The Effect of Climate Variability on Cultivated Crops’ Yield and Farm Income in Chiang Mai Province, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Types
2.2.1. Secondary Data
2.2.2. Primary Data
2.3. Data Analysis
2.3.1. Analysis of Long-Term Climate Variability and Trends
2.3.2. Analysis of Socio-Economic Factors Influencing Farm Net Income
3. Results
3.1. Long-Term Trend of Climate Variability in Chiang Mai (between 1990 and 2020)
3.2. Trend of Main Crop Yield in Chiang Mai between 2002 and 2020
3.3. Correlation between Climate Variability (Rainfall and Temperature) and Crop Yield
3.4. Socio-Economic Factors Influencing Net Income
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The UCAR Center for Science Education Explore Page. Available online: https://scied.ucar.edu/learning-zone/how-climate-works/climate-variability (accessed on 26 September 2023).
- Van der Wiel, K.; Bintanja, R. Contribution of Climatic Changes in Mean and Variability to Monthly Temperature and Precipitation Extremes. Commun. Earth Environ. 2021, 2, 1. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, T.F.V.; Stocker, D.; Qin, D.J.; Dokken, K.L.; Ebi, M.D.; Mastrandrea, K.J.; Mach, G.-K.; Plattner, S.K.; Allen, M.T.; et al. (Eds.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; 582p. [Google Scholar]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate Variability and Vulnerability to Climate Change: A Review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Li, M.; Lenzen, M.; Fry, J.; Liyanapathirana, N.; Beyer, K.; Boylan, S.; Lee, A.; Raubenheimer, D.; Geschke, A.; et al. Impacts of Climate Change and Extreme Weather on Food Supply Chains Cascade across Sectors and Regions in Australia. Nat. Food 2022, 3, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate Change Impact on Major Crop Yield and Water Footprint under CMIP6 Climate Projections in Repeated Drought and Flood Areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef]
- Holleman, C.; Rembold, F.; Crespo, O.; Conti, V. The Impact of Climate Variability and Extremes on Agriculture and Food Security—An Analysis of the Evidence and Case Studies; Background paper for The State of Food Security and Nutrition in the World 2018. FAO Agricultural Development Economics Technical Study No. 4.; FAO: Rome, Italy, 2020; ISBN 978-92-5-133718-9. [Google Scholar] [CrossRef]
- Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M. Climate Change Induced Transformations of Agricultural Systems: Insights from a Global Model. Environ. Res. Lett. 2014, 9, 124018. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Rosenthal, S. Climate Change and Agriculture: A Review of Impacts and Adaptations; Environment Department Papers 2013; no. 91. Climate Change Series. © World Bank, Washington, DC. Available online: http://hdl.handle.net/10986/16616 (accessed on 5 August 2023).
- Johnston, T.; Chiotti, Q. Climate Change and the Adaptability of Agriculture: A Review. J. Air Waste Manag. Assoc. 2000, 50, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Limjirakan, S.; Limsakul, A. Observed Trends in Surface Air Temperatures and Their Extremes in Thailand from 1970 to 2009. J. Meteorol. Soc. Japan. Ser. II 2012, 90, 647–662. [Google Scholar] [CrossRef]
- Thailand. Thailand’s Third National Communication (TNC) 2020. Available online: https://unfccc.int/documents/181765?gclid=Cj0KCQjwpc-oBhCGARIsAH6ote-JiGcl75YIlLtdIUp_BLx2E-ZNo9yOdl64r4TBDWA6xCoB-phFArsaAr3rEALw_wcB (accessed on 22 August 2023).
- Thailand. Thailand’s Fourth Biennial Update Report 2022. Available online: https://unfccc.int/sites/default/files/resource/Thailand_BUR4_final_28122022.pdf (accessed on 6 August 2023).
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver Lining to a Climate Crisis in Multiple Prospects for Alleviating Crop Waterlogging under Future Climates. Nat. Commun. Vol. 2023, 14, 765. [Google Scholar] [CrossRef]
- Seo, S.N.; Mendelsohn, R. An Analysis of Crop Choice: Adapting to Climate Change in South American Farms. Ecol. Econ. 2008, 67, 109–116. [Google Scholar] [CrossRef]
- Huho, J.M. Rain-Fed Agriculture and Climate Change: An Analysis of The Most Appropriate Planting Dates in Central Division of Laikipia District, Kenya. Int. J. Curr. Res. 2011, 3, 172–182. [Google Scholar]
- Vermeulen, S.J.; Dinesh, D.; Howden, S.M.; Cramer, L.; Thornton, P.K. Transformation in Practice: A Review of Empirical Cases of Transformational Adaptation in Agriculture Under Climate Change. Front. Sustain. Food Syst. 2018, 2, 65. [Google Scholar] [CrossRef]
- Attavanich, W. How Is Climate Change Affecting Thailand’s Agriculture? A Literature Review with Policy Update. 2018. Available online: https://ap.fftc.org.tw/article/1359 (accessed on 12 September 2023).
