New Air Temperature- and Wind Speed-Based Clothing Thermal Resistance Scheme—Estimations for the Carpathian Region
Abstract
:1. Introduction
2. Methods
2.1. Clothing Thermal Resistance Scheme
2.2. Determination of Operative Temperature
2.3. Body Mass Index
3. Region
4. Data
4.1. Climatic Data
4.2. Human Data
5. Results
5.1. Statistical Relationship between To and Ta
5.2. Interpersonal Variations of the Relationship between M and BMI
5.3. Verification Results
5.4. Human Thermal Load
5.4.1. January
5.4.2. July
5.4.3. Year
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, Y.Y. Climate comfort indices. In Encyclopedia of World Climatology; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 227–231. [Google Scholar]
- Epstein, Y.; Moran, D.S. Thermal comfort and heat stress indices. Indust. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Potchter, O.; Cohen, P.; Lin, T.P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danmarks Tekniske Højskole, Danish Technical Press: Copenhagen, Denmark, 1970; p. 244. ISBN 8757103410/9788757103410. [Google Scholar]
- Fanger, P.O. Assessment of man’s thermal comfort in practice. Br. J. Ind. Med. 1973, 30, 313–324. [Google Scholar] [CrossRef]
- Becker, S. Bioclimatological rating of cities and resorts in South Africa according to the climate index. Int. J. Climatol. 2000, 20, 1403–1414. [Google Scholar] [CrossRef]
- Gagge, A.P.; Fobelts, A.P.; Berglund, L.G. A standard predictive index of human response to the thermal environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- Matzarakis, A.; Mayer, H. Heat stress in Greece. Int. J. Biometeorol. 1997, 41, 34–39. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P.E. Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo. Atmosphere 2018, 9, 479. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Matzarakis, A.; Graw, K. Human Bioclimate Analysis for the Paris Olympic Games. Atmosphere 2022, 13, 269. [Google Scholar] [CrossRef]
- Gulyás, Á.; Unger, J.; Matzarakis, A. Assessment of the microclimatic and thermal comfort conditions in a complex urban environment: Modelling and measurements. Build. Environ. 2006, 41, 1713–1722. [Google Scholar] [CrossRef]
- Gulyás, Á.; Matzarakis, A. Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary. Időjárás 2009, 113, 221–231. [Google Scholar]
- Kántor, N.; Égerházi, L.; Unger, J. Subjective estimation of thermal environment in recreational urban spaces-Part 1: Investigations in Szeged, Hungary. Int. J. Biometeorol. 2012, 56, 1089–1101. [Google Scholar] [CrossRef]
- Bašarin, B.; Kržić, A.; Lazić, L.; Lukić, T.; Ðorđević, J.; Janićijević Petrović, B.; Čopić, S.; Matić, D.; Hrnjak, I.; Matzarakis, A. Evaluation of bioclimate conditions in two special nature reserves in Vojvodina (Nothern Serbia). Carpathian J. Earth. Environ. Sci. 2014, 9, 93–108. [Google Scholar]
- Bašarin, B.; Lukić, T.; Mesaros, M.; Pavić, D.; Ðorđević, J.; Matzarakis, A. Spatial and temporal analysis of extreme bioclimate conditions in Vojvodina, Nothern Serbia. Int. J. Climatol. 2018, 38, 142–157. [Google Scholar] [CrossRef]
- Ács, F.; Zsákai, A.; Kristóf, E.; Szabó, A.I.; Feddema, J.; Breuer, H. Clothing resistance and potential evapotranspiration as thermal climate indicators–The example of the Carpathian region. Int. J. Climatol. 2021, 41, 3107–3120. [Google Scholar] [CrossRef]
