Identifying Western North American Tree Populations Vulnerable to Drought under Observed and Projected Climate Change
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Climatology and Tree Cover of the Study Area
3.2. Observed and Projected Climate Change
3.3. Drought Exposure of Tree Populations
3.4. Vulnerable Populations under Observed and Projected Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
ID | Region | Impact and severity synopsis |
Colorado pine (Pinus edulis) | ||
1 | NM | Clifford et al. [32] reports 42% of the Colorado pine forests within the study region classified as die-off (1029 km²) with an an increasing mortality gradient from south to north. Mortality occurred primarily in areas receiving less than 600mm in precipitation. |
2 | NM | Gaylord et al. [22] found that drought predisposes Colorado pine stands to lead to insect attacks. Mortality due to insect attacks was higher in water deprived sites. |
3 | AZ, CO, ID, MT, NV, NM, UT, and WY | Shaw et al. [33] reports idespread mortality in Colorado pine associated with several years of drought in the southwestern United States. The combined effects of drought, insects, and disease cause mortality approaching 100% in some areas. |
4 | NM | Breshears et al. [34] found that smaller less severe droughts preceeded a major drought in 2000–2003. Mortality caused by water stress ws related to the depletion of carbon reserves, also creating susceptibility to insect attacks. Mortality affected 12,000 km² in New Mexico with mortality rates up to 90% based on remote sensing. |
5 | CO, NM, AZ | Floyd et al. [35] documents mortality rates of 32–65% for Colorado pine in southwest Colorado, northern New Mexico, and northern Arizona, with ips beetles primarily responsible for mortality on trees predisposed by severe drought conditions. |
Ponderosa pine (Pinus ponderosa) | ||
6 | CA | Byer and Jin [37] report approximately 20% mortality of ponderosa pine in a remote sensing survey of the Central and Southern Sierra Nevada following a 2012–2016 drought period. High mortality rates were associated with high forest density and low elevation areas. |
7 | AZ | Ganey and Vojta [36] observed mortality of ponderosa present at 98% of sites (1 ha/site) between 2002–2007, following a 1997–2002 drought period, representing an average increase of 74% over baseline mortality. Mortality was precipitated by insect infestation, following severe drought conditions. |
Trembling aspen (Populus tremuloides) | ||
8 | CO | Anderegg et al. [38] investigate hydraulic changes in surviving trees from a 2000–2003 drought period, documenting an increased vulnerability to future drought events. |
9 | AB | Hogg et al. [39] document growth reductions and insect infestations associated with historical drought periods using tree ring analysis. Aspen dieback during 1990–1992 and growth reductions were primarily explained by tent caterpillar defoliation, climate moisture index from the previous year, growing degree days, and snow depth in order of importance. |
10 | Western Canada | Chen et al. [12] link reduced growth of aspen in a plot network across western Canada to droughts effects. Both tempral and spatial variation in growth reductions were explained by a standardized precipitation-evapotranspiration index (SPEI). |
11 | AB and SK | Michaelian et al. [10] document massive mortality of aspen following severe drought in 2001–2002 along the southern edge of the Canadian boreal forest. Aerial surveys revealed extensive patches of severe mortality (>55%) resembling the impacts of fire. Dead aboveground biomass was estimated at 45 Mt, representing 20% of the total aboveground biomass. |
