Towards a Safe Hydrogen Economy: An Absolute Climate Sustainability Assessment of Hydrogen Production
Abstract
:1. Introduction
- Act as storage for surplus intermittent renewable electricity sources
- Assist in decarbonizing hard-to-electrify sectors (i.e., long-distance transport and heavy industry)
- Serve as a feedstock in chemical and fuel production (potentially replacing fossil fuels, dependent on use case).
2. Materials and Methods
3. Results
3.1. Annual Emissions
3.2. “Safe” Space Implications
3.3. Additional “Safe” Considerations for Green Hydrogen
3.4. Additional “Safe” Considerations for Blue Hydrogen
3.5. Science-Based “Clean” Certification for Hydrogen
4. Discussion
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Nielsen, C.P.; Song, S.; McElroy, M.B. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat. Energy 2022, 7, 955–965. [Google Scholar] [CrossRef]
- an Renssen, S. The hydrogen solution? Nat. Clim. Chang. 2020, 10, 799–801. [Google Scholar] [CrossRef]
- McCay, M.H.; Shafiee, S. Hydrogen: An energy carrier. In Future Energy; Durban, Laurel House, Stratton on the Fosse, United Kingdom; Elsevier: Amsterdam, The Netherlands, 2020; pp. 475–493. [Google Scholar]
- Bockris, J.M.; Appleby, A.J. The hydrogen economy-an ultimate economy. Environ. This Mon. 1972, 1, 29–35. [Google Scholar]
- IEA. Global Hydrogen Review 2022, IEA. Paris. License: CC BY 4. 2022. Available online: https://www.iea.org/reports/global-hydrogen-review-2022 (accessed on 1 December 2022).
- IRENA. Geopolitics of the Energy Transformation: The Hydrogen Factor; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022.
- Quarton, C.; Tlili, O.; Welder, L.; Mansilla, C.; Blanco, H.; Heinrichs, H.; Leaver, J.; Samsatli, N.; Lucchese, P.; Robinius, M.; et al. The curious case of the conflicting roles of hydrogen in global energy scenarios. Sustain. Energy Fuels 2020, 4, 80–95. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, S.; Sovacool, B.K.; Kim, J.; Bazilian, M.; Uratani, J.M. Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Res. Soc. Sci. 2021, 80, 102208. [Google Scholar] [CrossRef]
- IEA. Net Zero by 2050 A Roadmap for the Global Energy Sector, IEA, Paris. 2017. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 1 December 2022).
- Hydrogen Council. Hydrogen: Scaling Up; 2017 Hydrogen Council: Brussels, Belgium, 2017. [Google Scholar]
- Hydrogen Council. Hydrogen Decarbonization Pathways: Potential Supply Scenarios; The Hydrogen Council: Brussels, Belgium, 2021. [Google Scholar]
- Energy Transitions Commission. Making Mission Possible: Delivering a Net-Zero Economy; Energy Transitions Commission: London, UK, 2020.
- Energy Transitions Commission. Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy; Energy Transitions Commission: London, UK, 2021.
- Bordoff, J.; O’Sullivan, M.L. Green Upheaval: The New Geopolitics of Energy. Foreign Aff. 2022, 101, 68. [Google Scholar]
- European Commission. REPowerEU: Joint European Action for More Affordable, Secure and Sustainable Energy; European Commission: Strasbourg, France, 2022.
- Parkinson, B.; Balcombe, P.; Speirs, J.F.; Hawkes, A.D.; Hellgardt, K. Levelized cost of CO2 mitigation from hydrogen production routes. Energy Environ. Sci. 2019, 12, 19–40. [Google Scholar] [CrossRef]
- Howarth, R.W.; Jacobson, M.Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9, 1676–1687. [Google Scholar] [CrossRef]
- Ardabili, S.F.; Najafi, B.; Shamshirband, S.; Bidgoli, B.M.; Deo, R.; Chau, K.-W. Computational intelligence approach for modeling hydrogen production: A review. Eng. Appl. Comput. Fluid Mech. 2018, 12, 438–458. [Google Scholar]
- IEA. Global Hydrogen Review 2021, IEA, Paris. 2021. Available online: https://www.iea.org/reports/global-hydrogen-review-2021 (accessed on 1 December 2022).
- Bauer, C.; Treyer, K.; Antonini, C.; Bergerson, J.; Gazzani, M.; Gencer, E.; Gibbins, J.; Mazzotti, M.; McCoy, S.T.; McKenna, R.; et al. On the climate impacts of blue hydrogen production. Sustain. Energy Fuels 2022, 6, 66–75. [Google Scholar] [CrossRef]
- Tetteh, D.; Salehi, S. The Blue Hydrogen Economy: A Promising Option for the Near-To-Mid-Term Energy Transition. J. Energy Resour. Technol. 2023, 145, 042701. [Google Scholar] [CrossRef]
- IEA, The Future of Hydrogen, IEA, Paris. 2019. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 1 December 2022).
