Meehl, G.; Bony, S. WCRP/CLIVAR working group on coupled modeling (WGCM) activity report: Overview and contribution to the WCRP crosscut on anthropogenic climate change. Newsl. CLIVAR 2009, 14, 20–25. [Google Scholar]
- Déquéa, M.; Calmanti, S.; Christensen, O.B.; Aquila, A.D.; Maulec, C.F.; Haensler, A.; Nikulin, G.; Teichmann, C. A multi-model climate response over tropical Africa at +2 °C. Clim. Serv. 2017, 7, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Massoud, E.; Tian, B.; Lee, H.; Waliser, D.E.; Gibson, P.B. Climate Model Evaluation in the Presence of Observational Uncertainty: Precipitation Indices over the Contiguous United States. J. Hydrometeorol. 2019, 20, 1339–1357. [Google Scholar] [CrossRef]
- Zumwald, M.; Knüsel, B.; Baumberger, C.; Hirsch Hadorn, G.; Bresch, D.N.; Knutti, R. Understanding and assessing uncertainty of observational climate datasets for model evaluation using ensembles. WIREs Clim. Chang. 2020, 11, e654. [Google Scholar] [CrossRef]
- Haile, G.; Kassa, A. Investigation of Precipitation and Temperature Change Projections in Werii Watershed, Tekeze River Basin, Ethiopia; Application of Climate Downscaling Model. J. Earth Sci. Clim. Chang. 2015, 6, 300. [Google Scholar] [CrossRef] [Green Version]
- Gizaw, M.S.; Biftu, G.F.; Moges, S.A.; Gan, T.Y.; Koivusalo, H. Potential impact of climate change on streamflow of major Ethiopian rivers. Clim. Chang. 2017, 143, 371–383. [Google Scholar] [CrossRef]
- Yimer, S.M.; Kumar, N.; Bouanani, A.; Tischbein, B.; Borgemeister, C. Homogenization of daily time series climatological data in the Eastern Nile basin, Ethiopia. J. Theor. Appl. Climatol. 2021, 143, 737–760. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Lucas-Picher, P.; Caya, D. Impacts of weighting climate models for hydro-meteorological climate change studies. J. Hydrol. 2017, 549, 534–546. [Google Scholar] [CrossRef]
- Suh, M.S.; Oh, S.G.; Lee, D.K.; Cha, D.H.; Choi, S.J.; Jin, C.S.; Hong, S.Y. Development of New Ensemble Methods Based on the Performance Skills of Regional Climate Models over South Korea. J. Clim. 2012, 25, 7067–7082. [Google Scholar] [CrossRef] [Green Version]
- WMO. Guidelines on the Calculation of Climate Normals; World Meteorological Organization (WMO): Geneva, Switzerland, 2017. [Google Scholar]
- Zong-Ci, Z.; Yong, L.; Jian-Bin, H. A Review on Evaluation Methods of Climate Modeling. Adv. Clim. Chang. Res. 2013, 4, 137–144. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O.; Ajayi, V.O.; Adefisan, E.A.; Omotosho, J.A.; Sanogo, S. Comparison of five gridded precipitation products at climatological scales over West Africa. Meteorol. Atmos. Phys. 2016, 129, 669–689. [Google Scholar] [CrossRef]
- Samadi, S.Z.; Sagareswar, G.; Tajiki, M. Comparison of General Circulation Models: Methodology for selecting the best GCM in Kermanshah Synoptic Station, Iran. Int. J. Glob. Warm. 2010, 2, 347–365. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. 2008, 113, D06104. [Google Scholar] [CrossRef]
