Diagnosis of the Extreme Climate Events of Temperature and Precipitation in Metropolitan Lima during 1965–2013
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results and Discussion
3.1. Precipitation and Temperature Climatology in ML and Its Links with the SST
3.2. Interannual Variability of Temperature and Precipitation in Lima and Its Association with Regional Patterns
3.3. Temperature and Precipitation Trends
3.4. Temperature and Precipitation Extremes in ML
3.4.1. Extreme Temperatures
3.4.2. Extreme Precipitations
3.5. Extreme Precipitation Event of 15 January 1970, in ML
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INEI. Perú: Crecimiento y Distribución de La Población, 2017—Primeros Resultados, 1st ed.; Instituto Nacional de Estadística e Informatica: Lima, Perú, 2018; Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1530/libro.pdf (accessed on 13 May 2022).
- Villacorta, S.; Nuñez, S.; Vasquez, J.; Pari, W.; Ochoa, M.; Benavente, C.; Tatard, L.; Luque, G.; Rosado, M.; Fidel, L.; et al. Peligros Geologicos En El Area de Lima Metropolitana y La Region Callao, 1st ed.; INGEMMET: Lima, Perú, 2015; Available online: https://hdl.handle.net/20.500.12544/309 (accessed on 6 May 2022).
- Villacorta, S.; De Torres, T.; Llorente, M.; Ayala, L.; Pérez-Puig, C.; Macharé, J.; Benavente, C. Datos Preliminares Sobre La Evolución Geomorfológica Del Abanico Aluvial de Lima, y Sus Implicaciones En El Análisis de Los Riesgos Asociados Al Cambio Climático. Boletín La Soc. Geológica Del Perú 2015, 213, 209–213. Available online: App.ingemmet.gob.pe/biblioteca/pdf/BSGP-110-209.pdf (accessed on 3 April 2022).
- Felix, M.L.; Kim, Y.K.; Choi, M.; Kim, J.C.; Do, X.K.; Nguyen, T.H.; Jung, K. Detailed Trend Analysis of Extreme Climate Indices in the Upper Geum River Basin. Water 2021, 13, 3171. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, V.B., Midley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated Analyses of Temperature and Precipitation Extreme Indices since the Beginning of the Twentieth Century: The HadEX2 Dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. Atmos. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Skansi, M.M.; Brunet, M.; Sigró, J.; Aguilar, E.; Arevalo Groening, J.A.; Bentancur, O.J.; Castellón Geier, Y.R.; Correa Amaya, R.L.; Jácome, H.; Malheiros Ramos, A.; et al. Warming and Wetting Signals Emerging from Analysis of Changes in Climate Extreme Indices over South America. Glob. Planet. Change 2013, 100, 295–307. [Google Scholar] [CrossRef]
- Obregón, G.; Díaz, A.; Rosas, G.; Avalos, G.; Acuña, D.; Oria, C.; Llacza, A.; Miguel, R. Second National Communication on Climate Change: Climate Scenarios for Peru to 2030, 1st ed.; SENAMHI-PERÚ: Lima, Perú, 2009; Available online: https://www.ipcc.ch/apps/njlite/ar5wg2/njlite_download2.php?id=8834 (accessed on 13 April 2022).
- SENAMHI. Escenarios de Cambio Climático en la Cuenca del Río Mantaro Para el Año 2100: Resumen Técnico, 1st ed.; Avalos, G., Dávila, J., Bracamonte, D., Galán, R., Eds.; Servicio Nacional de Meteorología e Hidrología (SENAMHI): Lima, Perú, 2009; Available online: https://www.senamhi.gob.pe/usr/cmn/pdf/PRAA_resu_tec_Escenarios_2100_MANTARO.pdf (accessed on 14 April 2022).
- Huerta, A.; Lavado-Casimiro, W. Trends and Variability of Precipitation Extremes in the Peruvian Altiplano (1971–2013). Int. J. Climatol. 2021, 41, 513–528. [Google Scholar] [CrossRef]
- De la Cruz Montalvo, G. Escenarios Climáticos: Cambios en los Extremos Climáticos en el Perú Al 2050, 1st ed.; SENAMHI-PERÚ: Lima, Perú, 2021; Available online: https://repositorio.senamhi.gob.pe/bitstream/handle/20.500.12542/1469/Escenarios-climáticos-cambios-en-los-extremos-climáticos-en-el-Perú-al-2050_2021.pdf?sequence=3&isAllowed=y (accessed on 2 April 2022).
