Analysis of the Gálvez–Davison Index for the Forecasting Formation and Evolution of Convective Clouds in the Tropics: Western Cuba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region of Study
2.2. Study Cases
2.3. Data
2.4. Evaluation
3. Results and Discussion
3.1. GDI Evaluation Using the BT
3.1.1. Summer Storms
3.1.2. Hurricanes
3.1.3. Prefrontal Storm Lines
3.1.4. Stability
3.2. Correlation between the GDI Forecast and BT
3.3. GDI-WRF vs. GDI-GFS Forecast
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, A. Precipitation characteristics in eighteen coupled climate models. J. Clim. 2006, 19, 4605–4630. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Galvin, J.F.P. An Introduction to the Meteorology and Climate of the Tropics; Wiley-Blackwell: Hoboken, NJ, USA, 2016; p. 328. [Google Scholar]
- Köppen, W. Das Geographische System der Klimate. In Handbuch der Klimatologie; Part C; Gebrüder Borntraeger: Berlin, Germany, 1936; Volume I. [Google Scholar]
- Lecha-Estela, L.B.; Sánchez-Suárez, L.; Verdecia-Naranjo, Y.; Soler-Torres, E.; Sánchez-Díaz, A. Variability of synoptic situation’s types influencing on the western half of Cuba. Rev. Cuba. Meteorol. 2020, 26, 2. [Google Scholar]
- Lapinel, B. La Circulación Atmosférica y las Características Espacio-Temporales de las Lluvias en Cuba. Ph.D. Thesis, Instituto de Meteorología, Camagüey, Cuba, 1988. [Google Scholar]
- Barcenas, M.; Borrajero, I. Analysis of the behavior of the gradient of radiation in Cuba. Rev. Cuba. Meteorol. 2012, 18, 125–137. [Google Scholar]
- Suárez, O.; Martínez, J.; Perera, R. Descargas atmosféricas y sus efectos en la población cubana. Red Rev. Científicas América Lat. Caribe España Port. Sist. Inf. Científica 2008, XXVII, 7. [Google Scholar]
- Haklander, A.; Van Delden, A.J. Thunderstorm predictors and their forecast skill for the Netherlands. Atmos. Res. 2003, 67–68, 273–299. [Google Scholar] [CrossRef]
- Jayakrishnan, P.R.; Babu, C.A. Assessment of convective activity using stability indices as inferred from radiosonde and MODIS data. Atmos Clim. Sci. 2014, 4, 122–130. [Google Scholar] [CrossRef]
- Gálvez, J.M.; Davison, M. The Gálvez-Davison Index for Tropical Convection. 2016. Available online: https://www.wpc.ncep.noaa.gov/international/gdi/GDI_Manuscript_V20161021.pdf (accessed on 13 October 2023).
- Uma, K.N.; Das, S.K. Do the stability indices indicate the formation of deep convection? Meteorol. Atmos Phys. 2019, 131, 1–10. [Google Scholar] [CrossRef]
- Vázquez, E. Estudio Termodinámico de Algunas Líneas de Tormentas Eléctricas Prefrontales que han Afectado al Occidente de Cuba. Bachelor’s Thesis, Instituto Superior de Tecnologías y Ciencias Aplicadas, La Habana, Cuba, 2009. [Google Scholar]
- Otero, A. Comportamiento de los Parámetros Termodinámicos Clásicos en una Muestra de Tormentas Locales Severas en el Occidente de Cuba para el Periodo Junio-Septiembre. Bachelor’s Thesis, Instituto Superior de Tecnologías y Ciencias Aplicadas, La Habana, Cuba, 2012. [Google Scholar]
- Rivero, L. Índices Termodinámicos y Variables Meteorológicas Asociados con la Ocurrencia de Tormentas Locales Severas Durante el Periodo Poco Lluvioso en la Región Occidental de Cuba. Bachelor’s Thesis, Instituto Superior de Tecnologías y Ciencias Aplicadas, La Habana, Cuba, 2013. [Google Scholar]
- Miller, P.W.; Mote, T.L.; Ramseyer, C.A. An empirical study of the relationship between seasonal precipitation and thermodynamic environment in Puerto Rico. Bull. Am. Meteorol. Soc. 2019, 34, 277–288. [Google Scholar] [CrossRef]
