Heatwave Variability and Structure in South Africa during Summer Drought
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Mean Maximum Temperature
3.2. Daily Extreme Temperature Trends
3.3. Heatwave Variability
3.4. Heatwave and Droughts
3.5. Circulations during Heatwaves
3.5.1. 17–27 February 1983 Case
3.5.2. 23 February–2 March 1992 Case
3.5.3. 28 December 2015–9 January 2016 Case
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Meteorological Organization. State of the Climate in Africa. 2021. Available online: https://library.wmo.int/?lvl=notice_display&id=22125#.Y5xRx3ZBy3A (accessed on 15 December 2022).
- Shongwe, M.E.; Van Oldenborgh, G.J.; van den Hurk, B.; Van Aalst, M. Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part II: East Africa. J. Clim. 2011, 24, 3718–3733. [Google Scholar] [CrossRef]
- MacKellar, N.; New, M.; Jack, C. Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. S. Afr. J. Sci. 2014, 110, 13. [Google Scholar] [CrossRef]
- Clark, R.T.; Brown, S.J.; Murphy, J.M. Modeling Northern Hemisphere Summer Heat Extreme Changes and Their Uncertainties Using a Physics Ensemble of Climate Sensitivity Experiments. J. Clim. 2006, 19, 4418–4435. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heat waves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, In press.
- Robinson, A.; Lehmann, J.; Barriopedro, D.; Rahmstorf, S.; Coumou, D. Increasing heat and rainfall extremes now far outside the historical climate. npj Clim. Atmospheric Sci. 2021, 4, 45. [Google Scholar] [CrossRef]
- Ryan, S.J.; Lippi, C.A.; Zermoglio, F. Shifting transmission risk for malaria in Africa with climate change: A framework for planning and intervention. Malar. J. 2020, 19, 170. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; 582p. [Google Scholar]
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R.; et al. Climate change 2022: Impacts, adaptation and vulnerability; IPCC: Geneva, Switzerland, 2022; p. 3056. [Google Scholar]
- Schiermeier, Q. Droughts, heatwaves and floods: How to tell when climate change is to blame. Nature 2018, 560, 20–22. [Google Scholar] [CrossRef]
- Mbokodo, I.; Bopape, M.-J.; Chikoore, H.; Engelbrecht, F.; Nethengwe, N. Heatwaves in the Future Warmer Climate of South Africa. Atmosphere 2020, 11, 712. [Google Scholar] [CrossRef]
- Chikoore, H.; Jury, M.R. South African drought, deconstructed. Weather. Clim. Extremes 2021, 33, 100334. [Google Scholar] [CrossRef]
- Lukamba, M.T. Natural disasters in African countries: What can we learn about them? J. Transdiscipl. Res. South. Afr. 2010, 6, 478–495. Available online: https://hdl.handle.net/10520/EJC111907 (accessed on 23 November 2022). [CrossRef] [Green Version]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. (Eds.) Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Vol. 4); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- Kruger, A.; Nxumalo, M. Historical rainfall trends in South Africa: 1921–2015. Water SA 2017, 43, 285–297. [Google Scholar] [CrossRef]
- van der Walt, A.J.; Fitchett, J.M. Exploring extreme warm temperature trends in South Africa: 1960–2016. Theor. Appl. Clim. 2021, 143, 1341–1360. [Google Scholar] [CrossRef]
- NASA. 2021 Continued Earth’s Warming Trend. 2022. Available online: https://earthobservatory.nasa.gov/images/149321/2021-continued-earths-warming-trend (accessed on 12 December 2022).
- Jones, P.D. Hemispheric Surface Air Temperature Variations: A Reanalysis and an Update to 1993. J. Clim. 1994, 7, 1794–1802. [Google Scholar] [CrossRef]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef]
- Hulme, M.; Doherty, R.; Ngara, T.; New, M.; Lister, D. African climate change: 1900-2100. Clim. Res. 2001, 17, 145–168. [Google Scholar] [CrossRef]
- Makowski, K.; Wild, M.; Ohmura, A. Diurnal temperature range over Europe between 1950 and 2005. Atmospheric Meas. Tech. 2008, 8, 6483–6498. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. Atmos. 2006, 111, D14102. [Google Scholar] [CrossRef]
- Karl, T.R.; Jones, P.D.; Knight, R.W.; Kukla, G.; Plummer, N.; Razuvayev, V.; Gallo, K.P.; Lindseay, J.; Charlson, R.J.; Peterson, T.C. Asymmetric Trends of Daily Maximum and Minimum Temperature. Papers in Natural Resources, p. 185. 1993. Available online: https://digitalcommons.unl.edu/natrespapers/185?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages (accessed on 23 November 2022).