- Uppanunchai, A.; Chitmanat, C.; Lebel, L. Mainstreaming Climate Change Adaptation into Inland Aquaculture Policies in Thailand. Clim. Policy 2018, 18, 86–98. [Google Scholar] [CrossRef]
- Thepent, V.; UN.ESCAP. Agricultural Mechanization in Thailand; CSAM Policy Brief, 2015, Issue No. 6, June. Available online: https://hdl.handle.net/20.500.12870/4507 (accessed on 5 August 2023).
- USAID. Thailand: Property Rights and Resource Governance Profile. Available online: https://www.land-links.org/wp-content/uploads/2016/09/USAID_Land_Tenure_Thailand_Profile.pdf (accessed on 19 February 2023).
- Nguyen, T.P.; Development of Fruits Production in Thailand. Center for Applied Economic Research, Kasetsart University Thailand. Available online: http://caer.eco.ku.ac.th/2019/wp-content/uploads/2018/11/Development-of-fruits-production-in-Thailand.final_.pdf (accessed on 5 August 2023).
- Foreign Agricultural Service, U.S. Department of Agriculture Crop Production Maps Page. Southeast Asia—Crop Production Maps. Available online: https://ipad.fas.usda.gov/rssiws/al/seasia_cropprod.aspx (accessed on 6 August 2023).
- Eng, P. Can Der. Productivity and Comparative Advantage in Rice Agriculture in South-East Asia Since 1870. Asian Econ. J. 2004, 18, 345–370. [Google Scholar] [CrossRef]
- Panupong, D.; Anupong, W.; Prathanthip, K.; Chalermpon, J. Efficiency Differences on Rice Production Between Thailand and Vietnam Using Meta-Frontier. Int. J. Bus. Manag. Adm. (IJBMA) 2018, 8, 22–33. [Google Scholar]
- Statista Tropical Fruit Industry in Thailand–Statistics & Facts. Available online: https://www.statista.com/topics/9681/tropical-fruit-industry-in-thailand/#topicOverview (accessed on 9 June 2023).
- Wattanachant, C. Thailand 4.0: Future of Livestock and Poultry Industry in Thailand. In Proceedings of the 5th ASEAN Regional Conference on Animal Production and 39th Annual Conference of the Malaysian Society of Animal Production: Dayang Bay, Langkawi, Malaysia, 26–28 November 2019; Available online: https://www.researchgate.net/publication/337648832_Thailand_40_Future_of_livestock_and_poultry_industry_in_Thailand (accessed on 10 March 2023).
- McConnell, D.; Dillon, J.L. Farm Management for Asia: A Systems Approach. (FAO Farm Systems Management Series–13); Department of Agricultural and Resource Economics: Armidale, Australia, 1997; ISBN 92-5-104011-X. [Google Scholar]
- Nara, P.; Mao, G.-G.; Yen, T.-B. Climate Change Impacts on Agricultural Products in Thailand: A Case Study of Thai Rice at the Chao Phraya River Basin. APCBEE Procedia 2014, 8, 136–140. [Google Scholar] [CrossRef]
- Pipitpukdee, S.; Attavanich, W.; Bejranonda, S. Impact of Climate Change on Land Use, Yield and Production of Cassava in Thailand. Agriculture 2020, 10, 402. [Google Scholar] [CrossRef]
- Sdoodee, S.; Rongsawat, S. Impact of Climate Change on Smallholders’ Rubber Production in Songkhla Province, Southern Thailand. In Proceedings of the 2012 International and National Conference for The Sustainable Community Development of “Local Community: The Foundation of Development in the ASEAN Economic Community (AEC)”, Khon Kaen University, Khon Kaen, Thailand, 16–19 February 2012. [Google Scholar]
- Escalada, M.M.; Luecha, M.; Heong, K.L. Social Impacts of Planthopper Outbreaks in Thailand. In Rice Planthoppers; Springer: Dordrecht, The Netherlands, 2015; pp. 191–207. [Google Scholar]
- Chitradon, R.; Boonya-aroonnet, S.; Thanapakpawin, P. Risk Management of Water Resources in Thailand in the Face of Climate Change. Thaiwater 2014. Available online: https://tiwrm.hii.or.th/web/index.php/knowledge/128-hydro-and-weather/295-riskmanagementclimate.html#:~:text=Risk%20Management%20of%20Water%20Resources%20in%20Thailand%20in%20the%20Face%20of%20Climate%20Change&text=Managing%20risks%20in%20water%20resources,food%20security%20for%20the%20country (accessed on 24 June 2023).