- Glenn, E.; Smith, T.M.; Gálvez, J.M.; Davison, M.; Hibbert, K.; González, J.E. Tropical Convection in the Caribbean and Surrounding Region during a Regional, Warming Sea-Surface Temperature Period, 1982–2020. J. Hydrol. 2021, 8, 56. [Google Scholar] [CrossRef]
- Donndelinger, G.D. A New Analysis of the Gálvez-Davison Index for Convective Forecasts in Northern Africa. Master’s Thesis, Air Force Institute of Technology, Dayton, OH, USA, 23 March 2018. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Zheng, Y.; Alapaty, K.; Herwehe, J.A.; Del Genio, A.D.; Niyogi, D. Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain-Fritsch Scheme. Mon. Eather Rev. 2016, 144, 150528113541009. [Google Scholar] [CrossRef]
- Iturbide, F.S.; da Silva, S.R.; Liu, Q.; Pryor, K.L.; Pettey, M.E.; Nalli, N.R. Toward the Operational Weather Forecasting Application of Atmospheric Stability Products Derived from NUCAPS CrIS/ATMS Soundings. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4522–4545. [Google Scholar] [CrossRef]
- Miller, P.W.; Trepanier, J.C. Predicting the Gulf of Mexico Hurricanes Season With 500-hPa Temperature. Earth Space Sci. 2021, 48, 17. [Google Scholar] [CrossRef]
- Pineda, L.F.; León, J.F.; Carbajal, N. Analysis of severe storms and tornado formation in the northern region of Mexico. Rev. Bio Cienc. 2020, 7, e885. [Google Scholar] [CrossRef]
- Alber, K.; Raghavendra, A.; Zhou, L.; Jiang, Y.; Sussman, H.S.; Solimine, S.L. Analyzing intensifying thunderstorms over the Congo Basin using the Gálvez-Davison index from 1983–2018. Clim. Dyn. 2020, 56, 949–967. [Google Scholar] [CrossRef]
- Varela, A.; Rojas-Díaz, Y.; Carnesoltas, M. Caracterización de los reportes de tormentas locales severas en Cuba entre 1980–2020. Rev. Cuba. Meteorol. 2022, 28, 2. [Google Scholar]
- Alvarez-Socorro, G.; Fernández-Alvarez, J.C.; Sorí, R.; Pérez-Alarcón, A.; Nieto, R.; Gimeno, L. Space-time assessment of extreme precipitation in Cuba between 1980 and 2019 from multi-source weighted-ensemble precipitation dataset. Atmosphere 2021, 12, 995. [Google Scholar] [CrossRef]
- Alfonso, A.P. Climatología de las Tormentas Locales Severas de Cuba y Fundamentos para su Pronóstico. Ph.D. Thesis, Universidad de Matanzas, Matanzas, Cuba, 1998; 174p. [Google Scholar]
- Riehl, H. Tropical Meteorology; McGraw-Hill: New York, NY, USA; London, UK, 1954; 392p. [Google Scholar]
- Skamarock, W.C. Coauthors. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mont. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Freitas, S.R.; Grell, G.A.; Molod, A.; Thompson, M.A.; Putman, W.M.; Santos e Silva, C.M.; Souza, E.P. Assessing the Grell-Freitas convection parameterization in the NASA GEOS modeling system. J. Adv. Model. Earth Syst. 2018, 10, 1266–1289. [Google Scholar] [CrossRef]
- Freitas, S.R.; Grell, G.A.; Li, H. The Grell–Freitas (GF) convection parameterization: Recent developments, extensions, and applications. Geosci. Model Dev. 2021, 14, 5393–5411. [Google Scholar] [CrossRef]
- Janjic, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mont. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Coll, P.; Pérez, A.; González, P.M. Evaluation of Microphysics Schemes in the WRF-ARW Model for Numerical Wind Forecast in José Martí International Airport. Environ. Sci. Proc. 2021, 4, 31. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Vijaykumar, P.; Abhilash, S.; Santhosh, K.R.; Mapes, B.E.; Kumar, C.S.; Hu, I.K. Distribution of cloudiness and categorization of rainfall types based on INSAT IR brightness temperatures over Indian subcontinent and adjoining oceanic region during south west monsoon season. J. Atmos. Sol.-Terr. Phys. 2017, 161, 76–82. [Google Scholar] [CrossRef]