- Ács, F.; Zsákai, A.; Kristóf, E.; Szabó, A.I.; Breuer, H. Human thermal climate of the Carpathian Basin. Int. J. Climatol. 2021, 41, E1846–E1859. [Google Scholar] [CrossRef]
- Auliciems, A.; de Freitas, C.R. Cold Stress in Canada. A Human Climatic Classification. Int. J. Biometeorol. 1976, 20, 287–294. [Google Scholar] [CrossRef]
- de Freitas, C.R. Human Climates of Northern China. Atmos. Environ. 1979, 13, 71–77. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Oliver, J.E. The Clo: A Utilitarian Unit to Measure Weather/Climate Comfort. Int. J. Climatol. 1996, 16, 1045–1056. [Google Scholar] [CrossRef]
- Yan, Y. Human Thermal Climates in China. Phys. Geogr. 2005, 26, 163–176. [Google Scholar] [CrossRef]
- Robaa, S.M.; Hasanean, H.M. Human Climates of Egypt. Int. J. Climatol. 2007, 27, 781–792. [Google Scholar] [CrossRef]
- Ács, F.; Kristóf, E.; Zsákai, A. New Clothing Resistance Scheme for Estimating Outdoor Environmental Thermal Load. Geogr. Pannonica 2019, 23, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Ács, F.; Kristóf, E.; Zsákai, A.; Kelemen, B.; Szabó, Z.; Marques Vieira, L.A. Weather in the Hungarian Lowland from the Point of View of Humans. Atmosphere 2021, 12, 84. [Google Scholar] [CrossRef]
- Essenwanger, O.M. General Climatology 1C: Classification of Climates; Elsevier Science: Amsterdam, The Netherlands; New York, NY, USA, 2001; ISBN 978-0-444-88278-3. [Google Scholar]
- Köppen, W. Handbuch der Klimatologie. In Das Geographische System Der Klimate; Verlag von Gebrüder Borntraeger: Berlin, Germany, 1936; Volume I/C. [Google Scholar]
- Katić, K.; Li, R.; Zeiler, W. Thermophysiological Models and Their Applications: A Review. Build. Environ. 2016, 106, 286–300. [Google Scholar] [CrossRef]
- Weyand, P.G.; Smith, B.R.; Puyau, M.R.; Butte, N.F. The Mass-Specific Energy Cost of Human Walking Is Set by Stature. J. Exp. Biol. 2010, 213, 3972–3979. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A New Predictive Equation for Resting Energy Expenditure in Healthy Individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Nonobese and Obese Adults: A Systematic Review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef]
- Dubois, D.; Dubois, E.F. The Measurement of the Surface Area of Man. Arch. Intern. Med. 1915, 15, 868–881. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J. An Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1997; ISBN 978-0-387-94937-6. [Google Scholar]
- Auliciems, A.; Kalma, J.D. A Climatic Classification of Human Thermal Stress in Australia. J. Appl. Meteorol. 1979, 18, 616–626. [Google Scholar] [CrossRef]
- Zsákai, A.; Mascie-Taylor, N.; Bodzsar, E.B. Relationship between Some Indicators of Reproductive History, Body Fatness and the Menopausal Transition in Hungarian Women. J. Physiol. Anthropol. 2015, 34, 35. [Google Scholar] [CrossRef]
- Finn, K.J.; Saint-Maurice, P.F.; Karsai, I.; Ihász, F.; Csányi, T. Agreement Between Omron 306 and Biospace InBody 720 Bioelectrical Impedance Analyzers (BIA) in Children and Adolescents. Res. Q. Exerc. Sport 2015, 86, S58–S65. [Google Scholar] [CrossRef] [PubMed]
- Spinoni, J.; Antofie, T.; Barbosa, P.; Bihari, Z.; Lakatos, M.; Szalai, S.; Szentimrey, T.; Vogt, J. Comparing Four Drought Indicators in the Carpathian Region on a 0.1 × 0.1 Regular Grid for 1961–2010. In Proceedings of the 12th EMS–9th ECAC Conference, Lodz, Poland, 10–14 September 2012. [Google Scholar]