- Muhlenbruch-Tegen, A. Long-term surface temperature variations in South Africa. South Afr. J. Sci. 1992, 88, 197–205. [Google Scholar]
- Kruger, A.C.; Shongwe, S. Temperature trends in South Africa: 1960-2003. Int. J. Clim. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- Kruger, A.C.; Sekele, S.S. Trends in extreme temperature indices in South Africa: 1962-2009. Int. J. Clim. 2012, 33, 661–676. [Google Scholar] [CrossRef]
- Zuo, J.; Pullen, S.; Palmer, J.; Bennetts, H.; Chileshe, N.; Ma, T. Impacts of heat waves and corresponding measures: A review. J. Clean. Prod. 2015, 92, 1–12. [Google Scholar] [CrossRef]
- Bi, P.; Williams, S.; Loughnan, M.; Lloyd, G.; Hansen, A.; Kjellstrom, T.; Dear, K.; Saniotis, A. The Effects of Extreme Heat on Human Mortality and Morbidity in Australia: Implications for Public Health. Asia Pac. J. Public Health 2011, 23 (Suppl. S2), 27S–36S. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.D.; Bobb, J.F.; Tebaldi, C.; McDaniel, L.; Bell, M.; Dominici, F. Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change. Environ. Health Perspect. 2011, 119, 701–706. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Cowan, T.; Purich, A.; Perkins-Kirkpatrick, S.; Pezza, A.; Boschat, G.; Sadler, K. More Frequent, Longer, and Hotter Heat Waves for Australia in the Twenty-First Century. J. Clim. 2014, 27, 5851–5871. [Google Scholar] [CrossRef]
- Chang, F.-C.; Wallace, J.M. Meteorological Conditions during Heat Waves and Droughts in the United States Great Plains. Mon. Weather. Rev. 1987, 115, 1253–1269. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kliest, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference of Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA; pp. 179–184. [Google Scholar]
- Nembilwi, N.; Chikoore, H.; Kori, E.; Munyai, R.; Manyanya, T. The Occurrence of Drought in Mopani District Municipality, South Africa: Impacts, Vulnerability and Adaptation. Climate 2021, 9, 61. [Google Scholar] [CrossRef]
- Thomas, D.S.K.; Wilhelmi, O.V.; Finnessey, T.N.; Deheza, V. A comprehensive framework for tourism and recreation drought vulnerability reduction. Environ. Res. Lett. 2013, 8, 044004. [Google Scholar] [CrossRef]
- Albright, T.P.; Pidgeon, A.M.; Rittenhouse, C.D.; Clayton, M.K.; Wardlow, B.D.; Flather, C.H.; Culbert, P.D.; Radeloff, V.C. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 2010, 1, 12–22. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Shea, D.J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.I.; Lüthi, D.; Schär, C. Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Lyon, B. Southern Africa Summer Drought and Heat Waves: Observations and Coupled Model Behavior. J. Clim. 2009, 22, 6033–6046. [Google Scholar] [CrossRef]
- Rouault, M.; Richard, Y. Intensity and spatial extension of drought in South Africa at different time scales. Water SA 2004, 29, 489–500. [Google Scholar] [CrossRef]
- Rouault, M. Intensity and spatial extent of droughts in southern Africa. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Diaz, H.F., Beniston, M., Bradley, R.S., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2003; Volume 15, pp. 5–31. [Google Scholar] [CrossRef]
- Basara, J.; Basara, H.G.; Illston, B.G.; Crawford, K.C. The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Adv. Meteorol. 2010, 2010, 230365. [Google Scholar] [CrossRef]
- Mazdiyasni, O.; AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 11484–11489. [Google Scholar] [CrossRef]
- Sutanto, F.; Konstantinidou, M.; Dömling, A. Covalent inhibitors: A rational approach to drug discovery. RSC Med. Chem. 2020, 11, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Libonati, R.; Geirinhas, J.L.; Silva, P.S.; Russo, A.; A Rodrigues, J.; Belém, L.B.C.; Nogueira, J.; O Roque, F.; DaCamara, C.C.; Nunes, A.M.B.; et al. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ. Res. Lett. 2022, 17, 015005. [Google Scholar] [CrossRef]
- Mechler, R.; Bouwer, L.M. Understanding trends and projections of disaster losses and climate change: Is vulnerability the missing link? Clim. Chang. 2014, 133, 23–35. [Google Scholar] [CrossRef]
- Kopp, R.; Easterling, D.; Hall, T.; Hayhoe, K.; Horton, R.; Kunkel, K.; LeGrande, A. Chapter 15: Potential Surprises: Compound Extremes and Tipping Elements. In Climate Science Special Report: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 1–470. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Archer, E.; Engelbrecht, F.; Landman, W.; Le Roux, A.; van Huyssteen, E.; Fatti, C.; Vogel, C.; Aloom, I.; Maserumule, R.; Colvin, C.; et al. South African Risk and Vulnerability Atlas, CSIR and DST, Pretoria. 2010. Available online: http://hdl.handle.net/10204/4974 (accessed on 23 November 2022).