- IEA. Could the Green Hydrogen Boom Lead to Additional Renewable Capacity by 2026? IEA, 2021. Available online: https://www.iea.org/articles/could-the-green-hydrogen-boom-lead-to-additional-renewable-capacity-by-2026 (accessed on 1 December 2022).
- Newborough, M.; Cooley, G. Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bull. 2020, 2020, 16–22. [Google Scholar] [CrossRef]
- Feiveson, H.A. A skeptic’s view of nuclear energy. Daedalus 2009, 138, 60–70. [Google Scholar] [CrossRef]
- IRENA; JRC. Benchmarking Scenario Comparisons: Key Indicators, International Renewable Energy Agency; European Commission’s Joint Research Centre: Abu Dhabi, United Arab Emirates; Brussels, Belgium, 2021. [Google Scholar]
- Cheng, W.; Lee, S. How Green Are the National Hydrogen Strategies? Sustainability 2022, 14, 1930. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F., III; Lambin, E.; Lenton, T.; Scheffer, M.; Folke, C.; Schellnhuber, H.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Raworth, K. Doughnut Economics: Seven Ways to Think like a 21st-Century Economist; Chelsea Green Publishing: Chelsea, VT, USA, 2017. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Cau, Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.; Andrew, R.; Hauck, J.; Olsen, A.; Peters, G.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.; O’Sullivan, M.; Andrew, R.; Bakker, D.; Hauck, J.; Quéré, L.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global carbon budget 2021. Earth Syst. Sci. Data Discuss. 2021, 1–191. [Google Scholar]
- IPCC. Summary for Policymakers: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- European Commission. E.U. Taxonomy: Technical Annex 1-Economic Activities Contributing Substantially to Climate Change Mitigation; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- CertifHy, CertifHy Leaflet, CertifHy. 2021. Available online: https://www.certifhy.eu/wp-content/uploads/2021/10/CertifHy_folder__leaflets.pdf (accessed on 1 December 2022).
- IPCC. Working Group III contribution, Climate Change 2022: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- White, L.; Fazeli, R.; Cheng, W.; Aisbett, E.; Beck, F.; Baldwin, K.; Howarth, P.; O’Neill, L. Towards emissions certification systems for international trade in hydrogen: The policy challenge of defining boundaries for emissions accounting. Energy 2021, 215, 119139. [Google Scholar] [CrossRef]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The great acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Bjørn, A.; Chandrakumar, C.; Boulay, A.; Doka, G.; Fang, K.; Gondran, N.; Hauschild, M.; Kerkhof, A.; King, H.; Margni, M.; et al. Review of life-cycle based methods for absolute environmental sustainability assessment and their applications. Environ. Res. Lett. 2020, 15, 083001. [Google Scholar] [CrossRef]
- an de Graaf, T.; Overland, I.; Scholten, D.; Westphal, K. The new oil? The geopolitics and international governance of hydrogen. Energy Res. Soc. Sci. 2020, 70, 101667. [Google Scholar] [CrossRef] [PubMed]
- Corporate Europe Observatory. The Hydrogen Hype: GAS Industry Fairy Tale or Climate Horror; Corporate Europe Observatory: Brussels, Belgium, 2020. [Google Scholar]
- Bjørn, A.; Margni, M.; Roy, P.O.; Bulle, C.; Hauschild, M.Z. A proposal to measure absolute environmental sustainability in life cycle assessment. Ecol. Indic. 2016, 63, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wiedmann, T.; Fang, K.; Hadjikakou, M. The role of planetary boundaries in assessing absolute environmental sustainability across scales. Environ. Int. 2021, 152, 106475. [Google Scholar] [CrossRef]
- Hydrogen Council, Path to Hydrogen Competitveness: A Cost Perspective, Hydrogen Council. 2020. Available online: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf (accessed on 1 December 2022).
- ISO. International Standard ISO 14040; Environmental Management—Life Cycle Assessment—Principals and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; Vries, W.; Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Chang; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018.
- Ritchie, H.; Roser, M. CO₂ and Greenhouse Gas Emissions, Our World in Data. 2020. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 1 December 2022).