12 | CO | Huang and Anderegg [14] report large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Of 60 sites, 30% experienced greater than 50% canopy dieback, 57.9% were affected by aspen mortality, and above ground biomass loss was estimated as 30.7% representing 2.7 Tg of carbon emissions. |
13 | CO | Worrall et al. [41] document aspen mortality (mean 32%) across 56,000 ha in southwestern Colorado. Primary mortality agents were canker, bark beetles, and borers. Predisposition of climatic factors were inferred from high mortality being associated with low elevation, and southern and western aspects. |
14 | Western North America | Worrall et al. [42] linked declines of Populus tremuloides in North America linked to climate. Drought was identified as a significant factor in this period of decline, and a bioclimate envelope model confirmed that dieback and mortality corresponded to loss of climatic habitat for the study period. |
15 | Canadian Boreal | Peng et al. [40] documented drought-induced increase in tree mortality across Canada’s boreal forests. Western boreal seen more severe mortality rates than the east. Annual increases in mortality for aspen increased from less than 1% to 2.5% per year on average from the 1960s to 2000s. |
References
- Morgenstern, E.K. Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture; The University of British Columbia Press: Vancouver, CA, USA, 1996; 209p. [Google Scholar]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.L.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Chmura, D.J.; Anderson, P.D.; Howe, G.T.; Harrington, C.A.; Halofsky, J.E.; Peterson, D.L.; Shaw, D.C.; St Clair, J.B. Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. For. Ecol. Manag. 2011, 261, 1121–1142. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Morin, X.; Fahse, L.; Jactel, H.; Scherer-Lorenzen, M.; Garcia-Valdes, R.; Bugmann, H. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 2018, 8, 5627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Niinemets, U.; Sheffield, J.; Lichstein, J.W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 2018, 556, 99–102. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Pena-Gallardo, M.; Yuan, S.S.; Dominguez-Castro, F. A review of environmental droughts: Increased risk under global warming? Earth-Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Reich, P.B.; Sendall, K.M.; Stefanski, A.; Rich, R.L.; Hobbie, S.E.; Montgomery, R.A. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 2018, 562, 263–267. [Google Scholar] [CrossRef]
- van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread Increase of Tree Mortality Rates in the Western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Michaelian, M.; Hogg, E.H.; Hall, R.J.; Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Chang. Biol. 2011, 17, 2084–2094. [Google Scholar] [CrossRef] [Green Version]
- Hogg, E.H.; Michaelian, M.; Hook, T.I.; Undershultz, M.E. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada. Glob. Chang. Biol. 2017, 23, 5297–5308. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.G.; Alam, S.A.; Zhai, L.H.; Dawson, A.; Stadt, K.J.; Comeau, P.G. Drought causes reduced growth of trembling aspen in western Canada. Glob. Chang. Biol. 2017, 23, 2887–2902. [Google Scholar] [CrossRef] [PubMed]