- Zhang, X.; Yang, F. RClimDex (1.0), User Manual, Climate Research Branch, Environment Canada, Downsview, Ontario, Canada. 2004. Available online: http://cccma.seos.uvic.ca/ETCCDMI (accessed on 20 November 2022).
- Kruger, A.C.; Rautenbach, H.; Mbatha, S.; Ngwenya, S.; Makgoale, T.E. Historical and projected trends in near-surface temperature indices for 22 locations in South Africa. South Afr. J. Sci. 2019, 115, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mulovhedzi, P.T. Towards a Heat-Watch Warning System for South Africa for the Benefit of the Health Sector. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2017. Available online: http://hdl.handle.net/2263/65921 (accessed on 23 November 2022).
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Manatsa, D.; Chingombe, W.; Matarira, C.H. The impact of the positive Indian Ocean dipole on Zimbabwe droughts. Int. J. Clim. 2008, 28, 2011–2029. [Google Scholar] [CrossRef]
- Reason, C.J.C. Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys. Res. Lett. 2001, 28, 2225–2227. [Google Scholar] [CrossRef]
- Hoell, A.; Funk, C.; Zinke, J.; Harrison, L. Modulation of the Southern Africa precipitation response to the El Niño Southern Oscillation by the subtropical Indian Ocean Dipole. Clim. Dyn. 2016, 48, 2529–2540. [Google Scholar] [CrossRef]
- Jury, M.R.; Mc Queen, C.; Levey, K. SOI and QBO signals in the African region. Theor. Appl. Clim. 1994, 50, 103–115. [Google Scholar] [CrossRef]
- Simpson, I.R.; Hitchcock, P.; Shepherd, T.G.; Scinocca, J.F. Stratospheric variability and tropospheric annular-mode timescales. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Fogt, R.L.; Marshall, G.J. The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Chang. 2020, 11, e652. [Google Scholar] [CrossRef]
- Ibebuchi, C. On the Relationship between Circulation Patterns, the Southern Annular Mode, and Rainfall Variability in Western Cape. Atmosphere 2021, 12, 753. [Google Scholar] [CrossRef]
- Chikoore, H.; Bopape, M.-J.M.; Ndarana, T.; Muofhe, T.P.; Gijben, M.; Munyai, R.B.; Manyanya, T.C.; Maisha, R. Synoptic structure of a sub-daily extreme precipitation and flood event in Thohoyandou, north-eastern South Africa. Weather. Clim. Extremes 2021, 33, 100327. [Google Scholar] [CrossRef]
- Dong, X.; He, C. Zonal displacement of the Western North Pacific subtropical high from early to late summer. Int. J. Clim. 2020, 40, 5029–5041. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Jagadheesha, D. A model investigation of recent ENSO impacts over southern Africa. Meteorol. Atmospheric Phys. 2005, 89, 181–205. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Finch, J.M.; Meadows, M.E. South African biomes and their changes over time. In The Geography of South Africa; Springer: Cham, Switzerland, 2019; pp. 57–69. [Google Scholar] [CrossRef]
- Stander, J.H.; Dyson, L.; Engelbrecht, C.J. snow forecasting decision tree for significant snowfall over the interior of South Africa. South Afr. J. Sci. 2016, 112, 1–10. [Google Scholar] [CrossRef]
