Apparent Temperature Modifies the Effects of Air Pollution on Cardiovascular Disease Mortality in Cape Town, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Mortality Data
2.4. Air Pollution and Weather Data
2.5. Statistical Analysis
2.6. Ethics Approval
3. Results
3.1. Descriptive Statistics
3.2. One- and Two-Pollutant Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019, Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.D.; Adair, T. Is the long-term decline in cardiovascular-disease mortality in high-income countries over? Evidence from national vital statistics. Int. J. Epidemiol. 2019, 48, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Statistics South Africa. P0309.3. Mortality and Causes of Death in South Africa, Findings from Death Notification 2018. Available online: http//www.statssa.gov.za/publications/P03093/P030932018.pdf (accessed on 16 January 2023).
- Abdelatif, N.; Peer, N.; Manda, S.O. National prevalence of coronary heart disease and stroke in South Africa from 1990–2017, A systematic review and meta-analysis. Cardiovasc. J. Afr. 2021, 32, 156–160. [Google Scholar]
- Peer, N.; Lombard, C.; Steyn, K.; Levitt, N. Differential associations of cardiovascular disease risk factors with relative wealth in urban-dwelling South Africans. J. Public Health 2016, 38, e232–e239. [Google Scholar] [CrossRef] [Green Version]
- Peer, N.; Balakrishna, Y.; de Villiers, A.; Crickmore, C.; Mungal-Singh, V. Effectiveness of a screening programme in identifying individuals with increased risk of cardiovascular disease in South Africa. J. Public Health 2018, 40, e34–e45. [Google Scholar] [CrossRef] [Green Version]
- Boateng, D.; Wekesah, F.; Browne, J.L.; Agyemang, C.; Agyei-Baffour, P.; Aikins, A.D.; Smit, H.A.; Grobbee, D.E.; Klipstein-Grobusch, K. Knowledge and awareness of and perception towards cardiovascular disease risk in sub-Saharan Africa, A systematic review. PLoS ONE 2017, 12, e0189264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution, an analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality, Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines—Update 2021; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. Available online: https//apps.who.int/iris/handle/10665/345329 (accessed on 16 January 2023).
- Rees, N.; Wickham, A.; Choi, Y. Silent Suffocation in Africa Air Pollution is a growing menace, affecting the poorest children the most. United Nations Children’s Fund, New York. 2019. Available online: https://www.unicef.org/media/55081/file/Silent_suffocation_in_africa_air_pollution_2019.pdf (accessed on 16 January 2023).
- Nazarenko, Y.; Pal, D.; Ariya, P.A. Air quality standards for the concentration of particulate matter 2.5, global descriptive analysis. Bull. World Health Organ. 2021, 99, 125D–137D. [Google Scholar] [CrossRef]
- Agbo, K.E.; Walgraeve, C.; Eze, J.E.; Ekene Ugwoke, P.; Oziri Ukoha, P.; Van Langenhove, H. A review on ambient and indoor air pollution status in Africa. Atmos. Pollut. Res. 2021, 12, 243–260. [Google Scholar] [CrossRef]
- Coker, E.; Kizito, S. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa, An Urgent Need for Health Effects Studies. Int. J. Environ. Res. Public Health 2018, 15, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostro, B.; Spadaro, J.V.; Gumy, S.; Mudu, P.; Awe, Y.; Forastiere, F.; Peters, A. Assessing the recent estimates of the global burden of disease for ambient air pollution, Methodological changes and implications for low- and middle-income countries. Environ. Res. 2018, 166, 713–725. [Google Scholar] [CrossRef]
- Romanello, M.; McGushin, A.; Di Napoli, C.; Drummond, P.; Hughes, N.; Jamart, L.; Kennard, H.; Lampard, P.; Solano Rodriguez, B.; Arnell, N.; et al. The 2021 report of the Lancet Countdown on health and climate change, code red for a healthy future. Lancet 2021, 398, 1619–1662. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Kukkonen, J.; Dahl, A.; Bossioli, E.; Baklanov, A.; Vik, A.F.; Agnew, P.; Karatzas, K.D.; Sofiev, M. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality. Ambio 2012, 41, 851–864. [Google Scholar] [CrossRef] [Green Version]
- Atwoli, L.; Baqui, A.H.; Benfield, T.; Bosurgi, R.; Godlee, F.; Hancocks, S.; Horton, R.; Laybourn-Langton, L.; Augusto Monteiro, C.; Norman, I.; et al. Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. Glob. Health Action 2021, 14, 1965745. [Google Scholar] [CrossRef]
- United Nations. Department of Economic and Social Affairs Sustainable Development. 17 Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 16 January 2023).