- Goulden, M.L.; Bales, R.C. California forest die-off linked to multi-year deep soil drying in 2012-2015 drought. Nat. Geosci. 2019, 12, 632–637. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Anderegg, W.R.L. Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Glob. Chang. Biol. 2012, 18, 1016–1027. [Google Scholar] [CrossRef]
- Mahony, C.R.; Wang, T.L.; Hamann, A.; Cannon, A.J. A global climate model ensemble for downscaled monthly climate normals over North America. Int. J. Clim. 2022; early view. [Google Scholar] [CrossRef]
- Montwe, D.; Isaac-Renton, M.; Hamann, A.; Spiecker, H. Drought tolerance and growth in populations of a wide-ranging tree species indicate climate change risks for the boreal north. Glob. Chang. Biol. 2016, 22, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Isaac-Renton, M.; Montwe, D.; Hamann, A.; Spiecker, H.; Cherubini, P.; Treydte, K. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 2018, 9, 5254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderegg, W.R.L.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, A.K.; McDowell, N.; et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015, 208, 674–683. [Google Scholar] [CrossRef]
- Berg, E.E.; Henry, J.D.; Fastie, C.L.; De Volder, A.D.; Matsuoka, S.M. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. For. Ecol. Manag. 2006, 227, 219–232. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Ebata, T.; Safranyik, L. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452, 987–990. [Google Scholar] [CrossRef]
- Kolb, T.E.; Fettig, C.J.; Ayres, M.P.; Bentz, B.J.; Hicke, J.A.; Mathiasen, R.; Stewart, J.E.; Weed, A.S. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 2016, 380, 321–334. [Google Scholar] [CrossRef]
- Gaylord, M.L.; Kolb, T.E.; Pockman, W.T.; Plaut, J.A.; Yepez, E.A.; Macalady, A.K.; Pangle, R.E.; McDowell, N.G. Drought predisposes pinon-juniper woodlands to insect attacks and mortality. New Phytol. 2013, 198, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Hogg, E.H. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agric. For. Meteorol 1997, 84, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Heim, R.R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.R.; Hamann, A. Method selection for species distribution modelling: Are temporally or spatially independent evaluations necessary? Ecography 2012, 35, 792–802. [Google Scholar] [CrossRef]
- Gray, A.N.; Brandeis, T.J.; Shaw, J.D.; McWilliams, W.H.; Miles, P.D. Forest Inventory and Analysis Database of the United States of America (FIA). Biodivers. Ecol. 2012, 4, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.L.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PLoS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Clim. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Clifford, M.J.; Royer, P.D.; Cobb, N.S.; Breshears, D.D.; Ford, P.L. Precipitation thresholds and drought-induced tree die-off: Insights from patterns of Pinus edulis mortality along an environmental stress gradient. New Phytol. 2013, 200, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.D.; Steed, B.E.; DeBlander, L.T. Forest Inventory and Analysis (FIA) annual inventory answers the question: What is happening to pinyon-juniper woodlands? J. For. 2005, 103, 280–285. [Google Scholar]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [Green Version]
- Floyd, M.L.; Clifford, M.; Cobb, N.S.; Hanna, D.; Delph, R.; Ford, P.; Turner, D. Relationship of stand characteristics to drought-induced mortality in three Southwestern pinon-juniper woodlands. Ecol. Appl. 2009, 19, 1223–1230. [Google Scholar] [CrossRef] [Green Version]