- van Wilgen, N.J.; Goodall, V.; Holness, S.; Chown, S.L.; McGeoch, M.A. Rising temperatures and changing rainfall patterns in South Africa’s national parks. Int. J. Clim. 2015, 36, 706–721. [Google Scholar] [CrossRef]
- Ncongwane, K.P.; Botai, J.O.; Sivakumar, V.; Botai, C.M.; Adeola, A.M. Characteristics and Long-Term Trends of Heat Stress for South Africa. Sustainability 2021, 13, 13249. [Google Scholar] [CrossRef]
- Tyson, P.D.; Preston-Whyte, R.A. Weather and Climate of Southern Africa; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Trenberth, K.E. The definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef]
- SAWS. South African Weather Service. 2022. Annual State of the Climate of South Africa 2021. Pretoria. South Africa. Available online: https://www.weathersa.co.za/Documents/Corporate/Annual%20State%20of%20the%20Climate%202021_04042022114230.pdf (accessed on 23 November 2022).
- Chikoore, H. Drought in Southern Africa: Structure, Characteristics and Impacts. Ph.D. Thesis, University of Zululand, Richards Bay, South Africa, 2017. Available online: http://hdl.handle.net/10530/1547 (accessed on 23 November 2022).
- Driver, P.; Reason, C.J.C. Variability in the Botswana High and its relationships with rainfall and temperature characteristics over southern Africa. Int. J. Clim. 2017, 37, 570–581. [Google Scholar] [CrossRef]
- Philippon, N.; Rouault, M.; Richard, Y.; Favre, A. The influence of ENSO on winter rainfall in South Africa. Int. J. Clim. 2011, 32, 2333–2347. [Google Scholar] [CrossRef]
- Dieppois, B.; Rouault, M.; New, M. The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models. Clim. Dyn. 2015, 45, 2425–2442. [Google Scholar] [CrossRef]
- Malherbe, J.; Durand, W. How would current advice benefit maize farmers with respect to historical associations with El Niño events? In Proceedings of the 32nd Annual Conference of the South African Society for Atmospheric Sciences, Potchefstroom, South Africa, 31 October–1 November 2016; ISBN 978-0-620-72974-1. [Google Scholar]
- Engelbrecht, C.E. Exploring sub seasonal dynamic predictability of extreme events: A case study of the January and February 2016 heat waves. In Proceedings of the 34th Annual Conference of the South African Society for Atmospheric Sciences, Ballito, South African, 20–21 September 2018; ISBN 978-0-620-80825-5. [Google Scholar]
- Yuan, Z.; Xu, J.; Chen, J.; Huo, J.; Yu, Y.; Locher, P.; Xu, B. Drought Assessment and Projection under Climate Change: A Case Study in the Middle and Lower Jinsha River Basin. Adv. Meteorol. 2017, 2017, 5757238. [Google Scholar] [CrossRef]
- Malherbe, J.; Smit, I.P.; Wessels, K.J.; Beukes, P.J. Recent droughts in the Kruger National Park as reflected in the extreme climate index. Afr. J. Range Forage Sci. 2020, 37, 1–17. [Google Scholar] [CrossRef]
- Blamey, R.C.; Kolusu, S.R.; Mahlalela, P.; Todd, M.C.; Reason, C.J.C. The role of regional circulation features in regulating El Niño climate impacts over southern Africa: A comparison of the 2015/2016 drought with previous events. Int. J. Clim. 2018, 38, 4276–4295. [Google Scholar] [CrossRef]