- El Comercio. Lima Sufre la Mayor Lluvia de los Últimos 45 años. Available online: https://elcomercio.pe/bicentenario/1970-l-lima-sufre-la-mayor-lluvia-de-los-ultimos-45-anos-l-bicentenario-noticia/ (accessed on 25 January 2022).
- Orrego Penagos, J.L. Lluvias históricas en Lima. Available online: http://blog.pucp.edu.pe/blog/juanluisorrego/2010/03/30/lluvias-historicas-en-lima/ (accessed on 14 February 2022).
- Caretas. Así Fue el insólito Diluvio que Azotó Lima hace 50 años. Available online: https://caretas.pe/nacional/asi-fue-el-insolito-diluvio-que-azoto-lima-hace-50-anos-lluvia-torrencial-inundacion-50-anos-efemerides-callao/ (accessed on 12 April 2022).
- Sanabria, J.; Bourrel, L.; Dewitte, B.; Frappart, F.; Rau, P.; Solis, O.; Labat, D. Rainfall along the coast of Peru during Strong El Niño Events. Int. J. Climatol. 2018, 38, 1737–1747. [Google Scholar] [CrossRef]
- Takahashi, K.; Martínez, A.G. The Very Strong Coastal El Niño in 1925 in the Far-Eastern Pacific. Clim. Dyn. 2017, 52, 7389–7415. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Krishna Kumar, K.; Aldrian, E.; An, S.-I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate Phenomena and Their Relevance for Future Regional Climate Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- INEI. Conociendo Lima: Guia Estadística, 1st ed.; Dirección Nacional de Estadística e Informática Departamental, Ed.; Dirección Nacional de Estadística e Informática Departamental: Lima, Perú, 2001; Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib0410/Libro.pdf (accessed on 12 April 2022).
- Siña, M.; Wood, R.C.; Saldarriaga, E.; Lawler, J.; Zunt, J.; Garcia, P.; Cárcamo, C. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning. PLoS ONE 2016, 11, e0147201. [Google Scholar] [CrossRef]
- Miranda Sara, L.; Jameson, S.; Pfeffer, K.; Baud, I. Risk Perception: The Social Construction of Spatial Knowledge around Climate Change-Related Scenarios in Lima. Habitat Int. 2016, 54, 136–149. [Google Scholar] [CrossRef]
- Capel, J.J. Lima, Un Clima de Desierto Litoral. An. Geogr. Univ. Complut. 1999, 19, 25–45. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=86529 (accessed on 16 May 2022).
- Rivas, P. Identificación de patrones de circulación característicos en la formación de precipitación en Lima Metropolitana y Callao durante 1980–1995. Tesis para optar el título profesional de Ingeniero Meteorólogo, Universidad Nacional Agraria La Molina (UNALM), Lima, Perú, 2019. Available online: https://hdl.handle.net/20.500.12996/4227 (accessed on 5 June 2022).
- Castro, A.; Davila, C.; Will, L.; Cubas, F.; Avalos, G.; Lopez, C.; Villena, D.; Valdez, M.; Urbiola, J.; Trebejo, I.; et al. Climas Del Perú-Mapa de Clasificación Climática Nacional, 1st ed.; SENAMHI-Perú: Lima, Perú, 2020; Available online: https://www.senamhi.gob.pe/load/file/01404SENA-4.pdf (accessed on 3 June 2022).
- Hanley, D.E.; Bourassa, M.A.; O’Brien, J.J.; Smith, S.R.; Spade, E.R. A Quantitative Evaluation of ENSO Indices. J. Clim. 2003, 16, 1249–1258. [Google Scholar] [CrossRef]
- Trenberth, K.E. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 74, 2771–2778. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.; National Center for Atmospheric Research. The Climate Data Guide: Nino SST Indices (Nino 1+2, 3, 3.4, 4; ONI and TNI). Available online: https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni (accessed on 26 March 2022).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Feng, Y.; Chan, R. Introduction to RClimDex v1.9; Climate Research Division Environment Canada: Downsview, ON, Canada, 2018; Available online: https://usermanual.wiki/Document/manual.2056401896.pdf (accessed on 11 June 2022).