- Pellicone, G.; Caloiero, T.; Modica, G.; Guagliardi, I. Application of several spatial interpolation techniques to monthly rainfall data in the Calabria region (southern Italy). Int. J. Climatol. 2018, 38, 3651–3666. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Ayugi, B.; Tan, G.; Gnitou, G.T.; Ojara, M.; Ongoma, V. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos. Res. 2020, 232, 104705. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C. Evaluation of CMIP5 twentieth century rainfall simulation over the equatorial East Africa. Theor. Appl. Climatol. 2019, 135, 893–910. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Ongoma, V.; Chen, H. Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorol. Atmos. Phys. 2016, 129, 131–144. [Google Scholar] [CrossRef]
- Mutai, C.C.; Ward, M.N. East African Rainfall and the Tropical Circulation/Convection on Intraseasonal to Interannual Timescales. J. Clim. 2000, 13, 3915–3939. [Google Scholar] [CrossRef]
- Mumo, L.; Yu, J. Gauging the performance of CMIP5 historical simulation in reproducing observed gauge rainfall over Kenya. Atmos. Res. 2020, 236, 104808. [Google Scholar] [CrossRef]
- Laprise, R.; Hernández-Díaz, L.; Tete, K.; Sushama, L.; Šeparović, L.; Martynov, A.; Winger, K.; Valin, M. Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim. Dyn. 2013, 41, 3219–3246. [Google Scholar] [CrossRef] [Green Version]
- Otieno, V.O.; Anyah, R.O. CMIP5 simulated climate conditions of the Greater Horn of Africa (GHA). Part 1: Contemporary climate. Clim. Dyn. 2012, 41, 2081–2097. [Google Scholar] [CrossRef]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The Annual Cycle of East African Precipitation. J. Clim. 2015, 28, 2385–2404. [Google Scholar] [CrossRef] [Green Version]
- Sperber, K.; Palmer, T. Interannual tropical rainfall variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project. J. Clim. 1996, 9, 2727–2750. [Google Scholar] [CrossRef] [Green Version]
- Akinsanola, A.A.; Ajayi, V.O.; Adejare, A.T.; Adeyeri, O.E.; Gbode, I.E.; Ogunjobi, K.O.; Nikulin, G.; Abolude, A.T. Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models. Theor. Appl. Climatol. 2017, 113, 437–450. [Google Scholar] [CrossRef]
- Warnatzsch, E.A.; Reay, D.S. Temperature and precipitation change in Malawi: Evaluation of CORDEX-Africa climate simulations for climate change impact assessments and adaptation planning. Sci. Total Environ. 2019, 654, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.-H.; Zubair, L. The Effect of Grid Spacing and Domain Size on the Quality of Ensemble Regional Climate Downscaling over South Asia during the Northeasterly Monsoon. Mon. Weather. Rev. 2010, 138, 2780–2802. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O. Evaluation of present-day rainfall simulations over West Africa in CORDEX regional climate models. Environ. Earth Sci. 2017, 76, 366. [Google Scholar] [CrossRef]
- Graham, L.P.; Andréasson, J.; Carlsson, B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—A case study on the Lule River basin. Clim. Chang. 2007, 81, 293–307. [Google Scholar] [CrossRef]
- Wilby, R.L.; Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res. 2006, 42, W02419. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Poulin, A.; Leconte, R. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res. 2011, 47, W12509. [Google Scholar] [CrossRef]
- Reto, K.; Abramowitz, G.; Collins, M.; Veronika Eyring, P.; Gleckler, J.; Hewitson, B.; Mearns, L. IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections; National Center for Atmospheric Research: Boulder, CO, USA, 2010; Available online: www.ipcc-wg1.unibe.ch (accessed on 12 December 2020).