- Sharma, S.; Mujumdar, P. Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Sci. Rep. 2017, 7, 15582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Index | Description | Units |
---|---|---|
TN10P | Annual number of days when TN < 10th percentile | days |
TN90P | Annual number of days when TN > 90th percentile | days |
TX10P | Annual number of days when TX < 10th percentile | days |
TX90P | Annual number of days when TX > 90th percentile | days |
Station Name | Hottest Month | Average TX (°C) |
---|---|---|
Bethlehem | January | 26.53 |
Bothaville | January | 30.67 |
Cape Agulhas | January | 24.46 |
Cape Columbine | February | 21.96 |
Cape St. Francis | January | 23.00 |
Escourt | January | 27.96 |
Fraserburg | January | 31.47 |
Lephalale | February | 32.65 |
Lydenburg | January | 26.25 |
Mara | January | 30.58 |
Marico | January | 31.37 |
Mount Edgecombe | February | 28.05 |
Pofadder | January | 34.08 |
Port Nolloth | February | 20.71 |
Pretoria | February | 28.84 |
Punda Maria | December | 32.30 |
Queenstown | January | 28.91 |
Richards Bay | February | 29.23 |
Skukuza | February | 32.57 |
Twee Rivieren | January | 36.58 |
Vanwyksvlei | January | 35.32 |
Vryburg | December | 31.94 |
Wepener | January | 30.28 |
Willowmore | January | 30.22 |
Thermal Region (Cluster) | Station Name | 1981–2020 Heatwave Frequency | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
July | August | September | October | November | December | January | February | March | April | May | June | ||
A | Cape Agulhas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cape Columbine | 0 | 0 | 2 | 1 | 1 | 3 | 4 | 2 | 2 | 7 | 1 | 0 | |
Port Nolloth | 22 | 14 | 6 | 4 | 1 | 0 | 0 | 1 | 5 | 16 | 18 | 17 | |
B | Cape St. Francis | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 5 | 2 |
Mount Edgecombe | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Richards bay | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 3 | 1 | 1 | 0 | 0 | |
C | Punda Maria | 0 | 1 | 1 | 13 | 16 | 21 | 10 | 4 | 3 | 0 | 0 | 0 |
Skukuza | 0 | 0 | 6 | 8 | 6 | 13 | 8 | 3 | 6 | 0 | 0 | 0 | |
D | Fraserburg | 0 | 0 | 0 | 0 | 0 | 2 | 9 | 13 | 0 | 0 | 0 | 0 |
Pofadder | 0 | 0 | 0 | 0 | 1 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | |
Twee Rivieren | 0 | 0 | 0 | 0 | 3 | 7 | 8 | 2 | 0 | 0 | 0 | 0 | |
Vanwyksvlei | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 1 | 0 | 0 | 0 | 0 | |
Bethlehem | 0 | 0 | 0 | 1 | 4 | 6 | 7 | 4 | 0 | 0 | 0 | 0 | |
Willowmore | 0 | 0 | 0 | 3 | 4 | 6 | 13 | 11 | 2 | 0 | 0 | 0 | |
E | Escourt | 0 | 0 | 5 | 7 | 12 | 9 | 13 | 3 | 0 | 1 | 0 | 0 |
Queenstown | 0 | 0 | 0 | 3 | 3 | 4 | 6 | 10 | 4 | 0 | 0 | 0 | |
Wepener | 0 | 0 | 0 | 0 | 0 | 2 | 9 | 1 | 1 | 0 | 0 | 0 | |
F | Bothaville | 0 | 0 | 0 | 6 | 8 | 13 | 14 | 9 | 1 | 0 | 0 | 0 |
Lephalale | 0 | 0 | 2 | 6 | 10 | 9 | 6 | 7 | 3 | 0 | 0 | 0 | |
Lydenburg | 0 | 0 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Mara | 0 | 0 | 6 | 17 | 13 | 12 | 9 | 6 | 4 | 0 | 0 | 0 | |
Marico | 0 | 0 | 0 | 9 | 18 | 12 | 19 | 14 | 2 | 0 | 0 | 0 | |
Pretoria | 0 | 0 | 0 | 8 | 10 | 5 | 7 | 6 | 1 | 0 | 0 | 0 | |
Vryburg | 0 | 0 | 0 | 4 | 4 | 15 | 14 | 8 | 0 | 0 | 0 | 0 |
