Homogenous Climatic Regions for Targeting Green Water Management Technologies in the Abbay Basin, Ethiopia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data and the Sources
2.3. Data Processing
3. Results
3.1. Variables Used for Clustering
3.2. Climate Clusters of the Abbay River Basin
3.3. Climate Variation between Clusters
4. Implications for Targeting Green Water Management Technologies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, C.; Hansen, J.W. Agricultural Water Management and Climate Risk. Report to the Bill and Melinda Gates Foundation; IRI Tech. Rep. No. 08-01; International Research Institute for Climate and Society: Palisades, NY, USA, 2008; p. 19. [Google Scholar]
- Kotir, J.S. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2010, 13, 587–605. [Google Scholar] [CrossRef]
- Holleman, C.; Rembold, F.; Crespo, O.; Conti, V. The impact of climate variability and extremes on agriculture and food security—An analysis of the evidence and case studies. In Background Paper for The State of Food Security and Nutrition in the World; FAO Agricultural Development Economics Technical Study No. 4; FAO: Rome, Italy, 2018. [Google Scholar] [CrossRef]
- Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Chang. 2011, 21, 227–237. [Google Scholar] [CrossRef]
- Ademe, F.; Kibret, K.; Beyene, S.; Getinet, M.; Mitike, G. Rainfall analysis for rain-fed farming in the Great Rift Valley Basins of Ethiopia. J. Water Clim. Chang. 2020, 11, 812–828. [Google Scholar] [CrossRef]
- Ademe, D.; Zaitchik, B.F.; Tesfaye, K.; Simane, B.; Alemayehu, G.; Adgo, E. Analysis of agriculturally relevant rainfall characteristics in a tropical highland region: An agroecosystem perspective. Agric. For. Meteorol. 2021, 311, 108697. [Google Scholar] [CrossRef]
- Mubenga-Tshitaka, J.; Dikgang, J.; Mwamba, J.W.M.; Gelo, D. Climate variability impacts on agricultural output in East Africa. Cogent Econ. Financ. 2023, 11, 2181281. [Google Scholar] [CrossRef]
- Ochieng, J.; Kirimi, L.; Mathenge, M. Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS Wagening. J. Life Sci. 2016, 77, 71–78. [Google Scholar] [CrossRef]
- Bewket, W. Climate change perceptions and adaptive responses of smallholder farmers in central highlands of Ethiopia. Int. J. Environ. Stud. 2012, 69, 507–523. [Google Scholar] [CrossRef]
- Evangelista, P.; Young, N.; Burnett, J. How will climate change spatially affect agriculture production in Ethiopia? Case studies of important cereal crops. Clim. Chang. 2013, 119, 855–873. [Google Scholar] [CrossRef]
- Ginbo, T. Heterogeneous impacts of climate change on crop yields across altitudes in Ethiopia. Clim. Chang. 2022, 170, 12. [Google Scholar] [CrossRef]
- Tamene, L.; Abera, W.; Bendito, E.; Erkossa, T.; Tariku, M.; Sewnet, H.; Tibebe, D.; Sied, J.; Feyisa, G.; Wondie, M.; et al. Data-driven similar response units for agricultural technology targeting: An example from Ethiopia. Exp. Agric. 2022, 58, e27. [Google Scholar] [CrossRef]
- Zang, C.; Liu, J.; van der Velde, M.; Kraxner, F. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2859–2870. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, C.; Ye, A.; Zheng, T.; Nie, X.; Tu, A.; Zhu, H.; Zhang, S. Impacts of climate and land-use change on blue and green water: A case study of the upper Ganjiang River Basin, China. Water 2020, 12, 2661. [Google Scholar] [CrossRef]