- Ganey, J.L.; Vojta, S.C. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA. For. Ecol. Manag. 2011, 261, 162–168. [Google Scholar] [CrossRef]
- Byer, S.; Jin, Y.F. Detecting Drought-Induced Tree Mortality in Sierra Nevada Forests with Time Series of Satellite Data. Remote Sens. 2017, 9, 929. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, W.R.L.; Plavcova, L.; Anderegg, L.D.L.; Hacke, U.G.; Berry, J.A.; Field, C.B. Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob. Chang. Biol. 2013, 19, 1188–1196. [Google Scholar] [CrossRef]
- Hogg, E.H.; Brandt, J.P.; Kochtubajda, B. Growth and dieback of Aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can. J. For. Res. 2002, 32, 823–832. [Google Scholar] [CrossRef]
- Peng, C.H.; Ma, Z.H.; Lei, X.D.; Zhu, Q.; Chen, H.; Wang, W.F.; Liu, S.R.; Li, W.Z.; Fang, X.Q.; Zhou, X.L. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 2011, 1, 467–471. [Google Scholar] [CrossRef]
- Worrall, J.J.; Egeland, L.; Eager, T.; Mask, R.A.; Johnson, E.W.; Kemp, P.A.; Shepperd, W.D. Rapid mortality of Populus tremuloides in southwestern Colorado, USA. For. Ecol. Manag. 2008, 255, 686–696. [Google Scholar] [CrossRef] [Green Version]
- Worrall, J.J.; Rehfeldt, G.E.; Hamann, A.; Hogg, E.H.; Marchetti, S.B.; Michaelian, M.; Gray, L.K. Recent declines of Populus tremuloides in North America linked to climate. For. Ecol. Manag. 2013, 299, 35–51. [Google Scholar] [CrossRef]
Species | CMI Values for Percentiles of Species Presence Records | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | min | 1 | 2.5 | 5 | 25 | 50 | 75 | 95 | 98 | 99 | max | |
Colorado pine (Pinus edulis) | 2836 | −119 | −103 | −96 | −92 | −77 | −67 | −54 | −31 | −23 | −13 | 20 |
Ponderosa pine (Pinus ponderosa) | 3967 | −98 | −75 | −69 | −62 | −40 | −23 | −4 | 44 | 70 | 94 | 270 |
Trembling aspen (Populus tremuloides) | 7241 | −53 | −27 | −19 | −13 | 1 | 9 | 19 | 44 | 55 | 70 | 300 |
White birch (Betula papyrifera) | 3926 | −45 | −20 | −13 | −7 | 2 | 10 | 23 | 62 | 81 | 102 | 297 |
White spruce (Picea glauca) | 7115 | −40 | −13 | −9 | −5 | 4 | 14 | 25 | 55 | 69 | 88 | 190 |
Black spruce (Picea mariana) | 2922 | −13 | −3 | −1 | 2 | 10 | 18 | 27 | 48 | 57 | 73 | 146 |
Western larch (Larix occidentalis) | 821 | −42 | −28 | −26 | −23 | −1 | 15 | 37 | 85 | 108 | 123 | 167 |
Incense cedar (Calocedrus decurrens) | 561 | −56 | −46 | −41 | −37 | −5 | 24 | 61 | 124 | 167 | 198 | 290 |
Lodgepole pine (Pinus contorta) | 11,275 | −51 | −19 | −11 | −4 | 14 | 27 | 48 | 107 | 162 | 291 | 532 |
Douglas–fir (Pseudotsuga menziesii) | 8808 | −79 | −51 | −42 | −33 | −7 | 16 | 61 | 186 | 228 | 280 | 509 |
Coast redwood (Sequoia sempervirens) | 90 | −31 | −27 | −22 | −18 | 9 | 32 | 87 | 137 | 147 | 167 | 167 |
Subalpine fir (Abies lasiocarpa) | 10,804 | −45 | −6 | 2 | 8 | 27 | 48 | 78 | 130 | 148 | 169 | 478 |
Engelmann spruce (Picea engelmannii) | 6223 | −48 | −14 | −6 | 1 | 32 | 57 | 86 | 129 | 145 | 164 | 213 |
Whitebark pine (Pinus albicaulis) | 1038 | −32 | −8 | 9 | 17 | 41 | 66 | 92 | 135 | 151 | 168 | 294 |
Western white pine (Pinus monticola) | 820 | −53 | −16 | −9 | 0 | 37 | 70 | 114 | 224 | 287 | 356 | 380 |
Bigleaf maple (Acer macrophyllum) | 437 | −56 | −47 | −20 | −2 | 49 | 86 | 129 | 213 | 237 | 268 | 278 |
Western redcedar (Thuja plicata) | 3798 | −40 | −14 | −5 | 4 | 34 | 91 | 191 | 350 | 387 | 443 | 606 |
Noble fir (Abies procera) | 82 | 4 | 16 | 22 | 45 | 115 | 159 | 197 | 256 | 316 | 341 | 377 |
Red alder (Alnus rubra) | 715 | −41 | 13 | 29 | 46 | 99 | 137 | 213 | 320 | 349 | 379 | 553 |