- Spinoni, J.; Szalai, S.; Szentimrey, T.; Lakatos, M.; Bihari, Z.; Nagy, A.; Németh, Á.; Kovács, T.; Mihic, D.; Dacic, M.; et al. Climate of the Carpathian Region in the Period 1961–2010: Climatologies and Trends of 10 Variables. Int. J. Climatol. 2015, 35, 1322–1341. [Google Scholar] [CrossRef] [Green Version]
- Cheval, S.; Birsan, M.-V.; Dumitrescu, A. Climate Variability in the Carpathian Mountains Region over 1961–2010. Glob. Planet. Chang. 2014, 118, 85–96. [Google Scholar] [CrossRef]
- Szentimrey, T. Multiple Analysis of Series for Homogenization; Hungarian Meteorological Service: Budapest, Hungary, 2011. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of Appropriate Thermal Indices for Applications in Human Biometeorological Studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Führer, E.; Horváth, L.; Jagodics, A.; Machon, A.; Szabados, I. Application of a New Aridity Index in Hungarian Forestry Practice. Időjaras 2011, 115, 205–216. [Google Scholar]
- Feddema, J.J. A Revised Thornthwaite-Type Global Climate Classification. Phys. Geogr. 2005, 26, 442–466. [Google Scholar] [CrossRef]
- Holdridge, L.R. Determination of World Plant Formations From Simple Climatic Data. Science 1947, 105, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Ács, F.; Breuer, H. Biofizikai Éghajlat-Osztályozási Módszerek (Biophysical Climate Classification Methods); ELTE Reader: Budapest, Hungary, eBook; 2013; Available online: https://www.eltereader.hu/kiadvanyok/biofizikai-eghajlat-osztalyozasi-modszerek/ (accessed on 21 August 2022).
- Szelepcsényi, Z.; Breuer, H.; Kis, A.; Pongrácz, R.; Sümegi, P. Assessment of Projected Climate Change in the Carpathian Region Using the Holdridge Life Zone System. Theor. Appl. Climatol. 2018, 131, 593–610. [Google Scholar] [CrossRef]
- Mitchell, T.; Carter, T.; Jones, P.; Hulme, M. A Comprehensive Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: The Observed Record (1901–2000) and 16 Scenarios (2001–2100). Tyndall Cent. Work. Pap. 2004, 55, 25. [Google Scholar]
Persons | Sex | Age [Years] | Body Mass [kg] | Body Length [cm] | Basal Metabolic Heat Flux Density [Wm−2] | Walking Energy Flux Density [Wm−2] | Total Energy Flux Density [Wm−2] |
---|---|---|---|---|---|---|---|
Person 1 | male | 19 | 85.5 | 179 | 45.2 | 101.7 | 146.9 |
Person 2 | female | 33 | 65.5 | 169 | 38.8 | 96.1 | 134.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ács, F.; Kristóf, E.; Szabó, A.I.; Breuer, H.; Szalkai, Z.; Zsákai, A. New Air Temperature- and Wind Speed-Based Clothing Thermal Resistance Scheme—Estimations for the Carpathian Region. Climate 2022, 10, 131. https://doi.org/10.3390/cli10090131
Ács F, Kristóf E, Szabó AI, Breuer H, Szalkai Z, Zsákai A. New Air Temperature- and Wind Speed-Based Clothing Thermal Resistance Scheme—Estimations for the Carpathian Region. Climate. 2022; 10(9):131. https://doi.org/10.3390/cli10090131
Chicago/Turabian StyleÁcs, Ferenc, Erzsébet Kristóf, Amanda Imola Szabó, Hajnalka Breuer, Zsófia Szalkai, and Annamária Zsákai. 2022. "New Air Temperature- and Wind Speed-Based Clothing Thermal Resistance Scheme—Estimations for the Carpathian Region" Climate 10, no. 9: 131. https://doi.org/10.3390/cli10090131
APA StyleÁcs, F., Kristóf, E., Szabó, A. I., Breuer, H., Szalkai, Z., & Zsákai, A. (2022). New Air Temperature- and Wind Speed-Based Clothing Thermal Resistance Scheme—Estimations for the Carpathian Region. Climate, 10(9), 131. https://doi.org/10.3390/cli10090131