Hydrometeorological Conditions of the Volga Flow Generation into the Caspian Sea during the Last Glacial Maximum
Abstract
:1. Introduction
2. Object, Data, and Methods
2.1. Study Basin
2.2. PMIP4-CMIP6 Model Data
2.3. Hydrological Model
2.4. Hydrological Modeling Using the PMIP4-CMIP6 Data
3. Results
3.1. Runoff Calculations Using the PMIP4-CMIP6 Data
3.2. Runoff Calculations Based on Hydrological Model Using the PMIP4-CMIP6 Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rychagov, G.I. Pleistocene History of the Caspian Sea; Publishing House of the Moscow University: Moscow, Russia, 1997. [Google Scholar]
- Yanina, T.; Sorokin, V.; Bezrodnykh, Y.; Romanyuk, B. Late Pleistocene Climatic Events Reflected in the Caspian Sea Geological History (Based on Drilling Data). Quat. Int. 2018, 465, 130–141. [Google Scholar] [CrossRef]
- Yanina, T.A. Correlation of the Late Pleistocene Paleogeographical Events of the Caspian Sea and Russian Plain. Quat. Int. 2012, 271, 120–129. [Google Scholar] [CrossRef]
- Tudryn, A.; Chalié, F.; Lavrushin, Y.A.; Antipov, M.P.; Spiridonova, E.A.; Lavrushin, V.; Tucholka, P.; Leroy, S.A.G. Late Quaternary Caspian Sea Environment: Late Khazarian and Early Khvalynian Transgressions from the Lower Reaches of the Volga River. Quat. Int. 2013, 292, 193–204. [Google Scholar] [CrossRef]
- Bolikhovskaya, N.S.; Makshaev, R.R. The Early Khvalynian Stage in the Caspian Sea Evolution: Pollen Records, Palynofloras and Reconstructions of Paleoenvironments. Quat. Int. 2020, 540, 10–21. [Google Scholar] [CrossRef]
- Kurbanov, R.; Murray, A.; Thompson, W.; Svistunov, M.; Taratunina, N.; Yanina, T. First Reliable Chronology for the Early Khvalynian Caspian Sea Transgression in the Lower Volga River Valley. Boreas 2021, 50, 134–146. [Google Scholar] [CrossRef]
- Krijgsman, W.; Tesakov, A.; Yanina, T.; Lazarev, S.; Danukalova, G.; Van Baak, C.G.C.; Agustí, J.; Alçiçek, M.C.; Aliyeva, E.; Bista, D.; et al. Quaternary Time Scales for the Pontocaspian Domain: Interbasinal Connectivity and Faunal Evolution. Earth-Sci. Rev. 2019, 188, 1–40. [Google Scholar] [CrossRef]
- Yanina, T.A. Environmental Variability Of The Ponto-Caspian And Mediterranean Basins During The Last Climatic Macrocycle. Geogr. Environ. Sustain. 2020, 13, 6–23. [Google Scholar] [CrossRef]
- Kislov, A.; Toropov, P. East European River Runoff and Black Sea and Caspian Sea Level Changes as Simulated within the Paleoclimate Modeling Intercomparison Project. Quat. Int. 2007, 167–168, 40–48. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Morozova, P.A.; Ushakov, K.V.; Semenov, V.A.; Volodin, E.M. Water budget of the Caspian sea in the Last Glacial Maximum by data of experiments with mathematical models. Water Resour. 2021, 48, 823–830. [Google Scholar] [CrossRef]
- Hughes, A.L.C.; Gyllencreutz, R.; Lohne, Ø.S.; Mangerud, J.; Svendsen, J.I. The Last Eurasian Ice Sheets—A Chronological Database and Time-slice Reconstruction, DATED-1. Boreas 2016, 45, 1–45. [Google Scholar] [CrossRef]
- Panin, A.V.; Sidorchuk, A.Y.; Ukraintsev, V.Y. The Contribution of Glacial Melt Water to Annual Runoff of River Volga in the Last Glacial Epoch. Water Resour. 2021, 48, 877–885. [Google Scholar] [CrossRef]
- Utkina, A.O.; Panin, A.V. Upper Volga’s Incision Valleys: Geomophological Aspects and Development History. Geomorphology 2022, 53, 162–172. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. Simulating Current Global River Runoff with a Global Hydrological Model: Model Revisions, Validation, and Sensitivity Analysis. Hydrol. Process. 2011, 25, 1129–1145. [Google Scholar] [CrossRef]