- OECD. Entrepreneurship in Regional Innovation Clusters; OECD: Paris, France, 2021; ISBN 9789264744851. [Google Scholar]
- Bicksler, R. The Role of Heritage Conservation in Disaster Mitigation: A Conceptual Framework for Connecting Heritage and Flood Management in Chiang Mai, Thailand. Urban Geogr. 2019, 40, 257–265. [Google Scholar] [CrossRef]
- Sirisunyaluck, R.; Singsin, P.; Kanjina, S. Factors Influencing the Adoption of Climate Change Adaptation Samong Rice Growers in Doi Saket District, Chiang Mai Province, Thailand. Int. J. Agric. Technol. 2020, 16, 129–142. [Google Scholar]
- Tangjitman, K.; Wongsawad, C.; Trisonthi, C.; Balslev, H.; Svenning, J.-C. Vulnerability Prediction of Medicinal Plants Used by Karen People in Chiang Mai Province to Climatic Change Using Species Distribution Model (SDM). In Sciences and Technology; Chiang Mai University: Chiang Mai, Thailand, 2014. [Google Scholar]
- Faysse, N.; Phiboon, K. Building Capacities for Change: Farmers Moving Away from Conventional Rice Farming in Prachinburi Province, Thailand. J. Community Dev. Res. (Humanit. Soc. Sci.) 2019, 12, 57–67. [Google Scholar] [CrossRef]
- Kwanmuang, K.; Pongputhinan, T.; Jabri, A.; Chitchumnung, P. Small-Scale Farmers under Thailand’ Farming System. FFTC Agricultural Policy Platform (FFTC-AP) 2020. Available online: https://ap.fftc.org.tw/article/2647 (accessed on 25 March 2023).
- Poapongsakorn, N. Overview of Rice Policy 2000–2018 in Thailand: A Political Economy Analysis. FFTC Agricultural Policy Platform (FFTC-AP) 2019. Available online: https://ap.fftc.org.tw/article/1426 (accessed on 25 March 2023).
- Mondal, S.; Haitook, T.; Simaraks, S. Farmers’ Knowledge, Attitude and Practice toward Organic Vegetables Cultivation in Northeast Thailand. Kasetsart J. Soc. Sci. 2014, 13, 158–166. [Google Scholar]
- Jantarasiri, U. Thai Agriculture Needs a Shake-U, Bangkok Post. Available online: https://www.bangkokpost.com/opinion/opinion/2444074/thai-agriculture-needs-a-shake-up (accessed on 23 November 2022).
- Ekachai, S. Organic Rice a Savior for Struggling Farmers. Available online: https://www.bangkokpost.com/opinion/opinion/1144877/organic-rice-a-saviour-for-struggling-farmers (accessed on 26 November 2016).
- Martin-Clouaire, R.; Rellier, J.-P. Dynamic Resource Allocation in a Farm Management Simulation. In Proceedings of the 19th International Congress on Modelling and Simulation, MODSIM, Perth, Australia, 12–16 December 2011. [Google Scholar]
- National Statistical Office. 2013 Agricultural Census Changwat Chiang Mai; National Statistical Office, Ministry of Information and Communication Technology: Statistical Forecasting Bureau, National Statistical Office, The Government Complex, Ratthaprasasanabhakti Building: Bangkok, Thailand, 2014.
- Supasub, S. Smallholder Farmers’ Adaptation in Agricultural Production in Expanded Urban Areas, Chiang Mai Province; Chiang Mai University: Chiang Mai, Thailand, 2020. [Google Scholar]
- Prabripu, P.; Wiboonpongse, A. Progressing Towards a Sufficiency Economy in Small Rice Farming Households in Northern Thailand. Appl. Econ. J. 2020, 27, 1–19. [Google Scholar]
- Wailes, E.J.; Chavez, E.C. ASEAN and Global Rice Situation and Outlook; Asian Development Bank: Mandaluyong City, Philippines, 2012; Available online: https://www.adb.org/sites/default/files/publication/29969/adb-wp-22-asean-global-rice-situation.pdf (accessed on 28 June 2023).