- Bunker, A.; Wildenhain, J.; Vandenbergh, A.; Henschke, N.; Rocklöv, J.; Hajat, S.; Sauerborn, R.V. Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence. EBioMedicine 2016, 6, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Moghadamnia, M.T.; Ardalan, A.; Mesdaghinia, A.; Keshtkar, A.; Naddafi, K.; Yekaninejad, M.S. Ambient temperature and cardiovascular mortality, a systematic review and meta-analysis. PeerJ 2017, 5, e3574. [Google Scholar] [CrossRef]
- Amegah, A.K.; Rezza, G.; Jaakkola, J.J. Temperature-related morbidity and mortality in Sub-Saharan Africa, A systematic review of the empirical evidence. Environ. Int. 2016, 91, 133–149. [Google Scholar] [CrossRef]
- Wichmann, J. Heat effects of ambient apparent temperature on all-cause mortality in Cape Town, Durban and Johannesburg, South Africa, 2006–2010. Sci. Total Environ. 2017, 587–588, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Green, H.; Bailey, J.; Schwarz, L.; Vanos, J.; Ebi, K.; Benmarhnia, T. Impact of heat on mortality and morbidity in low- and middle-income countries, A review of the epidemiological evidence and considerations for future research. Environ. Res. 2019, 171, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Department of Environment, Forestry and Fisheries. South African National Climate Change Adaptation Strategy. 2019. Available online: https://www.dffe.gov.za/sites/default/files/docs/nationalclimatechange_adaptationstrategy_ue10november2019.pdf (accessed on 16 January 2023).
- Chen, F.; Fan, Z.; Qiao, Z.; Cui, Y.; Zhang, M.; Zhao, X.; Li, X. Does temperature modify the effect of PM10 on mortality? A systematic review and meta-analysis. Environ. Pollut. 2017, 224, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Woodward, A.; Hou, X.Y.; Zhu, T.; Zhang, J.; Brown, H.; Yang, J.; Qin, R.; Gao, J.; Gu, S.; et al. Modification of the effects of air pollutants on mortality by temperature, A systematic review and meta-analysis. Sci. Total Environ. 2017, 575, 1556–1570. [Google Scholar] [CrossRef]
- Lokotola, C.L.; Wright, C.Y.; Wichmann, J. Temperature as a modifier of the effects of air pollution on cardiovascular disease hospital admissions in Cape Town, South Africa. Environ. Sci. Pollut. Res. Int. 2020, 27, 16677–16685. [Google Scholar] [CrossRef]
- Olutola, B.; Wichmann, J. Does apparent temperature modify the effects of air pollution on cardiovascular disease hospital admissions in an industrial area of South Africa? Clean Air J. 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Western Cape Province. State of Air Quality Management Report. 2021. Available online: https://www.westerncape.gov.za/eadp/files/atoms/files/AQMP%202021_Web_1.pdf (accessed on 16 January 2023).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Maclure, M. The case-crossover design, a method for studying transient effects on the risk of acute events. Am. J. Epidemiol. 1991, 133, 144–153. [Google Scholar] [CrossRef]
- Carracedo-Martínez, E.; Taracido, M.; Tobias, A.; Saez, M.; Figueiras, A. Case-crossover analysis of air pollution health effects, a systematic review of methodology and application. Environ. Health Perspect. 2010, 118, 1173–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Environmental Affairs. National Environmental Management, Air Quality Act. 2004. Available online: https://www.gov.za/documents/national-environment-management-air-quality-act (accessed on 16 January 2023).