- Hagemann, S.; Chen, C.; Clark, D.B.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; et al. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. 2013, 4, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The East African Long Rains in Observations and Models. J. Clim. 2014, 27, 7185–7202. [Google Scholar] [CrossRef]
- Nikulin, G.; Asharaf, S.; Magariño, M.E.; Calmanti, S.; Cardoso, R.M.; Bhend, J.; Fernández, J.; Frías, M.D.; Fröhlich, K.; Früh, B.; et al. Dynamical and statistical downscaling of a global seasonal hindcast in eastern Africa. Clim. Serv. 2018, 9, 72–85. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Wilcke, R.A.I.; Bärring, L. Selecting regional climate scenarios for impact modelling studies. Environ. Model. Softw. 2016, 78, 191–201. [Google Scholar] [CrossRef] [Green Version]
Model Code | Driving GCM Name | Short GCM Name | RCM |
---|---|---|---|
M1 | CNRM-CERFACS-CNRM-CM5 | CNRM-CM5 | CLMcom-CCLM4-8-17 |
M2 | CNRM-CERFACS-CNRM-CM5 | CNRM-CM5 | SMHI-RCA4 |
M3 | ICHEC-EC-EARTH | EC-EARTH | KNMI-RACMO22T |
M4 | ICHEC-EC-EARTH | EC-EARTH | DMI-HIRHAM5 |
M5 | ICHEC-EC-EARTH | EC-EARTH | CLMcom-CCLM4-8-17 |
M6 | ICHEC-EC-EARTH | EC-EARTH | MPI-CSC-REMO2009 |
M7 | ICHEC-EC-EARTH | EC-EARTH | SMHI-RCA4 |
M8 | MPI-M-MPI-ESM-LR | MPI-ESM-LR | CLMcom-CCLM4-8-17 |
M9 | MPI-M-MPI-ESM-LR | MPI-ESM-LR | MPI-CSC-REMO2009 |
M10 | MPI-M-MPI-ESM-LR | MPI-ESM-LR | SMHI-RCA4 |
M11 | NCC-NorESM1-M | NorESM1-M | DMI-HIRHAM5 |
M12 | CCCma-CanESM2 | CanESM2 | SMHI-RCA4 |
M13 | CSIRO-QCCCE-CSIRO-Mk3-6-0 | CSIRO-Mk3-6-0 | SMHI-RCA4 |
M14 | IPSL-IPSL-CM5A-MR | IPSL-CM5A-MR | SMHI-RCA4 |
M15 | MIROC-MIROC5 | MIROC5 | SMHI-RCA4 |
M16 | NCC-NorESM1-M | NorESM1-M | SMHI-RCA4 |
M17 | NOAA-GFDL-GFDL-ESM2M | GFDL-ESM2M | SMHI-RCA4 |
Average Score over the Historical Period | Average RMSE from All Stations | |||
---|---|---|---|---|
Climate Models | Daily Time Step | Daily Time Step (mm) | Daily Time Step (mm) | Monthly Time Step |
M1 | 12.8 | 10.6 | 10.6 | 123.8 |
M2 | 7.3 | 9.3 | 9.3 | 124.2 |
M3 | 9.4 | 9.4 | 9.4 | 105.5 |
M4 | 12.2 | 13.6 | 13.6 | 199.4 |
M5 | 11.5 | 10.4 | 10.4 | 115.8 |
M6 | 7.4 | 8.6 | 8.6 | 104.1 |
M7 | 9.8 | 10.9 | 10.9 | 162.6 |
M8 | 9.0 | 9.9 | 9.9 | 91.7 |
M9 | 6.3 | 8.0 | 8.0 | 73.7 |
M10 | 9.4 | 10.9 | 10.9 | 156.3 |
M11 | 12.0 | 13.6 | 13.6 | 181.4 |
M12 | 6.4 | 7.7 | 7.7 | 86.4 |
M13 | 7.9 | 9.9 | 9.9 | 98.8 |
M14 | 8.2 | 8.2 | 8.2 | 105.4 |
M15 | 8.1 | 9.9 | 9.9 | 91.6 |
M16 | 6.6 | 9.3 | 9.3 | 91.2 |
M17 | 8.9 | 9.8 | 9.8 | 134.4 |
The Absolute Bias of Rainfall in | Ensemble Models | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Climate Models | Basin Average | Inter-Annual | Monthly Average | ≤Ave StE | ≤Ave RMSE | ≥0.5 r | M18 | M19 | M20 | M21 |
M1 | 37.4 | 25.8 | 63.5 | 67.2 | 489.6 | 0.70 | * | ** | ||
M2 | 13.5 | 12.2 | 37.6 | 164.0 | 934.3 | −0.06 | * | |||
M3 | 31.9 | 20.8 | 36.4 | 53.9 | 432.3 | 0.23 | * | |||
M4 | 86.4 | 55.7 | 90.1 | 260.6 | 1635.1 | 0.02 | * | |||