- Agriculture in Chiang Mai. Citylife Group. Available online: https://www.chiangmaicitylife.com/clg/business/agriculture/ (accessed on 21 February 2023).
- Shao, N.; Chaiyapa, W.; Cheng, L.K. Toward a Better Longan Pricing Policy_Case Study of Chiang Mai and Lumphum Provinces in Thailand. Policy Brief, School of Public Policy, Chiang Mai University, Thailand, 2022. Available online: https://spp.cmu.ac.th/wp-content/uploads/2022/07/7.-Nairong_Policy-brief-10July2022.pdf (accessed on 28 June 2023).
- Somyana, W. Evaluating the Achievement for the Efficiency Production Of Chiang Mai Farmers. Phranakhon Rajabhat Res. J. (Humanit. Soc. Sci.) 2020, 15, 33–42. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Gadedjisso-Tossou, A.; Adjegan, K.I.; Kablan, A.K.M. Rainfall and Temperature Trend Analysis by Mann–Kendall Test and Significance for Rainfed Cereal Yields in Northern Togo. Science 2021, 3, 17. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection. 2023. Available online: https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf (accessed on 7 May 2023).
- Meena, M. Rainfall Statistical Trend and Variability Detection Using Mann-Kendall Test, Sen’s Slope and Coefficient of Variance—A Case Study of Udaipur District (1957–2016). Appl. Ecol. Environ. Sci. 2020, 8, 34–37. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Nguyen, T.P.L.; Sean, C. Do Climate Uncertainties Trigger Farmers’ out-Migration in the Lower Mekong Region? Curr. Res. Environ. Sustain. 2021, 3, 100087. [Google Scholar] [CrossRef]
- Nguyen, T.P.L.; Virdis, S.G.; Vu, T.B. “Matter of climate change” or “Matter of rapid urbanization”? Young people’s concerns for the present and future urban water resources in Ho Chi Minh City metropolitan area, Vietnam. Appl. Geogr. 2023, 153, 102906. [Google Scholar] [CrossRef]
- Rehmani, M.I.A.; Ding, C.; Li, G.; Ata-Ul-Karim, S.T.; Hadifa, A.; Bashir, M.A.; Hashem, M.; Alamri, S.; Al-Zubair, F.; Ding, Y. Vulnerability of Rice Production to Temperature Extremes during Rice Reproductive Stage in Yangtze River Valley, China. J. King Saud Univ. Sci. 2021, 33, 101599. [Google Scholar] [CrossRef]
- Nakwilai, P.; Cheabu, S.; Narumon, P.; Saensuk, C.; Arikit, S.; Malumpong, C. Evaluation of Japonica Rice (Oryza sativa L.) Varieties and Their Improvement in Terms of Stability, Yield and Cooking Quality by Pure-Line Selection in Thailand. Sci. Asia 2020, 46, 157. [Google Scholar] [CrossRef]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Virdis, S.G.P.; Collins, M. Multivariate and Multi-Temporal Analysis of Meteorological Drought in the Northeast of Thailand. Weather Clim. Extrem. 2021, 34, 100399. [Google Scholar] [CrossRef]
- Jairin, J.; Kotchasatit, U.; Saleeto, S.; Jearakongman, S.; Srivilai, K.; Chamarerk, V.; Kothcharerk, J.; Pattawatang, P.; Korinsak, S.; Wongsaprom, C.; et al. Application of Marker-Assisted Breeding to Improve Biotic Stress Resistance for Rainfed Lowland Rice in Northeastern Thailand. SABRAO J. Breed. Genet. 2017, 49, 168–178. [Google Scholar]
- Marks, D. Assembling the 2011 Thailand Floods: Protecting Farmers and Inundating High-Value Industrial Estates in a Fragmented Hydro-Social Territory. Polit. Geogr. 2019, 68, 66–76. [Google Scholar] [CrossRef]
- Keer, K.V. On-Farm Agronomic Diagnosis of Transitional Upland Rice Swidden Cropping Systems in Northern Thailand; Agritrop: School of Electronics and Computer Science, University of Southampton: Southampton, UK, 2003; 220p. [Google Scholar]
- Sritontip, C.; Jaroenkit, T.; Manochai, P.; Sangchyoswat, C. The Impact of Climate Changes on Yield of Longan Production in Northern Thailand. Acta Hortic. 2014, 1029, 155–162. [Google Scholar] [CrossRef]
- Crane, J.H.; Balerdi, C.F.; Sargent, S.A.; Maguire, I. Longan Growing in the Florida Home Landscape. Inst. Food Agric. Sci. (IFAS) 2019, FC49, Series of the Horticultural Sciences Department, UF/IFAS Extension. Available online: https://edis.ifas.ufl.edu/publication/MG049 (accessed on 2 May 2023).