Thermal Region (Cluster) | Station Name | 1981–2020 Heatwave Average Duration (Days) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
July | August | September | October | November | December | January | February | March | April | May | June | ||
A | Cape Agulhas | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cape Columbine | 0.0 | 0.0 | 3.5 | 4.0 | 3.0 | 3.0 | 4.0 | 3.3 | 3.5 | 3.9 | 3.0 | 0.0 | |
Port Nolloth | 4.1 | 3.4 | 3.3 | 3.0 | 3.0 | 0.0 | 0.0 | 3.0 | 3.6 | 3.6 | 3.4 | 3.6 | |
B | Cape St. Francis | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Mount Edgecombe | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Richards bay | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 3.0 | 4.0 | 6.0 | 4.0 | 0.0 | 0.0 | |
C | Punda Maria | 0.0 | 3.0 | 3.0 | 3.4 | 3.8 | 3.4 | 3.2 | 3.8 | 3.0 | 0.0 | 0.0 | 0.0 |
Skukuza | 0.0 | 0.0 | 3.3 | 3.6 | 3.9 | 3.3 | 3.4 | 4.0 | 3.3 | 0.0 | 0.0 | 0.0 | |
D | Fraserburg | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 3.4 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pofadder | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Twee Rivieren | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 3.3 | 4.6 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Vanwyksvlei | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 3.3 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Bethlehem | 0.0 | 0.0 | 0.0 | 4.0 | 5.0 | 4.5 | 3.3 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | |
Willowmore | 0.0 | 0.0 | 0.0 | 3.5 | 3.0 | 3.3 | 3.6 | 3.5 | 3.0 | 0.0 | 0.0 | 0.0 | |
E | Escourt | 0.0 | 0.0 | 3.0 | 3.3 | 4.1 | 3.6 | 3.7 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Queenstown | 0.0 | 0.0 | 0.0 | 3.0 | 3.3 | 3.3 | 3.9 | 4.2 | 3.0 | 0.0 | 0.0 | 0.0 | |
Wepener | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 4.1 | 3.0 | 3.0 | 0.0 | 0.0 | 0.0 | |
F | Bothaville | 0.0 | 0.0 | 0.0 | 4.3 | 3.7 | 4.3 | 4.8 | 3.9 | 3.0 | 0.0 | 0.0 | 0.0 |
Lephalale | 0.0 | 0.0 | 3.0 | 4.0 | 4.3 | 3.4 | 4.7 | 4.1 | 4.0 | 0.0 | 0.0 | 0.0 | |
Lydenburg | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Mara | 0.0 | 0.0 | 3.3 | 3.4 | 3.6 | 3.7 | 3.8 | 3.0 | 3.3 | 0.0 | 0.0 | 0.0 | |
Marico | 0.0 | 0.0 | 0.0 | 4.9 | 4.3 | 3.9 | 4.4 | 4.4 | 3.0 | 0.0 | 0.0 | 0.0 | |
Pretoria | 0.0 | 0.0 | 0.0 | 5.8 | 4.6 | 6.0 | 4.2 | 5.9 | 4.0 | 0.0 | 0.0 | 0.0 | |
Vryburg | 0.0 | 0.0 | 0.0 | 6.0 | 4.0 | 4.4 | 4.7 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Thermal Region (Cluster) | Station Name | 1981 - 2020 Heatwave Average Intensity (Average Maximum Temperature °C) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
July | August | September | October | November | December | January | February | March | April | May | June | ||
A | Cape Agulhas | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cape Columbine | 0.0 | 0.0 | 29.8 | 30.4 | 29.8 | 31.4 | 31.3 | 29.6 | 30.6 | 30.5 | 28.6 | 0.0 | |
Port Nolloth | 29.8 | 30.6 | 32.3 | 31.2 | 34.7 | 0.0 | 0.0 | 28.2 | 33.0 | 33.1 | 31.3 | 29.6 | |
B | Cape St. Francis | 30.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28.2 | 0.0 | 30.7 | 31.0 | 32.2 | 29.6 |