- Dumedah, G.; Walker, J.P.; Rudiger, C. Can SMOS data used directly on the 15 km discrete global grid? IEEE Trans. Geosci. Remote Sens. 2014, 52, 2538–2544. [Google Scholar] [CrossRef]
- Hernández-Capote, J.F. Main impacts of hurricane Michael in the province of Artemisa. Rev. Cuba. Meteorol. 2019, 25, 1. [Google Scholar]
- González-Ramírez, C.M.; González-Jardines, P.M.; Hernández-Capote, J.F. Evaluation of the impact of Hurricane Irma, using numerical modeling in the provinces of Artemisa and Mayabeque. Rev. Cuba. Meteorol. 2017, 23, 363–377. [Google Scholar]
- Mendoza-Fierro, M.L. Shor-Term Numerical Weather Prediction Forecast Evaluation in Convective Permitting Simulations in El Salvador with the Weather Research and Forecasting Model. Master’s Thesis, University of Arizona, Tucson, AZ, USA, 2022. [Google Scholar]
- Stennett-Brown, R.K.; Stephenson, T.S.; Taylor, M.A. Caribbean climate change vulnerability: Lessons from an aggregate index approach. PLoS ONE 2019, 14, e0219250. [Google Scholar] [CrossRef]
Date | Type | Meteorological Condition |
---|---|---|
16 August 2017 | 1 | Summer storms |
18 August 2017 | 1 | Summer storms |
21 August 2017 | 1 | Summer storms |
9 September 2017 | 2 | Hurricane Irma |
25 October 2017 | 3 | Prefrontal storms line |
8 October 2018 | 2 | Hurricane Michael |
21 December 2018 | 3 | Prefrontal storms line |
28 January 2019 | 3 | Prefrontal storms line |
7 March 2019 | 4 | Stability |
8 March 2019 | 4 | Stability |
GDI Value | Expected Convective Regime |
---|---|
GDI > +45 | Scattered-to-widespread heavy rain-producing thunderstorms. |
+35 to +45 | Scattered thunderstorms, some capable of producing heavy rainfall. |
+25 to +35 | Scattered thunderstorms or scattered shallow convection with isolated thunderstorms. |
+15 to +25 | Isolated thunderstorms but mostly shallow convection. |
+5 to +15 | Shallow convection. A very isolated and brief thunderstorm is possible. |
−20 to +5 | Isolated to scattered shallow convection. Strong subsidence inversion likely. |
−20 > GDI | Strong subsidence inversion. Convection should be very shallow, isolated, and produce trace accumulations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Alvarez, T.; González-Jardines, P.M.; Fernández-Alvarez, J.C.; de la Torre, L.; Añel, J.A. Analysis of the Gálvez–Davison Index for the Forecasting Formation and Evolution of Convective Clouds in the Tropics: Western Cuba. Climate 2023, 11, 209. https://doi.org/10.3390/cli11100209
Fuentes-Alvarez T, González-Jardines PM, Fernández-Alvarez JC, de la Torre L, Añel JA. Analysis of the Gálvez–Davison Index for the Forecasting Formation and Evolution of Convective Clouds in the Tropics: Western Cuba. Climate. 2023; 11(10):209. https://doi.org/10.3390/cli11100209
Chicago/Turabian StyleFuentes-Alvarez, Tahimy, Pedro M. González-Jardines, José C. Fernández-Alvarez, Laura de la Torre, and Juan A. Añel. 2023. "Analysis of the Gálvez–Davison Index for the Forecasting Formation and Evolution of Convective Clouds in the Tropics: Western Cuba" Climate 11, no. 10: 209. https://doi.org/10.3390/cli11100209
APA StyleFuentes-Alvarez, T., González-Jardines, P. M., Fernández-Alvarez, J. C., de la Torre, L., & Añel, J. A. (2023). Analysis of the Gálvez–Davison Index for the Forecasting Formation and Evolution of Convective Clouds in the Tropics: Western Cuba. Climate, 11(10), 209. https://doi.org/10.3390/cli11100209