- Pham, V.T.; Herrero, M.; Hormaza, J.I. Phenological Growth Stages of Longan (Dimocarpus Longan) According to the BBCH Scale. Sci. Hortic. 2015, 189, 201–207. [Google Scholar] [CrossRef]
- Wiriya-Alongkorn, W.; Spreer, W.; Ongprasert, S.; Spohrer, K.; Pankasemsuk, T.; Müller, J. Detecting Drought Stress in Longan Tree Using Thermal Imaging. Maejo Int. J. Sci. Technol. 2013, 7, 166–180. [Google Scholar] [CrossRef]
- Dlamini, T.; Songsom, V.; Koedsin, W.; Ritchie, R.J. Intensity, Duration and Spatial Coverage of Aridity during Meteorological Drought Years over Northeast Thailand. Climate 2022, 10, 137. [Google Scholar] [CrossRef]
- Chaikiattiyos, S.; Yoovatana, M.C. Promotion of Climate Resilience in Rice and Maize Thailand National Study; ATWDARD & GIZ, GIZ Office Jakarta, Menara BCA: Jakarta, Indonesia, 2015. [Google Scholar]
- Bakhsh, K.; Kamran, M.A. Adaptation to Climate Change in Rain-Fed Farming System in Punjab, Pakistan. Int. J. Commons 2019, 13, 833–847. [Google Scholar] [CrossRef]
- Moges, D.M.; Bhat, H.G. Climate Change and Its Implications for Rainfed Agriculture in Ethiopia. J. Water Clim. Change 2021, 12, 1229–1244. [Google Scholar] [CrossRef]
- Liu, L.; Basso, B. Impacts of Climate Variability and Adaptation Strategies on Crop Yields and Soil Organic Carbon in the US Midwest. PLoS ONE 2020, 15, e0225433. [Google Scholar] [CrossRef] [PubMed]
- Oluoch, K.O.; De Groote, H.; Gitonga, Z.M.; Jin, Z.; Davis, K.F. A Suite of Agronomic Factors Can Offset the Effects of Climate Variability on Rainfed Maize Production in Kenya. Sci. Rep. 2022, 12, 16043. [Google Scholar] [CrossRef]
- Sánchez, A.C.; Kamau, H.N.; Grazioli, F.; Jones, S.K. Financial Profitability of Diversified Farming Systems: A Global Meta-Analysis. Ecol. Econ. 2022, 201, 107595. [Google Scholar] [CrossRef]
- Arru, B.; Furesi, R.; Madau, F.A.; Pulina, P. Economic Performance of Agritourism: An Analysis of Farms Located in a Less Favoured Area in Italy. Agric. Food Econ. 2021, 9, 27. [Google Scholar] [CrossRef]
- Allan, C.; Nguyen, T.P.L.; Seddaiu, G.; Wilson, B.; Roggero, P.P. Integrating local knowledge with experimental research: Case studies on managing cropping systems in Italy and Australia. Ital. J. Agron. 2013, 8, e15. [Google Scholar] [CrossRef]
- Liao, X.; Nguyen, T.P.L.; Sasaki, N. Use of the knowledge, attitude, and practice (KAP) model to examine sustainable agriculture in Thailand. Reg. Sustain. 2022, 3, 41–52. [Google Scholar] [CrossRef]
Types of Data | Materials | Scale | Sources |
---|---|---|---|
| Chiang Mai agricultural census, 2013 | District Level | National Statistical Office, Ministry of Information, and Communication Technology |
| Statistic reports | District Level | Website of relevant government organizations
|
| Time series climate data: monthly mean of T and R (2002–2020) | Provincial Level Station Data | Thai Meteorological Department—https://www.tmd.go.th/ (Accessed on 1 April 2023) Thaiwater—https://tiwrm.hii.or.th/v3/ (Accessed on 1 April 2023) |
Variables | Number (%) |
---|---|
District | |
Chiang Dao | 70 (27%) |
Fang | 62 (23.9%) |
Mae On | 30 (11.6%) |
Omkoi | 52 (20.1%) |
San Pa Tong | 45 (17.4%) |
Gender | |
Female | 77 (29.7%) |
Male | 182 (70.3%) |
Age | |
Under 30 years | 16 (6.2%) |
31 years to 60 years | 127 (49%) |
Over 60 years | 116 (44.8%) |
Education | |
Primary | 180 (69.5%) |
Secondary | 39 (15.1%) |
High | 40 (15.4%) |