- Lyu, L.; Wang, X.; Sun, C.; Ren, T.; Zheng, D.-F. Quantifying the Effect of Land Use Change and Climate Variability on Green Water Resources in the Xihe River Basin, Northeast China. Sustainability 2019, 11, 338. [Google Scholar] [CrossRef]
- Tibebe, D.; Teferi, E.; Bewket, W.; Zeleke, G. Climate induced water security risks on agriculture in the Abbay river basin: A review. Front. Water 2022, 4, 961948. [Google Scholar] [CrossRef]
- Zimale, F.A.; Tilahun, S.A.; Tebebu, T.Y.; Guzman, C.D.; Hoang, L.; Schneiderman, E.M.; Langendoen, E.J.; Steenhuis, T.S. Improving watershed management practices in humid regions. Hydrol. Process. 2017, 31, 3294–3301. [Google Scholar] [CrossRef]
- FAO. Agro-Ecological Zoning Guidelines; FAO Soils Bulletin 73, Soil Resources, Management and Conservation Service, FAO Land and Water Development Division; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996; p. 78. ISBN 92-5-103890-2. [Google Scholar]
- BCEOM. Abbay River Basin Integrated Development Master Plan-Phase 2—Data Collection—Site Investigation Survey and Analysis—Volume I—Natural Resources—Geology; Ministry of Water Resource; BCEOM: Addis Ababa, Ethiopia, 1998; p. 144. [Google Scholar]
- Cheung, W.H.; Senay, G.B.; Singh, A. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int. J. Climatol. 2008, 28, 1723–1734. [Google Scholar] [CrossRef]
- Mengistu, D.; Bewket, W.; Lal, R. Recent spatiotemporal temperature and rainfall variability and trends over the Upper Blue Nile River Basin, Ethiopia. Int. J. Climatol. 2014, 34, 2278–2292. [Google Scholar] [CrossRef]
- Degefu, M.A.; Rowell, D.; Bewket, W. Teleconnections between Ethiopian rainfall variability and global SSTs: Observations and methods for model evaluation. Meteorol. Atmos. Phys. 2017, 129, 173–186. [Google Scholar] [CrossRef]
- Degefu, M.A.; Tadesse, Y.; Bewket, W. Observed changes in rainfall amount and extreme events in southeastern Ethiopia, 1955–2015. Theor. Appl. Climatol. 2021, 144, 967–983. [Google Scholar] [CrossRef]
- Degefu, M.A.; Bewket, W.; Amha, Y. Evaluating performance of 20 global and quasi-global precipitation products in representing drought events in Ethiopia: Visual analysis. Weather Clim. Extrem. 2022, 35, 100416. [Google Scholar] [CrossRef]
- Abdisa, T.B.; Diga, G.M.; Tolessa, A.R. Impact of climate variability on rain-fed maize and sorghum yield among smallholder farmers. Cogent Food Agric. 2022, 8, 2057656. [Google Scholar] [CrossRef]
- Desta, G.; Kassawmar, T.; Tadesse, M.; Zeleke, G. Extent and distribution of surface soil acidity in the rainfed areas of Ethiopia. Land Degrad. Dev. 2021, 32, 5348–5359. [Google Scholar] [CrossRef]
- Abate, E.; Hussein, S.; Laing, M.; Mengistu, F. Soil acidity under multiple land-uses: Assessment of perceived causes and indicators, and nutrient dynamics in small-holders’ mixed-farming system of northwest Ethiopia. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 134–147. [Google Scholar] [CrossRef]
- Bedane, H.R.; Beketie, K.T.; Fantahun, E.E.; Feyisa, G.L.; Anose, F.A. The impact of rainfall variability and crop production on vertisols in the central highlands of Ethiopia. Environ. Syst. Res. 2022, 11, 26. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Erkossa, T.; Awulachew, S.B.; Haileslassie, A.; Yilma, A.D. Impacts of improving water management of smallholder agriculture in the upper Blue Nile Basin. In CP 19 Project Workshop Proceedings; IWMI: Addis Ababa, Ethiopia, 2009; Available online: https://publications.iwmi.org/pdf/H042504.pdf (accessed on 12 September 2022).