- Müller Schmied, H.; Eisner, S.; Franz, D.; Wattenbach, M.; Portmann, F.T.; Flörke, M.; Döll, P. Sensitivity of Simulated Global-Scale Freshwater Fluxes and Storages to Input Data, Hydrological Model Structure, Human Water Use and Calibration. Hydrol. Earth Syst. Sci. 2014, 18, 3511–3538. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Voß, F.; Eisner, S.; Chen, C.; Hagemann, S.; Ludwig, F. Effects of Climate Model Radiation, Humidity and Wind Estimates on Hydrological Simulations. Hydrol. Earth Syst. Sci. 2012, 16, 305–318. [Google Scholar] [CrossRef]
- Veldkamp, T.I.E.; Zhao, F.; Ward, P.J.; de Moel, H.; Aerts, J.C.J.H.; Schmied, H.M.; Portmann, F.T.; Masaki, Y.; Pokhrel, Y.; Liu, X.; et al. Human Impact Parameterizations in Global Hydrological Models Improve Estimates of Monthly Discharges and Hydrological Extremes: A Multi-Model Validation Study. Environ. Res. Lett. 2018, 13, 055008. [Google Scholar] [CrossRef]
- Krysanova, V.; Donnelly, C.; Gelfan, A.; Gerten, D.; Arheimer, B.; Hattermann, F.; Kundzewicz, Z. How the Performance of Hydrological Models Relates to Credibility of Projections under Climate Change. Hydrol. Sci. J. 2018, 63, 696–720. [Google Scholar] [CrossRef]
- Shiklomanov, I.; Georgievskii, V.; Babkin, V.; Balonishnikova, Z. Research Problems of Formation and Estimation of Water Resources and Water Availability Changes of the Russian Federation. Russ. Meteorol. Hydrol. 2010, 35, 13–19. [Google Scholar] [CrossRef]
- Georgiadi, A.; Miluykova, I. Possible Scales of Hydrological Changes in the Volga Basin under Anthropogenic Climate Warming. Russ. Meteorol. Hydrol. 2002, 2, 54–59. [Google Scholar]
- Peel, M.; Blöschl, G. Hydrological Modeling in a Changing World. Prog. Phys. Geogr. Earth Environ. 2011, 35, 249–261. [Google Scholar] [CrossRef]
- Krysanova, V.; Hattermann, F.; Kundzewicz, Z. How Evaluation of Hydrological Models Influences Results of Climate Impact Assessment—an Editorial. Clim. Change 2020, 163, 1121–1141. [Google Scholar] [CrossRef]
- Kalugin, A. Hydrological and Meteorological Variability in the Volga River Basin under Global Warming by 1.5 and 2 Degrees. Climate 2022, 10, 107. [Google Scholar] [CrossRef]
- Krysanova, V.; Vetter, T.; Eisner, S.; Huang, S.; Pechlivanidis, I.; Strauch, M.; Gelfan, A.; Kumar, R.; Aich, V.; Arheimer, B.; et al. Intercomparison of Regional-Scale Hydrological Models and Climate Change Impacts Projected for 12 Large River Basins Worldwide-a Synthesis. Environ. Res. Lett. 2017, 12, 105002. [Google Scholar] [CrossRef]
- Kageyama, M.; Albani, S.; Braconnot, P.; Harrison, S.P.; Hopcroft, P.O.; Ivanovic, R.F.; Lambert, F.; Marti, O.; Peltier, W.R.; Peterschmitt, J.-Y.; et al. The PMIP4 Contribution to CMIP6–Part 4: Scientific Objectives and Experimental Design of the PMIP4-CMIP6 Last Glacial Maximum Experiments and PMIP4 Sensitivity Experiments. Geosci. Model Dev. 2017, 10, 4035–4055. [Google Scholar] [CrossRef]
- Kageyama, M.; Harrison, S.P.; Kapsch, M.-L.; Lofverstrom, M.; Lora, J.M.; Mikolajewicz, U.; Sherriff-Tadano, S.; Vadsaria, T.; Abe-Ouchi, A.; Bouttes, N.; et al. The PMIP4 Last Glacial Maximum experiments: Preliminary results and comparison with the PMIP3 simulations. Clim. Past 2021, 17, 1065–1089. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Space Geodesy Constrains Ice Age Terminal Deglaciation: The Global ICE-6G_C (VM5a) Model: Global Glacial Isostatic Adjustment. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef]