- Zhang, X.; Myhrvold, N.P.; Caldeira, K. Key factors for assessing climate benefits of natural gas versus coal electricity generation. Environ. Res. Lett. 2014, 9, 114022. [Google Scholar] [CrossRef] [Green Version]
- Plant, G.; Kort, E.A.; Floerchinger, C.; Gvakharia, A.; Vimont, I.; Sweeney, C. Large Fugitive Methane Emissions from Urban Centers Along the U.S. East Coast. Geophys. Res. Lett. 2019, 46, 8500–8507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collodi, G.; Azzaro, G.; Ferrari, N.; Santos, S. Techno-economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel. Energy Procedia 2017, 114, 2690–2712. [Google Scholar] [CrossRef]
- Howarth, R.W. Chapter 6: Methane and Climate Change. In Environmental Impacts from Development of Unconventional Oil and Gas Reserves; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Vilbergsson, K.; Dillman, K.; Emami, N.; Ásbjörnsson, E.; Heinonen, J.; Finger, D. Can remote green hydrogen production play a key role in decarbonizing Europe in the future? A cradle to gate LCA of hydrogen production in Austria, Belgium and Iceland. Int. J. Hydrog. Energy Forthcoming.
- IEA. IEA Data and Statistics. Available online: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energy%20supply&indicator=RenewGenBySource (accessed on 2 February 2022).
- Calvo, G.; Valero, A. Strategic mineral resources: Availability and future estimations for the renewable energy sector. Environ. Dev. 2021, 100640. [Google Scholar] [CrossRef]
- Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508. [Google Scholar] [CrossRef]
- United Nations Environment Programme and Climate and Clean Air Coalition. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme: Nairobi, Kenya, 2021.
- Sekera, J.; Lichtenberger, A. Assessing carbon capture: Public policy, science, and societal need. Biophys. Econ. Sustain. 2020, 5, 1–28. [Google Scholar] [CrossRef]
- Global CSS Institute. Global Status of CCS 2021: CCS Accelerating to Net Zero; Global CSS Institute: Melbourne, Australia, 2021. [Google Scholar]
- Olea, R. CO2 retention values in enhanced oil recovery. J. Pet. Sci. Eng. 2015, 189, 23–28. [Google Scholar] [CrossRef]
- Nogrady, B. Most fossil-fuel reserves must remain untapped to hit 1.5 °C warming goal. Nature 2021, 597, 316–317. [Google Scholar] [CrossRef]
- SBTi. SBTi Corporate Manual; Science Based Target Initiative, 2021. [Google Scholar]
- Creutzig, F.; Roy, J.; Lamb, W.F.; Azevedo, I.M.; De Bruin, W.B.; Dalkmann, H.; Edelenbosch, O.Y.; Geels, F.W.; Grubler, A.; Hepburn, C.; et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Chang. 2018, 8, 260–263. [Google Scholar] [CrossRef]
- Dillman, K.; Czepkiewicz, M.; Heinonen, J.; Fazeli, R.; Árnadóttir, Á.; Davíðsdóttir, B.; Shafiei, E. Decarbonization scenarios for Reykjavik’s passenger transport: The combined effects of behavioural changes and technological developments. Sustain. Cities Soc. 2021, 65, 102614. [Google Scholar] [CrossRef]
- US Government. Inflation Reduction Act of 2022, US Government. 2022. Available online: https://www.documentcloud.org/documents/22122279-inflation-reduction-act-of-2022 (accessed on 1 December 2022).
- Longden, T.; Beck, F.J.; Jotzo, F.; Andrews, R.; Prasad, M. ‘Clean’ hydrogen?–Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Appl. Energy 2022, 306, 118145. [Google Scholar] [CrossRef]
- Keyßer, L.T.; Lenzen, M. 1.5 C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Creutzig, F.; Erb, K.; Haberl, H.; Hof, C.; Hunsberger, C.; Roe, S. Considering sustainability thresholds for BECCS in IPCC and biodiversity assessments. GCB Bioenergy 2021, 13, 510–515. [Google Scholar] [CrossRef]
- Anderson, K.; Peters, G. The trouble with negative emissions. Science 2016, 354, 182–183. [Google Scholar] [CrossRef] [Green Version]
- Hickel, J.; Kallis, G. Is Green Growth Possible? New Politi-Econ. 2020, 25, 469–486. [Google Scholar] [CrossRef]
- Fuchs, D.; Sahakian, M.; Gumbert, T.; Di Giulio, A.; Maniates, M.; Lorek, S.; Graf, A. Consumption Corridors: Living a Good Life within Sustainable Limits; Routledge: London, UK, 2021. [Google Scholar]
- Dillman, K.J.; Czepkiewicz, M.; Heinonen, J.; Davíðsdóttir, B. A safe and just space for urban mobility: A framework for sector-based sustainable consumption corridor development. Glob. Sustain. 2021, 4, e28. [Google Scholar] [CrossRef]
- Ministry of Energy. Government of Chile, National Green Hydrogen Strategy, Ministry of Energy; Government of Chile: Santiago, Chile, 2020.