- Fazzini, M.; Bisci, C.; Billi, P. The Climate of Ethiopia. In Landscapes and Landforms of Ethiopia, World Geomorphological Landscapes; Billi, P., Ed.; Springer Science + Business Media: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Tebebu, T.Y.; Bayabil, H.K.; Stoof, C.R.; Giri, S.K.; Gessess, A.A.; Tilahun, S.A.; Steenhuis, T.S. Characterization of degraded soils in the humid Ethiopian Highlands. Land Degrad. Develop. 2017, 28, 1891–1901. [Google Scholar] [CrossRef]
- Dinku, T.; Hailemariam, K.; Maidment, R.; Tarnavsky, E.; Connor, S. Combined use of satellite estimates and rain gauge observations to generate high-quality historical rainfall time series over Ethiopia. Int. J. Climatol. 2014, 34, 2489–2504. [Google Scholar] [CrossRef]
- Romano, N.; Palladino, M.; Chirico, G.B. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes. Hydrol. Earth Syst. Sci. 2011, 15, 3877–3893. [Google Scholar] [CrossRef]
- Mao, W.; Yang, J.; Zhu, Y.; Ye, M.; Liu, Z.; Wu, J. An efficient soil water balance model based on hybrid numerical and statistical methods. J. Hydrol. 2018, 559, 721–735. [Google Scholar] [CrossRef]
- Oliver, J.E. Monthly precipitation distribution: A comparative index. Prof. Geogr. 1980, 32, 300–309. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J. Little jiffy, mark IV. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. 2000, 22, 4–37. [Google Scholar] [CrossRef]
- Rahmani, M.K.I.; Pal, N.; Arora, K. Clustering of image data using K-means and fuzzy K-means. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 160–163. [Google Scholar]
- Hot, E.; Popović-Bugarin, V. Soil data clustering by using K-means and fuzzy K-means algorithm. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 890–893. [Google Scholar]
- Shukla, R.K.; Agrawal, J.; Sharma, S.; Chaudhari, N.S.; Shukla, K.K. (Eds.) Social Networking and Computational Intelligence: Proceedings of SCI-2018; Springer Nature Singapore Pte Ltd.: Singapore, 2020; Volume 100. [Google Scholar]
- Zeweld, W.; Huylenbroeck, G.V.; Hidgot, A.; Chandrakanth, M.; Speelman, S. Adoption of small-scale irrigation and its livelihood impacts in Northern Ethiopia. Irrigat. Drain. 2015, 64, 655–668. [Google Scholar] [CrossRef]
- Mengistie, D.; Kidane, D. Assessment of the impact of small-scale irrigation on household livelihood improvement at Gubalafto District, North Wollo, Ethiopia. Agriculture 2016, 6, 27. [Google Scholar] [CrossRef]
- Abebe, A. The determinants of small-scale irrigation practice and its contribution on household farm income: The case of Arba Minch Zuria Woreda, Southern Ethiopia. Afr. J. Agric. Res. 2017, 12, 1136–1143. [Google Scholar]
- Kassie, K.E.; Alemu, B.A. Does irrigation improve household’s food security? The case of Koga irrigation development project in northern Ethiopia. Food Secur. 2021, 13, 291–307. [Google Scholar] [CrossRef]
- Assefa, E.; Ayalew, Z.; Mohammed, H. Impact of small-scale irrigation schemes on farmers livelihood, the case of Mekdela Woreda, North-East Ethiopia. Cogent Econ. Finan. 2022, 10, 2041259. [Google Scholar] [CrossRef]
- Wondimagegnhu, B.A.; Bogale, B.A. Small-scale irrigation and its effect on food security of rural households in North-West Ethiopia: A comparative analysis. Ethiop. J. Sci. Technol. 2020, 13, 31–51. [Google Scholar] [CrossRef]
- Jambo, Y.; Alemu, A.; Tasew, W. Impact of small-scale irrigation on household food security: Evidence from Ethiopia. Agricu. Food Secur. 2021, 10, 21. [Google Scholar] [CrossRef]
- Maru, H.; Haileslassie, A.; Zeleke, T. Impacts of small-scale irrigation on farmers’ livelihood: Evidence from the drought prone areas of upper Awash sub-basin, Ethiopia. Heliyon 2023, 16, e16354. [Google Scholar] [CrossRef] [PubMed]