- Wichmann, J.; Voyi, K. Ambient air pollution exposure and respiratory, cardiovascular and cerebrovascular mortality in Cape Town, South Africa, 2001–2006. Int. J. Environ. Res. Public Health 2012, 9, 3978–4016. [Google Scholar] [CrossRef] [PubMed]
- Thabethe, N.D.L.; Voyi, K.; Wichmann, J. Association between ambient air pollution and cause-specific mortality in Cape Town, Durban, and Johannesburg, South Africa, any susceptible groups? Environ. Sci. Pollut. Res. Int. 2021, 28, 42868–42876. [Google Scholar] [CrossRef]
- Department of Environmental Affairs. National Environmental Management, Air Quality Act, National Ambient Air Quality Standard for PM 2.5. 2012. Available online: https://www.gov.za/documents/national-environmental-management-air-quality-act-national-ambient-air-quality-standard-0 (accessed on 16 January 2023).
- Atmospheric Quality Information Directorate, Department of Environmental Affairs, South Africa. Baseline Survey on Government Baseline Survey on Government-Owned Air Quality Monitoring Networks. August 2011. Available online: https://saaqis.environment.gov.za/Pagesfiles/Baseline%20Survey%20on%20Government%20Owned%20Air%20Quality%20Monitoring%20Stations_26-08-2011.pdf (accessed on 16 January 2023).
- Gwaze, P. The Development of a Quality Management System to Support National Ambient Air Quality Monitoring Network. Session 8.2 of the 13th Annual Air Quality Governance Lekgotla, Kimberly, Northern Cape. 2018. Available online: https://saaqis.environment.gov.za/Lekgotla%20Proceedings/2018/2018_8.2-naaqmn-quality-system.pdf (accessed on 16 January 2023).
- Steadman, R.G. A universal scale of apparent temperature. J. Clim. Appl. Meteorol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Schwartz, J.D.; O’Neill, M.S. What weather variables are important in predicting heat-related mortality? A new application of statistical learning methods. Environ. Res. 2014, 132, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Mwase, N.; Olutola, B.; Wichmann, J. Temperature modifies the association between air pollution and respiratory disease hospital admissions in an industrial area of South Africa: The Vaal Triangle Air Pollution Priority Area. Clean Air J. 2022, 32, 60–74. [Google Scholar] [CrossRef]
- Institute of Medicine. Committee on Social Security Cardiovascular Disability Criteria; Cardiovascular Disability, Updating the Social Security Listings; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Qian, Z.; He, Q.; Lin, H.M.; Kong, L.; Bentley, C.M.; Liu, W.; Zhou, D. High temperatures enhanced acute mortality effects of ambient particle pollution in the “oven” city of Wuhan, China. Environ. Health Perspect. 2008, 116, 1172–1178. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Report. 2013. Available online: https://apps.who.int/iris/handle/10665/341712 (accessed on 16 January 2023).