Mount Edgecombe | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Richards bay | 0.0 | 0.0 | 0.0 | 0.0 | 36.5 | 0.0 | 36.2 | 35.9 | 35.3 | 35.0 | 0.0 | 0.0 | |
C | Punda Maria | 0.0 | 38.6 | 39.4 | 39.2 | 39.6 | 39.1 | 38.9 | 39.3 | 38.7 | 0.0 | 0.0 | 0.0 |
Skukuza | 0.0 | 0.0 | 39.6 | 40.0 | 39.9 | 40.2 | 39.6 | 40.9 | 39.0 | 0.0 | 0.0 | 0.0 | |
D | Fraserburg | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.7 | 38.3 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pofadder | 0.0 | 0.0 | 0.0 | 0.0 | 39.4 | 0.0 | 40.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Twee Rivieren | 0.0 | 0.0 | 0.0 | 0.0 | 43.0 | 42.9 | 42.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Vanwyksvlei | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41.1 | 41.9 | 41.5 | 0.0 | 0.0 | 0.0 | 0.0 | |
Bethlehem | 0.0 | 0.0 | 0.0 | 32.3 | 32.9 | 33.3 | 33.1 | 32.7 | 0.0 | 0.0 | 0.0 | 0.0 | |
Willowmore | 0.0 | 0.0 | 0.0 | 36.6 | 37.5 | 37.6 | 37.9 | 37.0 | 36.4 | 0.0 | 0.0 | 0.0 | |
E | Escourt | 0.0 | 0.0 | 34.0 | 35.0 | 35.2 | 34.9 | 35.0 | 34.2 | 0.0 | 33.7 | 0.0 | 0.0 |
Queenstown | 0.0 | 0.0 | 0.0 | 35.5 | 36.4 | 36.8 | 36.9 | 36.1 | 36.3 | 0.0 | 0.0 | 0.0 | |
Wepener | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 36.4 | 37.0 | 37.1 | 35.9 | 0.0 | 0.0 | 0.0 | |
F | Bothaville | 0.0 | 0.0 | 0.0 | 36.3 | 36.6 | 37.3 | 36.9 | 36.7 | 36.9 | 0.0 | 0.0 | 0.0 |
Lephalale | 0.0 | 0.0 | 38.9 | 39.3 | 39.6 | 39.2 | 39.5 | 40.1 | 39.5 | 0.0 | 0.0 | 0.0 | |
Lydenburg | 0.0 | 0.0 | 32.6 | 32.8 | 32.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Mara | 0.0 | 0.0 | 37.1 | 37.8 | 37.7 | 37.4 | 37.2 | 38.4 | 36.6 | 0.0 | 0.0 | 0.0 | |
Marico | 0.0 | 0.0 | 0.0 | 37.9 | 38.0 | 37.8 | 38.0 | 33.0 | 37.3 | 0.0 | 0.0 | 0.0 | |
Pretoria | 0.0 | 0.0 | 0.0 | 36.0 | 35.2 | 36.8 | 35.6 | 35.3 | 34.5 | 0.0 | 0.0 | 0.0 | |
Vryburg | 0.0 | 0.0 | 0.0 | 38.2 | 38.7 | 38.0 | 38.3 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbokodo, I.L.; Bopape, M.-J.M.; Ndarana, T.; Mbatha, S.M.S.; Muofhe, T.P.; Singo, M.V.; Xulu, N.G.; Mohomi, T.; Ayisi, K.K.; Chikoore, H. Heatwave Variability and Structure in South Africa during Summer Drought. Climate 2023, 11, 38. https://doi.org/10.3390/cli11020038
Mbokodo IL, Bopape M-JM, Ndarana T, Mbatha SMS, Muofhe TP, Singo MV, Xulu NG, Mohomi T, Ayisi KK, Chikoore H. Heatwave Variability and Structure in South Africa during Summer Drought. Climate. 2023; 11(2):38. https://doi.org/10.3390/cli11020038
Chicago/Turabian StyleMbokodo, Innocent L., Mary-Jane M. Bopape, Thando Ndarana, Sifiso M. S. Mbatha, Tshimbiluni P. Muofhe, Mukovhe V. Singo, Nkosinathi G. Xulu, Tumelo Mohomi, Kingsley K. Ayisi, and Hector Chikoore. 2023. "Heatwave Variability and Structure in South Africa during Summer Drought" Climate 11, no. 2: 38. https://doi.org/10.3390/cli11020038
APA StyleMbokodo, I. L., Bopape, M. -J. M., Ndarana, T., Mbatha, S. M. S., Muofhe, T. P., Singo, M. V., Xulu, N. G., Mohomi, T., Ayisi, K. K., & Chikoore, H. (2023). Heatwave Variability and Structure in South Africa during Summer Drought. Climate, 11(2), 38. https://doi.org/10.3390/cli11020038