- Sidorenko, D.; Rackow, T.; Jung, T.; Semmler, T.; Barbi, D.; Danilov, S.; Dethloff, K.; Dorn, W.; Fieg, K.; Goessling, H.F.; et al. Towards Multi-Resolution Global Climate Modeling with ECHAM6–FESOM. Part I: Model Formulation and Mean Climate. Clim. Dyn. 2015, 44, 757–780. [Google Scholar] [CrossRef]
- Volodin, E.M.; Mortikov, E.V.; Kostrykin, S.V.; Galin, V.Y.; Lykossov, V.N.; Gritsun, A.S.; Diansky, N.A.; Gusev, A.V.; Iakovlev, N.G.; Shestakova, A.A.; et al. Simulation of the Modern Climate Using the INM-CM48 Climate Model. Russ. J. Numer. Anal. Math. Model. 2018, 33, 367–374. [Google Scholar] [CrossRef]
- Hajima, T.; Watanabe, M.; Yamamoto, A.; Tatebe, H.; Noguchi, M.A.; Abe, M.; Ohgaito, R.; Ito, A.; Yamazaki, D.; Okajima, H.; et al. Development of the MIROC-ES2L Earth System Model and the Evaluation of Biogeochemical Processes and Feedbacks. Geosci. Model Dev. 2020, 13, 2197–2244. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model Version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [Green Version]
- Motovilov, Y.G.; Gottschalk, L.; Engeland, K.; Rodhe, A. Validation of a Distributed Hydrological Model against Spatial Observations. Agricult. For. Meteorol. 1999, 98–99, 257–277. [Google Scholar] [CrossRef]
- Motovilov, Y.; Danilov-Danilyan, V.; Dod, E.; Kalugin, A. Assessing the Flood Control Effect of the Existing and Projected Reservoirs in the Middle Amur Basin Based on Physical-Mathematical Hydrological Models. Water Resour. 2015, 42, 580–593. [Google Scholar] [CrossRef]
- Bugaets, A.; Gartsman, B.; Gelfan, A.; Motovilov, Y.; Sokolov, O.; Gonchukov, L.; Kalugin, A.; Moreido, V.; Suchilina, Z.; Fingert, E. The Integrated System of Hydrological Forecasting in the Ussuri River Basin Based on the ECOMAG Model. Geosciences 2018, 8, 5. [Google Scholar] [CrossRef]
- Kalugin, A. The Impact of Climate Change on Surface, Subsurface and Groundwater Flow: A Case Study of the Oka River (European Russia). Water Resour. 2019, 46, S31–S39. [Google Scholar] [CrossRef]
- Gelfan, A.; Kalugin, A.; Krylenko, I.; Nasonova, O.; Gusev, Y.; Kovalev, E. Does a Successful Comprehensive Evaluation Increase Confidence in a Hydrological Model Intended for Climate Impact Assessment? Clim. Change 2020, 163, 1165–1185. [Google Scholar] [CrossRef]
- Kalugin, A.; Lebedeva, L. Runoff Generation at the Small Permafrost River Basin in Eastern Siberia: Data Analysis and Hydrological Modeling. E3S Web Conf. 2020, 163, 01006. [Google Scholar] [CrossRef]
- Kalugin, A. Process-Based Modeling of the High Flow of a Semi-Mountain River under Current and Future Climatic Conditions: A Case Study of the Iya River (Eastern Siberia). Water 2021, 13, 1042. [Google Scholar] [CrossRef]
- Kalugin, A. Future Climate-Driven Runoff Change in the Large River Basins in Eastern Siberia and the Far East Using Process-Based Hydrological Models. Water 2022, 14, 609. [Google Scholar] [CrossRef]
- Kalugin, A. Climate Change Attribution in the Lena and Selenga River Runoff: An Evaluation Based on the Earth System and Regional Hydrological Models. Water 2022, 14, 118. [Google Scholar] [CrossRef]
- Motovilov, Y. Hydrological Simulation of River Basins at Different Spatial Scales: 1. Generalization and Averaging Algorithms. Water Resour. 2016, 43, 429–437. [Google Scholar] [CrossRef]
- Gelfan, A.; Kalugin, A.; Motovilov, Y. Assessing Amur Water Regime Variations in the XXI Century with Two Methods Used to Specify Climate Projections in River Runoff Formation Model. Water Resour. 2018, 45, 307–317. [Google Scholar] [CrossRef]