- Dile, Y.T.; Karlberg, L.; Daggupati, P.; Srinivasan, R.; Wiberg, D.; Rockström, J. Assessing the implications of water harvesting intensification on upstream-downstream ecosystem services: A case study in the Lake Tana basin. Sci. Total Environ. 2016, 542, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Gebrehiwot, K.A. A review on waterlogging, salinization and drainage in Ethiopian irrigated agriculture. Sustain. Water Resour. Manag. 2018, 4, 55–62. [Google Scholar] [CrossRef]
No | Data Type | Source | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
1 | Precipitation | ENACTS | ~4 km | 1981–2018 (daily) |
2 | Maximum temperature (Tmax) | ENACTS | ~4 km | 1981–2018 (daily) |
3 | Minimum temperature (Tmin) | ENACTS | ~4 km | 1981–2018 (daily) |
4 | Onset date | Own analysis | ~4 km | 1981–2018 (Annual) |
5 | Cessation | Own analysis | ~4 km | 1981–2018 (Annual) |
6 | Length of growing period (LGP) | Own analysis | ~4 km | 1981–2018 (Annual) |
7 | Potential evapotranspiration (PET) | Own analysis | ~4 km | 1981–2018 (daily) |
8 | Precipitation Concentration Index (PCI) | Own analysis | ~4 km | 1981–2018 (Annual) |
9 | Soil moisture | Own analysis | ~4 km | 1981–2018 (daily) |
10 | Elevation | AsterDEM v2 |
Climate Clusters | Rainfall Onset Date (Pentad) | Rainfall Cessation Date (Pentad) | LGP (Pentad) | PCI | Annual Rainfall (mm) | PET (mm) | Soil Moisture (mm) | Min Tem. (°C) | Max Tem. (°C) | Mean Elevation (m asl) | Rainfall Cycle (number) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 32.3 | 53.4 | 21.1 | 16.6 | 1386.4 | 1432.7 | 24.7 | 13.8 | 26.7 | 1561.9 | 1 |
2 | 33.8 | 53.6 | 19.8 | 18.1 | 1190.2 | 1261.2 | 13.4 | 9.2 | 23.1 | 2538.5 | 2 |
3 | 19.2 | 49.5 | 30.4 | 20.3 | 1006.3 | 1303.0 | 13.8 | 8.9 | 22.4 | 2620.3 | 2 |
4 | 26.1 | 54.3 | 28.2 | 16.2 | 1514.2 | 1425.6 | 62.5 | 14.5 | 28.7 | 1401.2 | 1 |
5 | 26.1 | 60.0 | 33.9 | 15.9 | 1603.8 | 1409.8 | 75.5 | 14.6 | 28.0 | 1458.7 | 1 |
6 | 31.8 | 53.7 | 21.9 | 16.2 | 1645.8 | 1289.1 | 33.5 | 10.8 | 24.3 | 2267.5 | 1 |
7 | 27.2 | 54.0 | 26.8 | 18.2 | 1423.5 | 1655.8 | 60.1 | 16.4 | 31.2 | 974.8 | 1 |
8 | 25.5 | 53.9 | 28.5 | 14.6 | 1769.5 | 1320.7 | 79.9 | 12.9 | 26.2 | 1846.8 | 1 |
9 | 33.6 | 53.7 | 20.0 | 19.9 | 1157.8 | 1467.0 | 10.6 | 12.4 | 27.0 | 1798.6 | 2 |
10 | 27.2 | 54.2 | 27.0 | 19.5 | 1198.9 | 1846.8 | 51.6 | 19.1 | 34.8 | 698.0 | 1 |
11 | 30.4 | 54.1 | 23.6 | 19.0 | 1427.5 | 1449.4 | 58.3 | 12.9 | 27.6 | 1755.9 | 1 |
12 | 34.4 | 49.2 | 14.8 | 21.1 | 1006.6 | 1301.3 | 11.5 | 9.0 | 22.0 | 2511.5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibebe, D.; Degefu, M.A.; Bewket, W.; Teferi, E.; O’Donnell, G.; Walsh, C. Homogenous Climatic Regions for Targeting Green Water Management Technologies in the Abbay Basin, Ethiopia. Climate 2023, 11, 212. https://doi.org/10.3390/cli11100212
Tibebe D, Degefu MA, Bewket W, Teferi E, O’Donnell G, Walsh C. Homogenous Climatic Regions for Targeting Green Water Management Technologies in the Abbay Basin, Ethiopia. Climate. 2023; 11(10):212. https://doi.org/10.3390/cli11100212
Chicago/Turabian StyleTibebe, Degefie, Mekonnen Adnew Degefu, Woldeamlak Bewket, Ermias Teferi, Greg O’Donnell, and Claire Walsh. 2023. "Homogenous Climatic Regions for Targeting Green Water Management Technologies in the Abbay Basin, Ethiopia" Climate 11, no. 10: 212. https://doi.org/10.3390/cli11100212
APA StyleTibebe, D., Degefu, M. A., Bewket, W., Teferi, E., O’Donnell, G., & Walsh, C. (2023). Homogenous Climatic Regions for Targeting Green Water Management Technologies in the Abbay Basin, Ethiopia. Climate, 11(10), 212. https://doi.org/10.3390/cli11100212