- Atkinson, R.W.; Mills, I.C.; Walton, H.A.; Anderson, H.R. Fine particle components and health—A systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Tibuakuu, M.; Michos, E.D.; Navas-Acien, A.; Jones, M.R. Air Pollution and Cardiovascular Disease: A Focus on Vulnerable Populations Worldwide. Curr. Epidemiol. Rep. 2018, 5, 370–378. [Google Scholar] [CrossRef]
- Yap, J.; Ng, Y.; Yeo, K.K.; Sahlén, A.; Lam, C.S.P.; Lee, V.; Ma, S. Particulate air pollution on cardiovascular mortality in the tropics, impact on the elderly. Environ. Health 2019, 18, 34. [Google Scholar] [CrossRef] [Green Version]
- Oiamo, T.H.; Luginaah, I.N. Extricating sex and gender in air pollution research, a community-based study on cardinal symptoms of exposure. Int. J. Environ. Res. Public Health 2013, 10, 3801–3817. [Google Scholar] [CrossRef]
- Kazman, J.B.; Purvis, D.L.; Heled, Y.; Lisman, P.; Atias, D.; Van Arsdale, S.; Deuster, P.A. Women and exertional heat illnesidentification of gender specific risk factors. US Army Med. Dep. J. 2015, 58–66. [Google Scholar]
- Schwartz, J. Harvesting and long term exposure effects in the relation between air pollution and mortality. Am. J. Epidemiol. 2000, 151, 440–448. [Google Scholar] [CrossRef]
- Hatch, M.; Thomas, D. Measurement issues in environmental epidemiology. Environ. Health Perspect. 1991, 101 (Suppl. S4), 49–57. [Google Scholar] [CrossRef]
- Bellinger, C.; Mohomed, J.M.S.; Zaïane, O.; Osornio-Vargas, A. A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health 2017, 17, 907. [Google Scholar] [CrossRef]
Variable | Mean | Min | P25 | Median | P75 | Max |
---|---|---|---|---|---|---|
Total (n = 54,356) | 14.9 | 2 | 12 | 15 | 18 | 33 |
Females (n = 26,167) | 7.7 | 0 | 6 | 7 | 10 | 20 |
Males (n = 28,133) | 7.2 | 0 | 5 | 7 | 9 | 23 |
15–64-year-olds (n = 20,145) | 5.5 | 0 | 4 | 5 | 7 | 18 |
≥65-year-olds (n = 34,164) | 9.4 | 0 | 7 | 9 | 12 | 26 |
PM10 (μg·m−3) | 29.9 | 3.8 | 20.1 | 27.4 | 36.8 | 113.5 |
NO2 (μg·m−3) | 16.0 | 1.4 | 10.0 | 14.4 | 20.5 | 59.8 |
SO2 (μg·m−3) | 9.2 | 0.6 | 5.4 | 8.0 | 11.7 | 53.5 |
Tapp (°C) | 16.4 | 5.1 | 12.6 | 16.2 | 20.3 | 30.3 |
Temperature (°C) | 17.0 | 7.5 | 13.9 | 16.9 | 20.2 | 28.8 |