- Department of Industry. Innovation and Science, Commonwealth of Australia, Australia’s National Hydrogen Strategy; Department of Industry, Innovation and Science, Commonwealth of Australia, 2019.
- Herrmann, I.T.; Hauschild, M.Z.; Sohn, M.D.; McKone, T.E. Confronting Uncertainty in Life Cycle Assessment Used for Decision Support. J. Ind. Ecol. 2014, 18, 366–379. [Google Scholar] [CrossRef]
- van der Spek, M.; Banet, C.; Bauer, C.; Gabrielli, P.; Goldthorpe, W.; Mazzotti, M.; Munkejord, S.T.; Røkke, N.A.; Shah, N.; Sunny, N.; et al. Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 2022, 15, 1034–1077. [Google Scholar] [CrossRef]
- van Beek, L.; Oomen, J.; Hajer, M.; Pelzer, P.; van Vuuren, D. Navigating the political: An analysis of political calibration of integrated assessment modelling in light of the 1.5 °C goal. Environ. Sci. Policy 2022, 133, 193–202. [Google Scholar] [CrossRef]
- Jenkins, K.E.H.; Sovacool, B.K.; Mouter, N.; Hacking, N.; Burns, M.-K.; McCauley, D. The methodologies, geographies, and technologies of energy justice: A systematic and comprehensive review. Environ. Res. Lett. 2021, 16, 043009. [Google Scholar] [CrossRef]
- Scott, M.; Powells, G. Towards a new social science research agenda for hydrogen transitions: Social practices, energy justice, and place attachment. Energy Res. Soc. Sci. 2020, 61, 101346. [Google Scholar] [CrossRef]
- Falcone, P.; Hiete, M.; Sapio, A. Hydrogen Economy and Sustainable Development Goals (SDGs): Review and Policy Insights. Curr. Opin. Green Sustain. Chem. 2021, 31, 100506. [Google Scholar]
- Enevoldsen, P.; Sovacool, B.K. Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France. Renew. Sustain. Energy Rev. 2016, 53, 178–184. [Google Scholar] [CrossRef]
- Dillman, K.J.; Heinonen, J. A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy. Renew. Sustain. Energy Rev. 2022, 167, 112648. [Google Scholar] [CrossRef]
- Müller, F.; Tunn, J.; Kalt, T. Hydrogen justice. Environ. Res. Lett. 2022, 17, 115006. [Google Scholar] [CrossRef]
- Goulder, L.H. Timing Is Everything: How Economists Can Better Address the Urgency of Stronger Climate Policy. Rev. Environ. Econ. Policy 2020, 14. [Google Scholar] [CrossRef]
- KSeto, C.; Davis, S.J.; Mitchell, R.B.; Stokes, E.C.; Unruh, G.; Ürge-Vorsatz, D. Carbon Lock-In: Types, Causes, and Policy Implications. Annu. Rev. Environ. Resour. 2016, 41, 425–452. [Google Scholar]
- Kan, S.; Chen, B.; Chen, G. Worldwide energy use across global supply chains: Decoupled from economic growth? Appl. Energy 2019, 250, 1235–1245. [Google Scholar] [CrossRef]
- ICapellán-Pérez, I.; de Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef] [Green Version]
- Eurek, K.; Sullivan, P.; Gleason, M.; Hettinger, D.; Heimiller, D.; Lopez, A. An improved global wind resource estimate for integrated assessment models. Energy Econ. 2017, 64, 552–567. [Google Scholar] [CrossRef]
Model | Scenario Name | Scenario Code | % of Global Energy Demand Met by Hydrogen by 2050 | Total Hydrogen Demand in 2050 (in Mt) | Hydrogen Use by Colour by 2050 (Green/Blue Hydrogen Split) |
---|---|---|---|---|---|
International Energy Agency | Sustainable development scenario | IEA SDS | 8.8% | 287.2 | 59/40 |
Net Zero Emission scenario | IEA NZE | 20.3% | 528.2 | 59/40 | |