Farming Experience | |
Under 20 years | 108 (41.7%) |
21 years to 40 years | 107(41.3%) |
Above 40 years | 44 (17%) |
Variables | Description of Variables | Types of Variables |
---|---|---|
Districts | Chiang Dao district: baseline (dummy = 0) Fang district = 1, 0 = otherwise Mae On district = 1, 0 = otherwise Omkoi district = 1, 0 = otherwise San Pa Tong district = 1, 0 = otherwise | Nominal |
Farmers’ age (years) | Continuous | |
Farmers’ gender | Male = 1, female = 0 | Nominal |
Farmers’ education level | Ordinal | |
Labor working experience (yrs) | Continuous | |
Labor working days | Number of working days of labor in the farm per year | Continuous |
Household member | Number of members in household | Continuous |
Total farm laborers | Number of total laborers on farms (both family labor and rented labor) | Continuous |
Farm size | Size of farm (ha) | Continuous |
Total output | Farm output of specific crop (kg) | Continuous |
Soil types | Soil Information of respondent’ district | Nominal |
Location (lat and long) | Latitude and longitude of respondents | Continuous |
Crop types | Other crops: baseline (dummy = 0) Rice = 1, otherwise= 0 Maize = 1, otherwise = 0 Longan = 1, otherwise = 0 | Nominal |
Variables | Coefficient | Longan Yield | Rice Yield | Maize Yield |
---|---|---|---|---|
Annual temperature | R | −0.78 | −0.38 | 0.64 |
p-Value | 0.000 | 0.11 | 0.003 | |
Annual rainfall | R | 0.048 | −0.15 | 0.04 |
p-Value | 0.85 | 0.53 | 0.84 |
Variables | Influencing Factors on Net Income | |
---|---|---|
Coef (β) | p-Value | |
(Constant) | 0.163 | |
Chiang Dao district (baseline) | ||
Fang district | 0.149 | 0.005 |
Mae On district | −0.007 | 0.890 |
Omkoi district | −0.038 | 0.643 |
San Pa Tong district | −0.006 | 0.914 |
Education level | 0.051 | 0.291 |
Age of household head | 0.047 | 0.523 |
Female (HH gender) | 0.011 | 0.810 |
Farming experience of household head (years) | −0.008 | 0.899 |
Number of households members engaged in farming | 0.044 | 0.323 |
Total laborers on farm | 0.030 | 0.532 |
Labor working days | −0.251 | 0.000 |
Total farm size (Ha) | 0.041 | 0.378 |
Total yield (kg/Ha) | −0.072 | 0.114 |
Total output volume (kg) | 1.098 | 0.000 |
Total input cost | −0.629 | 0.000 |
Other crops (baseline) | ||
Rice | 0.050 | 0.381 |
Maize | 0.045 | 0.341 |
Longan | 0.099 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyaw, Y.; Nguyen, T.P.L.; Winijkul, E.; Xue, W.; Virdis, S.G.P. The Effect of Climate Variability on Cultivated Crops’ Yield and Farm Income in Chiang Mai Province, Thailand. Climate 2023, 11, 204. https://doi.org/10.3390/cli11100204
Kyaw Y, Nguyen TPL, Winijkul E, Xue W, Virdis SGP. The Effect of Climate Variability on Cultivated Crops’ Yield and Farm Income in Chiang Mai Province, Thailand. Climate. 2023; 11(10):204. https://doi.org/10.3390/cli11100204
Chicago/Turabian StyleKyaw, Yadanar, Thi Phuoc Lai Nguyen, Ekbordin Winijkul, Wenchao Xue, and Salvatore G. P. Virdis. 2023. "The Effect of Climate Variability on Cultivated Crops’ Yield and Farm Income in Chiang Mai Province, Thailand" Climate 11, no. 10: 204. https://doi.org/10.3390/cli11100204
APA StyleKyaw, Y., Nguyen, T. P. L., Winijkul, E., Xue, W., & Virdis, S. G. P. (2023). The Effect of Climate Variability on Cultivated Crops’ Yield and Farm Income in Chiang Mai Province, Thailand. Climate, 11(10), 204. https://doi.org/10.3390/cli11100204