Relative humidity (%) | 70.0 | 30.7 | 62.0 | 70.7 | 78.0 | 100.0 |
Variable | NO2 | SO2 | Tapp | Temperature | RH |
---|---|---|---|---|---|
PM10 | 0.345 | 0.277 | 0.148 | 0.188 | −0.310 |
NO2 | 0.486 | −0.387 | −0.365 | 0.016 | |
SO2 | −0.142 | −0.131 | −0.021 | ||
Tapp | 0.988 | −0.304 | |||
Temperature | −0.438 |
Air Pollutant | Tapp | All | 15–64-Year-Olds | ≥65-Year-Olds | Females | Males |
---|---|---|---|---|---|---|
PM10 | Entire range | 1.5 (0.6, 2.4) | 0.9 (−0.6, 2.4) | 1.9 (0.7, 3.1) | 2.0 (0.7, 3.3) | 0.9 (−0.4, 2.3) |
Low | 1.9 (0.2, 3.6) | 1.7 (−1.1, 4.5) | 2.2 (0.0, 4.3) | 2.5 (0.1, 4.9) | 1.4 (−1.0, 3.9) | |
Moderate | 0.8 (−0.7, 2.4) | 0.0 (−2.5, 2.6) | 1.4 (−0.6, 3.4) | 0.6 (−1.5, 2.8) | 1.0 (−1.2, 3.3) | |
High | 1.3 (−1.1, 3.7) | 1.3 (−2.6, 5.3) | 1.3 (−1.7, 4.4) | 3.8 (0.4, 7.3) | −1.3 (−4.7, 2.1) | |
NO2 | Entire range | 2.7 (0.6, 4.8) | 1.8 (−1.6, 5.3) | 3.3 (0.7, 6.0) | 3.4 (0.5, 6.4) | 1.9 (−1.1, 5.0) |
Low | 3.1 (−0.7, 7.1) | 4.2 (−2.2, 11.1) | 2.7 (−2.1, 7.8) | 4.7 (−0.8, 10.4) | 1.7 (−3.8, 7.4) | |
Moderate | 4.7 (1.3, 8.3) | 1.0 (−4.4, 6.6) | 7.0 (2.6, 11.6) | 5.7 (1.0, 10.7) | 3.6 (−1.2, 8.6) | |
High | 0.6 (−6.3, 8.1) | 0.0 (−11.1, 12.4) | 1.1 (−7.6, 10.7) | 8.7 (−1.6, 20.2) | −7.5 (−16.5, 2.5) | |
SO2 | Entire range | 1.0 (−1.7, 3.9) | −2.4 (−6.8, 2.2) | 3.2 (−0.4, 6.9) | 1.2 (−2.7, 5.2) | 1.1 (−2.9, 5.2) |
Low | 4.0 (−2.2, 10.6) | 2.4 (−7.6, 13.5) | 4.9 (−2.9, 13.2) | 7.1 (−1.7, 16.6) | 1.6 (−7.1, 11.0) | |
Moderate | 0.9 (−3.3, 5.3) | −3.3 (−9.9, 3.8) | 3.5 (−1.9, 9.2) | 3.1 (−2.8, 9.3) | −1.4 (−7.4, 4.9) | |
High | −1.3 (−8.3, 6.3) | −8.7 (−19.1, 3.0) | 3.5 (−5.8, 13.6) | 1.9 (−8.4, 13.3) | −4.4 (−13.8, 6.0) |
Air Pollutant | Tapp | All | 15–64-Year-Olds | ≥65 Year-Olds | Females | Males |
---|---|---|---|---|---|---|
PM10 adjusted for NO2 | Entire range | 1.2 (0.0, 2.5) | 0.5 (−1.5, 2.5) | 1.7 (0.2, 3.3) | 1.9 (0.2, 3.6) | 0.5 (−1.2, 2.3) |
Low | 1.8 (−0.8, 4.5) | 0.3 (−3.9, 4.7) | 2.7 (−0.6, 6.1) | 1.8 (−1.8, 5.6) | 1.7 (−2.0, 5.6) | |
Moderate | −0.8 (−3.0, 1.4) | −1.4 (−4.9, 2.2) | −0.4 (−3.1, 2.4) | −1.6 (−4.5, 1.4) | 0.0 (−3.1, 3.2) | |
High | 1.7 (−1.1, 4.6) | 2.1 (−2.4, 6.9) | 1.5 (−2.1, 5.2) | 5.3 (1.3, 9.5) | −1.9 (−5.8, 2.2) | |