Hydrogen Council | High green | HC G | 18% | 650 | 75/25 |
Even split | HC 50/50 | 18% | 650 | 50/50 | |
High blue | HC B | 18% | 650 | 25/75 | |
Energy Transitions Commission | Low demand | ETC LD | 13% | 540 | 85/15 |
High demand | ETC HD | 24% | 813 | 85/15 |
Means of Production | High | Low | Expected 2020 | Expected 2050 | Source |
---|---|---|---|---|---|
Coal Gasification | 25.31 | 14.40 | 19.14 | 19.14 | [16] |
SMR | 15.86 | 10.72 | 12.4 | 12.4 | |
Green—wind | 2.20 | 0.80 | 1.34 | 0.80 | |
Green—solar | 7.10 | 1.99 | 3.74 | 2.99 | |
Green—assumed 50/50 split | 4.65 | 1.40 | 2.54 | 1.90 | Calculated |
Blue | 12.70 | 2.70 | 8.04 a | 2.70 b | [20] |
Model | Scenario | Total Cumulative Emissions 2020–2050 (Gt CO2eq.) | % of Remaining Carbon Budget Consumed (2020–2050) | Annual Emission by 2050 (GtCO2eq./yr) | 2050 Safe Space for Hydrogen (GtCO2eq./yr) | Overshoot in 2050 | Necessary Average Emission Factor (kgCO2eq./kg H2) |
---|---|---|---|---|---|---|---|
IEA | SDS | 25.1 (18.9–46.2) | 8% (6–14%) | 0.67 (0.58–2.30) | 0.10 | 6.7 (5.8–23.0) | 0.35 |
NZE | 50.7 (37.8–95.5) | 16% (12–30%) | 1.24 (1.07–4.23) | 0.23 | 5.4 (4.6–18.4) | 0.44 | |
HC | HC G | 32.4 (24.4–63.8) | 10% (8–20%) | 1.37 (1.12–4.33) | 0.20 | 6.8 (5.6–21.7) | 0.32 |
HC 50/50 | 35.4 (26.5–76.6) | 11% (8–24%) | 1.50 (5.64–1.33) | 0.20 | 7.5 (6.7–28.2) | 0.32 | |
HC B | 38.4 (28.6–89.5) | 12% (9–28%) | 1.63 (6.95–1.54) | 0.20 | 8.1 (7.7–34.7) | 0.32 | |
ETC | ETC LD | 33.2 (24.4–66.2) | 10% (8–21%) | 1.09 (0.86–3.16) | 0.15 | 7.3 (5.7–21.1) | 0.27 |
ETC HD | 41.2 (29.9–86.8) | 13% (9–27%) | 1.64 (1.30–4.76) | 0.27 | 6.1 (4.8–17.6) | 0.34 |
Model | Scenario | Electricity Demand per Scenario at 2050 (GWh) | Multiplier of Todays Annual RE Generation (2019) | 100% Solar Land Footprint Range (in m km2) | 100% Wind Terrestial Footprint Range (in Million km2) | 100% Wind Offshore Area Required Range (in Million km2) |
---|---|---|---|---|---|---|
IEA | SDS | 5,926,550 | 0.91 | 0.34–1.69 | 0.76–3.04 | 0.43–1.71 |
NZE | 10,907,330 | 1.67 | 0.62–3.11 | 1.4–5.59 | 0.79–3.15 | |
Hydrogen Council | High green | 17,062,500 | 2.61 | 0.97–4.87 | 2.19–8.75 | 1.23–4.92 |
Even split | 11,375,000 | 1.74 | 0.65–3.25 | 1.46–5.83 | 0.82–3.28 | |
High blue | 5,687,500 | 0.87 | 0.32–1.62 | 0.73–2.92 | 0.41–1.64 | |
Energy Transition Commission | Low demand | 16,065,000 | 2.46 | 0.92–4.58 | 2.06–8.24 | 1.16–4.63 |
High demand | 24,186,750 | 3.70 | 1.38–6.9 | 3.1–12.4 | 1.74–6.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dillman, K.; Heinonen, J. Towards a Safe Hydrogen Economy: An Absolute Climate Sustainability Assessment of Hydrogen Production. Climate 2023, 11, 25. https://doi.org/10.3390/cli11010025
Dillman K, Heinonen J. Towards a Safe Hydrogen Economy: An Absolute Climate Sustainability Assessment of Hydrogen Production. Climate. 2023; 11(1):25. https://doi.org/10.3390/cli11010025
Chicago/Turabian StyleDillman, Kevin, and Jukka Heinonen. 2023. "Towards a Safe Hydrogen Economy: An Absolute Climate Sustainability Assessment of Hydrogen Production" Climate 11, no. 1: 25. https://doi.org/10.3390/cli11010025
APA StyleDillman, K., & Heinonen, J. (2023). Towards a Safe Hydrogen Economy: An Absolute Climate Sustainability Assessment of Hydrogen Production. Climate, 11(1), 25. https://doi.org/10.3390/cli11010025