Western hemlock (Tsuga heterophylla) | 4860 | −25 | 1 | 11 | 19 | 59 | 128 | 238 | 373 | 410 | 474 | 777 |
Pacific silver fir (Abies amabilis) | 1615 | −34 | 15 | 28 | 39 | 123 | 198 | 289 | 406 | 449 | 508 | 625 |
Mountain hemlock (Tsuga mertensiana) | 1136 | −28 | 24 | 46 | 61 | 113 | 185 | 279 | 424 | 498 | 577 | 777 |
Sitka spruce (Picea sitchensis) | 1016 | 15 | 56 | 80 | 98 | 179 | 250 | 313 | 411 | 484 | 534 | 777 |
Yellow cedar (Chamaecyparis nootkatensis) | 707 | 19 | 89 | 113 | 122 | 206 | 265 | 339 | 431 | 479 | 533 | 777 |
Species | Observed | Projection 2020s | Projection 2050s | Projection 2080s | |||
---|---|---|---|---|---|---|---|
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | ||
Colorado pine (Pinus edulis) | 3.1 | 16.5 | 17.5 | 39.6 | 60 | 52.7 | 84.8 |
Ponderosa pine (Pinus ponderosa) | 0 | 7.2 | 7.2 | 14.4 | 24.3 | 20.8 | 42.5 |
Western larch (Larix occidentalis) | −0.4 | 6.8 | 7.6 | 12.5 | 17.8 | 16.4 | 34 |
Incense cedar (Calocedrus decurrens) | −0.4 | 7.5 | 8.2 | 13.4 | 17.6 | 15.5 | 24.1 |
Black spruce (Picea mariana) | 1.1 | 5 | 5.3 | 9.9 | 17 | 15.6 | 43.5 |
Douglas–fir (Pseudotsuga menziesii) | −0.3 | 3.4 | 3.7 | 7.1 | 11.1 | 9.7 | 21.4 |
Trembling aspen (Populus tremuloides) | 0.4 | 3.9 | 4.3 | 7.2 | 10.3 | 9.1 | 23.9 |
Coast redwood (Sequoia sempervirens) | −1.4 | 1.9 | 4.2 | 7.5 | 9.7 | 8.6 | 11.9 |
Lodgepole pine (Pinus contorta) | 0.2 | 3.3 | 3.6 | 6 | 8.5 | 7.7 | 18.5 |
Subalpine fir (Abies lasiocarpa) | 0.3 | 2.7 | 3 | 5.4 | 7.8 | 6.9 | 17.1 |
Whitebark pine (Pinus albicaulis) | −0.8 | 3.4 | 3.8 | 5.9 | 7.7 | 7 | 13.8 |
Engelmann spruce (Picea engelmannii) | −0.1 | 3.1 | 3.3 | 5.1 | 7.4 | 6.4 | 13.8 |
White birch (Betula papyrifera) | 1 | 2.5 | 2.5 | 4.9 | 7.1 | 6.3 | 21.6 |
White spruce (Picea glauca) | 0.4 | 1.9 | 1.9 | 3.8 | 6.9 | 6.3 | 26.9 |
Western white pine (Pinus monticola) | −0.7 | 2.4 | 2.9 | 4.6 | 5.9 | 5.4 | 12.1 |
Western redcedar (Thuja plicata) | 0.7 | 1.8 | 2.1 | 3.9 | 5.6 | 4.7 | 10.9 |
Western hemlock (Tsuga heterophylla) | −1.2 | 2 | 2.1 | 3.2 | 4.4 | 4 | 7.6 |
Bigleaf maple (Acer macrophyllum) | −0.7 | 1.6 | 1.8 | 2.5 | 3.2 | 2.8 | 7.8 |
Amabilis fir (Abies amabilis) | −1.9 | 2.1 | 2.1 | 2.3 | 2.7 | 2.6 | 3.6 |
Red alder (Alnus rubra) | −1.9 | 1 | 1 | 1.7 | 2.5 | 1.8 | 4.8 |
Noble fir (Abies procera) | −0.1 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 3.6 |
Mountain hemlock (Tsuga mertensiana) | −2.4 | 0.8 | 1 | 1.5 | 2.3 | 1.9 | 4.3 |
Yellow cedar (Chamaecyp. nootkatensis) | −0.5 | 0.5 | 0.5 | 0.9 | 1 | 0.8 | 1.2 |
Sitka spruce (Picea sitchensis) | −2.5 | 0.3 | 0.3 | 0.4 | 0.6 | 0.4 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levesque, K.; Hamann, A. Identifying Western North American Tree Populations Vulnerable to Drought under Observed and Projected Climate Change. Climate 2022, 10, 114. https://doi.org/10.3390/cli10080114
Levesque K, Hamann A. Identifying Western North American Tree Populations Vulnerable to Drought under Observed and Projected Climate Change. Climate. 2022; 10(8):114. https://doi.org/10.3390/cli10080114
Chicago/Turabian StyleLevesque, Kathryn, and Andreas Hamann. 2022. "Identifying Western North American Tree Populations Vulnerable to Drought under Observed and Projected Climate Change" Climate 10, no. 8: 114. https://doi.org/10.3390/cli10080114
APA StyleLevesque, K., & Hamann, A. (2022). Identifying Western North American Tree Populations Vulnerable to Drought under Observed and Projected Climate Change. Climate, 10(8), 114. https://doi.org/10.3390/cli10080114