NO2 adjusted for PM10 | Entire range | 1.1 (−1.4, 3.7) | 1.2 (−2.9, 5.6) | 1.1 (−2.1, 4.4) | 0.9 (−2.6, 4.6) | 1.3 (−2.4, 5.1) |
Low | 0.2 (−5.4, 6.1) | 3.7 (−5.9, 14.2) | −1.6 (−8.4, 5.8) | 1.5 (−6.3, 10.0) | −1.0 (−8.9, 7.6) | |
Moderate | 5.7 (1.4, 10.1) | 2.7 (−4.0, 9.8) | 7.4 (1.9, 13.1) | 7.5 (1.5, 13.8) | 3.6 (−2.3, 9.9) | |
High | −0.6 (−7.7, 7.1) | −1.4 (−12.8, 11.4) | 0.0 (−8.9, 9.8) | 5.6 (−4.8, 17.2) | −6.8 (−16.3, 3.6) | |
PM10 adjusted for SO2 | Entire range | 1.8 (0.8, 2.8) | 1.8 (0.1, 3.5) | 1.8 (0.6, 3.1) | 2.4 (1.0, 3.9) | 1.0 (−0.4, 2.5) |
Low | 1.9 (−0.1, 3.9) | 1.7 (−1.6, 5.0) | 2.2 (−0.3, 4.7) | 2.1 (−0.6, 4.9) | 1.6 (−1.3, 4.5) | |
Moderate | 1.3 (−0.5, 3.1) | 1.5 (−1.4, 4.5) | 1.2 (−1.0, 3.4) | 1.0 (−1.4,3.4) | 1.6 (−1.0, 4.2) | |
High | 1.8 (−0.7, 4.3) | 2.4 (−1.7, 6.5) | 1.4 (−1.7, 4.6) | 4.3 (0.8, 7.9) | −0.9 (−4.3, 2.7) | |
SO2 adjusted for PM10 | Entire range | −0.9 (−3.8, 2.1) | −4.5 (−9.1, 0.4) | 1.2 (−2.5, 5.1) | −1.4 (−5.5, 2.8) | −0.1 (−4.3, 4.3) |
Low | 0.3 (−6.6, 7.8) | −0.9 (−12.1, 11.9) | 0.7 (−7.9, 10.2) | 3.0 (−6.8, 13.7) | −1.5 (−11.3, 9.3) | |
Moderate | −0.4 (−4.8, 4.3) | −4.8 (−11.7, 2.6) | 2.4 (−3.3, 8.4) | 2.1 (−4.1, 8.7) | −3.0 (−9.2, 3.7) | |
High | −1.4 (−8.5, 6.2) | −9.6 (−20.0, 2.2) | 3.8 (−5.6, 14.1) | 1.1 (−9.2, 12.6) | −3.9 (−13.4, 6.7) |
Group | Lag | PM10 | NO2 | SO2 |
---|---|---|---|---|
All ages and sexes combined | Lag0–1 | 1.5 (0.6, 2.4) | 2.7 (0.6, 4.8) | 1.0 (−1.7, 3.9) |
Lag0–2 | 1.6 (0.6, 2.7) | 2.3 (−0.1, 4.7) | 1.2 (−2.0, 4.5) | |
Lag0–3 | 1.4 (0.3, 2.6) | 1.2 (−1.4, 3.9) | −0.3 (−3.8, 3.3) | |
Lag0–4 | 1.2 (−0.1, 2.4) | 0.8 (−1.9, 3.7) | −1.0 (−4.7, 2.9) | |
Lag0–5 | 1.1 (−0.3, 2.4) | 1.2 (−1.8, 4.2) | −0.4 (−4.3, 3.8) | |
Lag0–6 | 0.8 (−0.6, 2.3) | 0.7 (−2.4, 4.0) | −0.9 (−5.1, 3.4) | |
Females | Lag0–1 | 2.0 (0.7, 3.3) | 3.4 (0.5, 6.4) | 1.2 (−2.7, 5.2) |
Lag0–2 | 2.4 (1.0, 3.9) | 3.1 (−0.3, 6.5) | 0.8 (−3.6, 5.4) | |
Lag0–3 | 2.6 (1.0, 4.2) | 2.8 (−0.8, 6.6) | −0.5 (−5.3, 4.6) | |
Lag0–4 | 2.8 (1.0, 4.5) | 3.3 (−0.6, 7.4) | −1.0 (−6.1, 4.4) | |
Lag0–5 | 2.6 (0.7, 4.5) | 4.1 (−0.1, 8.4) | 0.9 (−4.6, 6.8) | |
Lag0–6 | 2.6 (0.5, 4.7) | 4.8 (0.3, 9.5) | 0.8 (−5.1, 7.0) | |
Males | Lag0–1 | 0.9 (−0.4, 2.3) | 1.9 (−1.1, 5.0) | 1.1 (−2.9, 5.2) |