- Aswad, F.K.; Yousif, A.A.; Ibrahim, S.A. Trend Analysis Using Mann-Kendall Snd Sen’s Slope Estimator Test for Annual and Monthly Rainfall for Sinjar District, Iraq. J. Univ. Duhok 2020, 23, 501–508. Available online: https://journal.uod.ac/index.php/uodjournal/article/view/954/686 (accessed on 14 May 2022). [CrossRef]
- Alfaro, L. Estimación de Umbrales de Precipitaciones Extremas Para La Emisión de Avisos Meteorológicos; Nota Técnica: Lima, Perú, 2014; Available online: https://www.senamhi.gob.pe/load/file/01402SENA-6.pdf (accessed on 14 June 2022).
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Hernández-Lalinde, J.D.; Espinosa-Castro, J.F.; Peñaloza-Tarazona, M.E.; Rodriguez, J.E.; Chacón-Rangel, J.G.; Toloza-Sierra, C.A.; Arenas-Torrado, M.K.; Carrillo-Sierra, S.M.; Bermúdez-Pirela, V.J. Sobre El Uso Adecuado Del Coeficiente de Correlación de Pearson: Definición, Propiedades y Suposiciones. AVFT-Arch. Venez. Farmacol. Ter. 2018, 37, 587–595. Available online: https://www.revistaavft.com/images/revistas/2018/avft_5_2018/25sobre_uso_adecuado_coeficiente.pdf (accessed on 11 May 2022).
- Rodgers, J.L.; Nicewander, A.W. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. Assoc. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Klein Tank, A.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; WMO: Geneva, Switzerland, 2009; Available online: https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf (accessed on 17 January 2022).
- Peterson, T.C.; Folland, C.; Gruza, G.; Hogg, W.; Mokssit, A.; Plummer, N. Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998-2001; World Meteorological Organization: Geneve, Switzerland, 2001; Available online: http://www.clivar.org/sites/default/files/documents/048_wgccd.pdf (accessed on 23 January 2022).
- Karl, T.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes. In Climate Change; Kluwer Academic Publishers: Dordrecht, Netherlands, 1999; Volume 42, pp. 3–7. Available online: https://link.springer.com/chapter/10.1007/978-94-015-9265-9_2 (accessed on 22 January 2022).
- Gutiérrez, D.; Bouloubassi, I.; Sifeddine, A.; Purca, S.; Goubanova, K.; Graco, M.; Field, D.; Méjanelle, L.; Velazco, F.; Lorre, A.; et al. Coastal Cooling and Increased Productivity in the Main Upwelling Zone off Peru since the Mid-Twentieth Century. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, D.; Bertrand, A.; Wosnitza-Mendo, C.; Dewitte, B.; Purca, S.; Peña, C.; Chaigneau, A.; Tam, J.; Graco, M.; Echevin, V.; et al. Climate Change Sensitivity of the Peruvian Upwelling System and Ecological Implications. Rev. Peru. Geo-Atmosférica 2011, 26, 1–26. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/2021-08/010082418.pdf (accessed on 29 June 2022).
- Falvey, M.; Garreaud, R.D. Regional Cooling in a Warming World: Recent Temperature Trends in the Southeast Pacific and along the West Coast of Subtropical South America (1979–2006). J. Geophys. Res. 2009, 114, D04102. [Google Scholar] [CrossRef]
- Flores-Rojas, J.L.; Moya-Álvarez, A.S.; Valdivia-Prado, J.M.; Piñas-Laura, M.; Kumar, S.; Karam, H.A.; Villalobos-Puma, E.; Martínez-Castro, D.; Silva, Y. On the Dynamic Mechanisms of Intense Rainfall Events in the Central Andes of Peru, Mantaro Valley. Atmos. Res. 2021, 248, 105188. [Google Scholar] [CrossRef]
Station Name | Latitude (S) | Longitude (W) | Altitude (masl) | Variables | Information Period |
---|---|---|---|---|---|
Hipólito Unánue (HU) | 12°04′ | 77°05′ | 70 | TX, TN, PP | 1 June 1968 to 31 December 2013 |
Jorge Chavez (JCH) | 12°01′ | 77°06′ | 34 | TX, TN, PP | 1 January 1963 to 31 December 2013 |
Von Humboldt (VH) | 12°05′ | 76°57’ | 244 | TX, TN, PP | 1 January 1965 to 31 December 2007 |