- Smith, M.W.; Riseborough, D.W. Climate and the Limits of Permafrost: A Zonal Analysis. Permafr. Periglac. Process 2002, 13, 1–15. [Google Scholar] [CrossRef]
- Velichko, A.A. Paleoclimates and Paleoenvironments of Extra-Tropical Regions of the Nothern Hemisphere. Late Pleistocene–Holocene. Atlas-Monograph; GEOS: Moscow, Russia, 2009. [Google Scholar]
- Borisiva, O.K. Landscape and Climatic Conditions in the Central East European Plain in the Last 22 Thousand Years: Reconstruction Based on Paleobotanical Data. Water Resour. 2021, 48, 886–896. [Google Scholar] [CrossRef]
- Gelfan, A.; Kalugin, A. Permafrost in the Caspian Basin as a Possible Trigger of the Late Khvalynian Transgression: Testing Hypothesis Using a Hydrological Model. Water Resour. 2021, 48, 831–843. [Google Scholar] [CrossRef]
- Kislov, A.V.; Morozova, P.A. Level Variations in the Caspian Sea under Different Climate Conditions by the Data of Simulation under CMIP6 Project. Water Resour. 2021, 48, 844–853. [Google Scholar] [CrossRef]
- Svitoch, A.A. The regime of the Caspian Sea level reconstructed using paleographic data. Water Resour. 1997, 24, 9–18. [Google Scholar]
Characteristic | Value |
---|---|
Mean annual air temperature | 4 °C |
Mean winter air temperature | −8 °C |
Mean spring air temperature | 8 °C |
Mean summer–autumn air temperature | 13 °C |
Duration of the period with negative air temperature | Novermber-March |
Annual precipitation | 585 mm |
Solid precipitation | 30% of the annual total |
Liquid precipitation | 70% of the annual total |
Annual runoff | 260 km3 |
Winter runoff | 23% |
Spring flood runoff | 53% |
Summer–autumn runoff | 24% |
Runoff coefficient | 0.37 |
Model Name, Reference | Resolution, Number of Cells (Longitude × Latitude) | Dynamic Vegetation |
---|---|---|
AWI-ESM-1-1-LR [29] | 192 × 96 | yes |
INM-CM4-8 [30] | 180 × 120 | no |
MIROC-ES2L [31] | 128 × 64 | no |
MPI-ESM1-2-LR [32] | 192 × 96 | no |
Characteristics | AWI-ESM1-1-LR | INM-CM4-8 | MIROC-ES2L | MPI-ESM1-2-LR |
---|---|---|---|---|
Average annual air temperature | −9.9 °C | −15.5 °C | −12.1 °C | −12 °C |
December–February | −14.4 °C | −25 °C | −19.6 °C | −16.3 °C |
March–May | −12.1 °C | −16.3 °C | −13.1 °C | −13.4 °C |
June–August | −4.2 °C | −4.8 °C | −4 °C | −6.6 °C |
September–November | −9 °C | −16 °C | −11.8 °C | −11.7 °C |
Period with negative temperature | −13.1 °C | −21.6 °C | −16.9 °C | −15.0 °C |
Warm period | −5.4 °C | −7.1 °C | −5.5 °C | −7.8 °C |
Annual precipitation | −12.2% | −51% | −17% | −12.5% |
Solid precipitation | 49% | −6% | 19% | 35% |
Liquid precipitation | −42% | −73% | −34% | −35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalugin, A.; Morozova, P. Hydrometeorological Conditions of the Volga Flow Generation into the Caspian Sea during the Last Glacial Maximum. Climate 2023, 11, 36. https://doi.org/10.3390/cli11020036
Kalugin A, Morozova P. Hydrometeorological Conditions of the Volga Flow Generation into the Caspian Sea during the Last Glacial Maximum. Climate. 2023; 11(2):36. https://doi.org/10.3390/cli11020036
Chicago/Turabian StyleKalugin, Andrey, and Polina Morozova. 2023. "Hydrometeorological Conditions of the Volga Flow Generation into the Caspian Sea during the Last Glacial Maximum" Climate 11, no. 2: 36. https://doi.org/10.3390/cli11020036
APA StyleKalugin, A., & Morozova, P. (2023). Hydrometeorological Conditions of the Volga Flow Generation into the Caspian Sea during the Last Glacial Maximum. Climate, 11(2), 36. https://doi.org/10.3390/cli11020036