Lag0–2 | 0.8 (−0.7, 2.3) | 1.5 (−1.9, 4.9) | 1.7 (−2.9, 6.5) | |
Lag0–3 | 0.2 (−1.5, 1.8) | −0.5 (−4.2, 3.2) | 0.0 (−5.0, 5.2) | |
Lag0–4 | −0.5 (−2.3, 1.3) | −1.5 (−5.3, 2.5) | −0.9 (−6.2, 4.7) | |
Lag0–5 | −0.5 (−2.4, 1.4) | −1.5 (−5.7, 2.8) | −1.6 (−7.2, 4.3) | |
Lag0–6 | −1.0 (−3.0, 1.1) | −3.2 (−7.5, 1.4) | −2.6 (−8.4, 3.6) | |
15–64-year-olds | Lag0–1 | 0.9 (−0.6, 2.4) | 1.8 (−1.6, 5.3) | −2.4 (−6.8, 2.2) |
Lag0–2 | 0.8 (−0.8, 2.5) | 1.4 (−2.5, 5.3) | −3.0 (−8.0, 2.3) | |
Lag0–3 | 0.6 (−1.3, 2.5) | −0.1 (−4.2, 4.2) | −4.4 (−9.8, 1.4) | |
Lag0–4 | −0.1 (−2.1, 2.0) | −0.8 (−5.3, 3.8) | −6.8 (−12.5, −0.8) | |
Lag0–5 | −0.1 (−2.2, 2.2) | 0.0 (−4.7, 5.0) | −5.8 (−11.9, 0.7) | |
Lag0–6 | −0.2 (−2.6, 2.2) | 0.0 (−5.1, 5.3) | −5.5 (−11.9, 1.3) | |
≥65-year-olds | Lag0–1 | 1.9 (0.7, 3.1) | 3.3 (0.7, 6.0) | 3.2 (−0.4, 6.9) |
Lag0–2 | 2.2 (0.9, 3.5) | 3.1 (0.1, 6.2) | 3.7 (−0.3, 8.0) | |
Lag0–3 | 2.0 (0.5, 3.4) | 2.2 (−1.0, 5.6) | 2.2 (−2.2, 6.9) | |
Lag0–4 | 1.9 (0.4, 3.5) | 2.0 (−1.5, 5.6) | 2.6 (−2.2, 7.7) | |
Lag0–5 | 1.7 (0.0, 3.5) | 2.8 (−1.0, 6.7) | 3.1 (−2.0, 8.5) | |
Lag0–6 | 1.5 (−0.4, 3.3) | 2.1 (−1.9, 6.3) | 2.1 (−3.3, 7.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olutola, B.G.; Mwase, N.S.; Shirinde, J.; Wichmann, J. Apparent Temperature Modifies the Effects of Air Pollution on Cardiovascular Disease Mortality in Cape Town, South Africa. Climate 2023, 11, 30. https://doi.org/10.3390/cli11020030
Olutola BG, Mwase NS, Shirinde J, Wichmann J. Apparent Temperature Modifies the Effects of Air Pollution on Cardiovascular Disease Mortality in Cape Town, South Africa. Climate. 2023; 11(2):30. https://doi.org/10.3390/cli11020030
Chicago/Turabian StyleOlutola, Bukola G., Nandi S. Mwase, Joyce Shirinde, and Janine Wichmann. 2023. "Apparent Temperature Modifies the Effects of Air Pollution on Cardiovascular Disease Mortality in Cape Town, South Africa" Climate 11, no. 2: 30. https://doi.org/10.3390/cli11020030
APA StyleOlutola, B. G., Mwase, N. S., Shirinde, J., & Wichmann, J. (2023). Apparent Temperature Modifies the Effects of Air Pollution on Cardiovascular Disease Mortality in Cape Town, South Africa. Climate, 11(2), 30. https://doi.org/10.3390/cli11020030