Campo de Marte (CM) | 12°04′ | 77°02′ | 123 | TP | June 1931 to December 1981 |
Indicator Name (ID) | Indicator Definitions | Units |
---|---|---|
Warm days (TX90p) | Annual percentage of days when TX > 90th percentile in relation to the climatology from 1981–2010 | % |
Warm nights (TN90p) | Annual percentage of days when TN > 90th percentile in relation to the climatology from 1981–2010 | % |
Cold days (TX10p) | Annual percentage of days when TX < 10th percentile in relation to the climatology from 1981–2010 | % |
Cold nights (TN10p) | Annual percentage of days when TN < 10th percentile in relation to the climatology from 1981–2010 | % |
Max TX (TXx) | Monthly maximum value of daily TX | °C |
Max TN (TNx) | Monthly maximum value of daily TN | °C |
Min TX (TXn) | Monthly minimum value of daily TX | °C |
Min TN (TNn) | Monthly minimum value of daily TN | °C |
Warm spell duration indicator (WSDI) | Annual count of days with at least 6 consecutive days when TX > 90th percentile | Days |
Cold spell duration indicator (CSDI) | Annual count of days with at least 6 consecutive days when TN < 10th percentile | Days |
Annual total wet-days precipitation (PRCPTOT) | Annual total precipitation in wet days (precipitation > 0.1 mm) | mm |
Extremely wet days (R99p) | Annual total precipitation when precipitation > 99th percentile | mm |
Very wet days (R95p) | Annual total precipitation when precipitation > 95th percentile | mm |
Simple daily intensity index (SDII) | Annual total precipitation divided by the number of wet days (defined as precipitation > 0.1 mm) in the year | mm/day |
Number of days above 1 mm (R1mm) | Annual count of days when precipitation > 1 mm, 1 is user defined threshold | Days |
Number of days above 2 mm (R2mm) | Annual count of days when precipitation > 2 mm, 2 is user defined threshold | Days |
Max 1-day precipitation amount (Rx1day) | Maximum precipitation in 1 day | mm |
Max 5-day precipitation amount (Rx5day) | Maximum precipitation in 5 consecutive days | mm |
Max 10-day precipitation amount (Rx10day) | Maximum precipitation in 10 consecutive days | mm |
Consecutive wet days (CWD) | Maximum number of consecutive days with precipitation > 0.1mm | Days |
Consecutive dry days (CDD) | Maximum number of consecutive days with precipitation <= 0.1 mm | Days |
Year | Month | Day | mm |
---|---|---|---|
1970 | 1 | 15 | 16 |
1983 | 7 | 2 | 5.8 |
2009 | 7 | 20 | 4.3 |
2008 | 9 | 3 | 4 |
1995 | 12 | 26 | 3.5 |
1986 | 9 | 27 | 3.3 |
2002 | 2 | 5 | 3.1 |
1996 | 2 | 1 | 3 |
2001 | 2 | 4 | 3 |
2001 | 8 | 28 | 3 |
2009 | 11 | 28 | 3 |
2009 | 12 | 1 | 3 |
2010 | 1 | 7 | 3 |
2012 | 10 | 9 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giráldez, L.; Silva, Y.; Flores-Rojas, J.L.; Trasmonte, G. Diagnosis of the Extreme Climate Events of Temperature and Precipitation in Metropolitan Lima during 1965–2013. Climate 2022, 10, 112. https://doi.org/10.3390/cli10080112
Giráldez L, Silva Y, Flores-Rojas JL, Trasmonte G. Diagnosis of the Extreme Climate Events of Temperature and Precipitation in Metropolitan Lima during 1965–2013. Climate. 2022; 10(8):112. https://doi.org/10.3390/cli10080112
Chicago/Turabian StyleGiráldez, Lucy, Yamina Silva, José L. Flores-Rojas, and Grace Trasmonte. 2022. "Diagnosis of the Extreme Climate Events of Temperature and Precipitation in Metropolitan Lima during 1965–2013" Climate 10, no. 8: 112. https://doi.org/10.3390/cli10080112
APA StyleGiráldez, L., Silva, Y., Flores-Rojas, J. L., & Trasmonte, G. (2022). Diagnosis of the Extreme Climate Events of Temperature and Precipitation in Metropolitan Lima during 1965–2013. Climate, 10(8), 112. https://doi.org/10.3390/cli10080112