M5 | 25.3 | 17.1 | 47.9 | 69.1 | 475.7 | 0.59 | * | ** | ||
M6 | 0.1 | 9.5 | 24.9 | 63.5 | 283.9 | 0.59 | * | ** | *** | |
M7 | 28.4 | 20.7 | 31.6 | 201.6 | 1136.2 | 0.08 | * | |||
M8 | 10.7 | 9.6 | 16.9 | 56.2 | 280.2 | 0.71 | * | ** | *** | **** |
M9 | 6.3 | 10.1 | 15.8 | 55.4 | 254.5 | 0.57 | * | ** | *** | **** |
M10 | 28.3 | 18.2 | 35.9 | 201.2 | 1140.8 | −0.02 | * | |||
M11 | 77.2 | 49.8 | 85.1 | 226.4 | 1391.3 | 0.26 | * | |||
M12 | 66.2 | 42.7 | 64.9 | 72.7 | 669.4 | 0.31 | * | |||
M13 | 11.8 | 13.2 | 28.5 | 194.2 | 1075.1 | 0.06 | * | |||
M14 | 66.2 | 42.7 | 71.9 | 57.2 | 693.2 | −0.01 | * | |||
M15 | 3.4 | 12.4 | 32.4 | 184.1 | 1020.7 | 0.02 | * | |||
M16 | 23.9 | 19.4 | 23.4 | 135.8 | 767.2 | 0.13 | * | |||
M17 | 9.8 | 12.2 | 37.6 | 158.5 | 895.9 | −0.04 | * | |||
Threshold values | ≤20% | ≤20% | ≤20% | ≤130.7 mm/year | ≤798.6 mm/year | ≥0.5 |
Average RMSE from all Stations and Climate Models | Average Score over the Historical Period | |||
---|---|---|---|---|
Climate Models | Daily Time Step (mm) | Monthly Time Step (mm) | Daily Time-Step | Monthly Time-Step |
M1 | 10.6 | 123.8 | 16.6 | 16.8 |
M2 | 9.3 | 124.2 | 10.0 | 13.2 |
M3 | 9.4 | 105.5 | 12.9 | 12.4 |
M4 | 13.6 | 199.4 | 15.9 | 15.0 |
M5 | 10.4 | 115.8 | 15.2 | 15.2 |
M6 | 8.6 | 104.1 | 10.4 | 11.3 |
M7 | 10.9 | 162.6 | 12.8 | 14.5 |
M8 | 9.9 | 91.7 | 12.4 | 9.8 |
M9 | 8.0 | 73.7 | 8.9 | 6.5 |
M10 | 10.9 | 156.3 | 12.4 | 11.3 |
M11 | 13.6 | 181.4 | 15.6 | 15.3 |
M12 | 7.7 | 86.4 | 8.7 | 14.7 |
M13 | 9.9 | 98.8 | 10.9 | 11.7 |
M14 | 8.2 | 105.4 | 10.6 | 11.3 |
M15 | 9.9 | 91.6 | 11.1 | 11.7 |
M16 | 9.3 | 91.2 | 9.3 | 6.9 |
M17 | 9.8 | 134.4 | 11.9 | 11.2 |
M18 | 7.0 | 132.2 | 5.0 | 5.6 |
M19 | 7.2 | 77.6 | 6.6 | 7.2 |
M20 | 7.4 | 74.0 | 5.8 | 4.8 |
M21 | 7.9 | 70.7 | 7.8 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yimer, S.M.; Bouanani, A.; Kumar, N.; Tischbein, B.; Borgemeister, C. Assessment of Climate Models Performance and Associated Uncertainties in Rainfall Projection from CORDEX over the Eastern Nile Basin, Ethiopia. Climate 2022, 10, 95. https://doi.org/10.3390/cli10070095
Yimer SM, Bouanani A, Kumar N, Tischbein B, Borgemeister C. Assessment of Climate Models Performance and Associated Uncertainties in Rainfall Projection from CORDEX over the Eastern Nile Basin, Ethiopia. Climate. 2022; 10(7):95. https://doi.org/10.3390/cli10070095
Chicago/Turabian StyleYimer, Sadame M., Abderrazak Bouanani, Navneet Kumar, Bernhard Tischbein, and Christian Borgemeister. 2022. "Assessment of Climate Models Performance and Associated Uncertainties in Rainfall Projection from CORDEX over the Eastern Nile Basin, Ethiopia" Climate 10, no. 7: 95. https://doi.org/10.3390/cli10070095
APA StyleYimer, S. M., Bouanani, A., Kumar, N., Tischbein, B., & Borgemeister, C. (2022). Assessment of Climate Models Performance and Associated Uncertainties in Rainfall Projection from CORDEX over the Eastern Nile Basin, Ethiopia. Climate, 10(7), 95. https://doi.org/10.3390/cli10070095